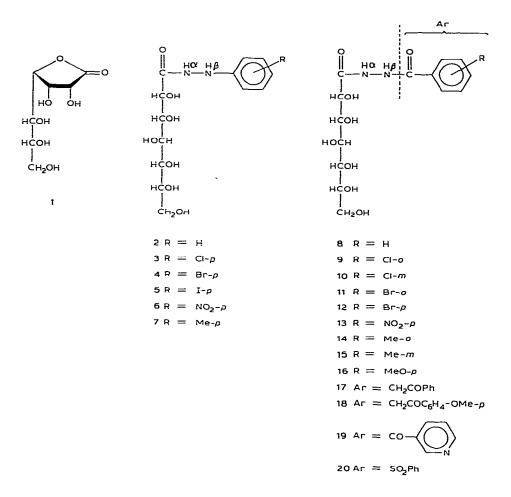
STUDIES ON AROYL- AND ARYL-HYDRAZIDE DERIVATIVES FROM D-glycero-D-gulo-HEPTONO-1,4-LACTONE

SABER M. SHARAF, MOHAMMED A. E. SALLAM*, AND HAMDY A. EL SHENAWY Department of Chemistry, Faculty of Science, Alexandria University, Alexandria (Egypt) (Received October 29th, 1980; accepted for publication, November 29th, 1980)

ABSTRACT

A series of aroyl- and aryl-hydrazide derivatives was prepared from D-glycero-D-gulo-heptono-1,4-lactone (1). The reactivity of the NH proton in these hydrazides, in terms of their dissociation constants (pK_a), was determined from their electronic spectra, and correlated to the Hammett σ values of the substituents. Comparable reactivities of the NH protons for the compounds, and the effect of the substituent, were studied by n.m.r. spectroscopy. Decomposition of the aroylhydrazides with copper(II) sulfate or nitrous acid resulted in the regeneration of 1.

INTRODUCTION


Aldonic acid hydrazides^{1,2} are useful derivatives for the characterization and purification of aldonic acids from their mixtures. Substituted-arylhydrazide derivatives from pentono- and hexono-lactones were studied³, and the rate of the reaction was found to be dependent on the configuration of the aldonolactone, as well as on the aryl substituent on the hydrazine.

We have now prepared a series of aryl- and aroyl-hydrazides of a heptonic acid by reaction of D-glycero-D-gulo-heptono-1,4-lactone (1), obtained from D-glucose cyanohydrin⁺, with the respective aroyl- and aryl-hydrazine. A comparative study on the ease of formation and properties of the aroyl- and aryl-hydrazides synthesized was made, to find out whether the aroylhydrazide can be used for the characterization and separation of mixtures of aldonic acids, analogously to arylhydrazides³. The relative acidities of the two imino protons in both types are discussed.

The respective arylhydrazides or aroyl hydrazides were prepared by refluxing the corresponding hydrazine derivative with the heptono-1,4-lactone 1 in the presence of a small proportion of acetic acid. The reaction of 1 with arylhydrazines is faster than with aroylhydrazines; for the former, the reaction was complete within 1-3 h, whereas, for the latter, 15-48 h were needed for complete reaction. This is attributed to the different basicity of the aryl- and aroyl-hydrazine derivatives; the former,

0008-6215/81/0000-0000/\$ 02.50, © 1981 - Elsevier Scientific Publishing Company

^{*}To whom enquiries should be addressed.

being the more reactive, react faster. The reaction time and properties of 2-7 are recorded in Table I, and of 8-20, in Table II.

The infrared (i.r.) absorption spectra of compounds 2-7 showed an amide band at 1665-1650 cm⁻¹. Compounds 8-20, however, showed two amide bands, at 1660-1640 cm⁻¹ and 1685-1670 cm⁻¹, corresponding to the sugar amide and the aromatic amide (anilide) groups, respectively.

The ultraviolet absorption spectrum of the phenylhydrazide derivative **2** showed a weak absorption at 275 nm and a strong absorption at 232 nm. The latter absorption is characteristic for the hydrazide derivatives, and is due to the transition

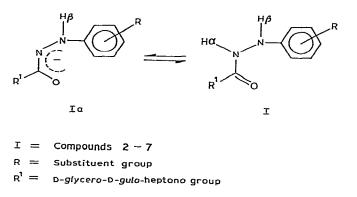
O O || of the ground state -C-NH to the exited state -C=NH, which is stabilized in polar solvents^{5.6}. Arylhydrazides having an electron-release substituent (*e.g.*, 7) showed a bathochromic shift of both bands. On the other hand, the ultraviolet absorption

Crystal- M.p. Malecular Calculated (%) lization (degrees) formula C H N solveur (degrees) formula C H N EtOH 170-172 $C_{13}H_{20}N_{2}O_7$ 46.4 6.4 8.9 EtOH 173-175 $C_{13}H_{10}CIN_2O_7$ 44.5 5.4 8.0 EtOH 173-175 $C_{13}H_{10}DIN_2O_7$ 39.5 4.8 7.1 EtOH 182-184 $C_{18}H_{10}BIN_2O_7$ 39.5 4.8 7.1 80%/0 182-183 $C_{13}H_{10}N_2O_7$ 35.3 4.3 6.3 EtOH 182-184 $C_{18}H_{10}BIN_2O_7$ 35.3 4.3 6.3 (EtOH 182-189 $C_{13}H_{10}N_3O_0$ 41.2 5.3 11.6 EtOH 173-175 $C_{14}H_{22}N_2O_7$ 50.9 6.5 11.6		-	- {	:										
(arg/rets) Jornma C H N C H N C0 232 170-172 $C_{13}H_{20}N_2O_7$ 46.4 6.4 8.9 46.8 6.0 9.3 1660 232 173-175 $C_{13}H_{10}CIN_2O_7$ 44.5 5.4 8.0 44.4 5.4 8.2 1660 232 173-175 $C_{13}H_{10}CIN_2O_7$ 44.5 5.4 8.0 44.4 5.4 8.2 1660 232 173-175 $C_{13}H_{10}IN_2O_7$ 39.5 4.8 7.1 39.6 5.1 7.5 1660 247 $202-203$ $C_{13}H_{10}IN_2O_7$ 35.3 4.3 6.3 35.8 4.6 6.7 1670 285 $202-203$ $C_{13}H_{10}IN_2O_7$ 35.3 11.6 41.3 5.3 11.5 1670 285 $173-175$ $C_{14}H_{22}N_2O_7$ 50.9 6.5 51.3 6.7 1670 285 $173-175$ $C_{14}H_{22}N_2O_7$ 50.9 6.5 51.3 <th></th> <th></th> <th>Crystal-</th> <th>M.p.</th> <th>Molecular</th> <th>Calculated (</th> <th>(%)</th> <th></th> <th>Found (%)</th> <th> </th> <th>i</th> <th></th> <th>Amax</th> <th></th>			Crystal-	M.p.	Molecular	Calculated ((%)		Found (%)		i		Amax	
	(l)		solvent	(saathan)	ommol	U	H	Z	U	H	2	c0 (em ⁻¹)	cm~1	log v
	1.5	- 1	EtOH	170-172	C13H20N2O7	46.4	6.4	8.9	46.8	6.0	9.3	1660	232	3.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													275	2.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ		EtOH	173-175	C ₁₃ H ₁₀ CIN ₂ O ₇	44.5	5.4	8.0	44.4	5.4	8.2	1665	240	3.2
182-184 C18H1nBFN2O7 39.5 4.8 7.1 39.6 5.1 7.5 1660 247 (Br, 20.5) (Br, 20.5) (Br, 20.6) (Br, 20.1) 285 202-203 C13H1nN2O7 35.3 4.3 6.3 35.8 4.6 6.7 1670 285 202-203 C13H1nN2O7 35.3 4.3 6.3 35.8 4.6 6.7 1670 188-189 C13H1nN2O7 55.3 11.6 41.3 5.3 11.5 1670 173-175 C14H22N2O7 50.9 6.5 51.3 6.7 1665 238						(Cl, 10.1)			(Cl, 10.6)				288 (sh)	
(Br, 20.5) (Br, 20.5) (Br, 20.1) 285 202-203 C ₁₃ H ₁₀ N ₂ O ₇ 35.3 4.3 6.3 35.8 4.6 6.7 1670 285 188-189 C ₁₃ H ₁₀ N ₃ O ₅ 41.2 5.3 11.6 41.3 5.3 11.5 1670 173-175 C ₁₄ H ₂₂ N ₂ O ₇ 50.9 6.5 51.3 6.7 11.6 1665 238 285	~		EIOH	182-184	C ₁₈ H ₁₀ BrN ₂ O ₇	39.5	4,8	1.1	39.6	5.1	7.5	1660	247	3.3
$202-203 C_{13}H_{19}N_{2}O_{7} 35.3 4.3 6.3 35.8 4.6 6.7 1670$ $188-189 C_{13}H_{19}N_{3}O_{9} 41.2 5.3 11.6 41.3 5.3 11.5 1670$ $173-175 C_{14}H_{22}N_{2}O_{7} 50.9 6.5 51.3 6.7 1665 238$ 238						(Br, 20.5)			(Br, 20.1)				285	2.5
			EtOH (80%)	202-203	C13H19IN2O7	35,3	4.3	6.3	35.8	4.6	6.7	1670		
173–175 C1₄H₂₂№O7 50.9 6.5 51.3 6.7 1665 238 285	m		EtOH	188-189	C13H10N3O9	41.2	5.3	11.6	41.3	5.3	11.5	1670		
	m		EtOH	173-175	C14H22N2O7	50.9	6.5		51.3	6.7		1665	238 285	3.2 2.6

MICROANALYSES AND SPECTRAL DATA FOR D. BIJCCO. D. BUID-HEPTONIC ARYLHYDRAZIDES

TABLE I

ŧ


	-	
•		
ſ	IJ	
	_	
٤	\mathbf{n}	
4	◄	
c	_	

Com-	R	Ref-	Crystal-	M.p.	Molecular	Calculated (%)	q (%)		Found (%)	()		PKHr mar	Zmar	
pound No.		(l) (l)	lization solvent	(Kaorgen)	Jormuna	c	Н	Z	c	Н	z	CO (cm ⁻¹)	cm ⁻¹	а Хој
8	Н	20	EtOH	190-192	C14H20N2O8	48.8	5.9	8,1	48.9	5,9	8,1	0691 1690	232 265 (.h.)	3.3
6	Cl-o	15	EtOH	185–186	C ₁₄ H ₁₀ ClN ₂ O ₈	44,4	5.0	7,4	44.8	5.4	7.6	1690	(118) 007	
10	Cl-m	17	EtOH	165	C14H10CIN2O8	44.4	5.0	7.4	44.5	5.0	7.5	0001	208	3.2
11	Br-o	17	MeOH	187	C14H19BrN2O8	39.7	4.5	6,6	39.8	4.3	7.0	1680	C + 7	5.5
12	Br-p	15	EtOH	245-247	C14H19BrN2O8	39.7	4.5	6.6	39,6	4.6	7.0	1690	220	3.0
13	NO ₂ -p	40	1-butanol	200-202	C14H19N3O10	43.2	4.9	10,8	43,0	5.4	10,8	1690	007	3.6
14	Me- <i>o</i>	16	E(OH	188-190	C15H22N2O8	50.3	6.2	7.8	50.2	6.3	7.8	1690 1690		
15	Me- <i>m</i>	16	MeOH	166–168	C15H22N2O8	50.3	6.2	7.8	50.5	5.8	7.9	0691 1690	217	3.3
16	MeO-p	20	EtOH	189-190	C15H22N2O9	48.1	5.9	7.5	48.1	5.9	7,4	1690	210	1. C. 4
17	CH ₂ COPh	24	EtOH	180-182	C15H22N2O8	50.3	6.2	7.8	50.2	5.8	7.7	0991	((7	c
18	CH2CO- CiH4OMe- <i>p</i>	17	McOH	190-192	C10H24N2O	49.5	6.2	7.2	49,4	6.6	7.2	1685 1660		
19	CO-CO-	48	ВЮН	175–177	C ₁₃ H ₁₀ N ₃ O ₈	45.2	5.5	12.2	45.7	5.3	12.6	1690 1660		
20	SO2Ph	18	BtOH	178-180	C13H20N2O8S	42.9 (S, 8.8)	5.5	7.7	42.7 (S, 8.5)	5.5	7.8	1685		

MICROANALYSES AND SPECTRAL DATA FOR D-glycero-D-guid-HEPTONIC AROYLHYDRAZIDES

spectrum of the corresponding benzoylhydrazide derivative (8) showed the two absorption bands at 270 and 232 nm. The latter absorption is common for aryl- and aroyl-hydrazides.

The ultraviolet absorption spectra of both types of hydrazide were sensitive to variation in pH within the pH range of 4–13. For the arylhydrazides, gradual increase in the pH resulted in gradual increase in the intensity of the long-wavelength absorption, with the formation of one isosbestic point, indicating the presence of one equilibrium species Ia = I (see Scheme 1). Compounds 2, 3, and 4 showed the

Scheme 1

isosbestic points at 242, 253, and 249 nm, respectively. This phenomenon is reversible, and, on acidifying the solution with acetic acid, the spectra return to that of the neutral solution. The pK_a values for these compounds were determined by using the

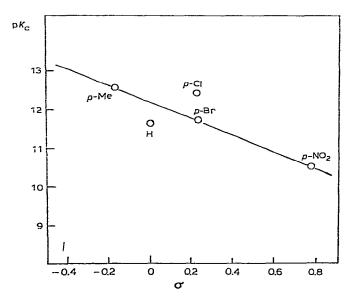


Fig. 1. The Hammett correlation of the dissociation constants of the arylhydrazides.

TABLE III

change of the pK_a value of aroul- and arul-hydrazides with the σ constant of the substituent

Compound	pK_a	σ	
2	11.6	0.000	
3	12.4	+0.227	
4	11.7	+0.232	
6	10.5	+0.778	
7	12.5	-0.170	
8	9.1	0.000	
10	12.8	+0.373	
12	10.1	+0.230	
15	9.15	-0.069	
16	9.4	-0.268	

TABLE IV

CHEMICAL SHIFT (δ) OF SOME AROYL- AND ARYL-HYDRAZIDE DERIVATIVES

Compound	Chemical shift (p.p.m.)	
	ΝΗα	ΝΗβ	
2	9.50	7.50	
6	10.03	9.02	
8	10.02	10.50	
9	9.67	10.67	
13	9.93	10.80	
15	10.02	10.50	
16	9.80	10.30	

modified, limiting-absorbance method^{7,8}. Plotting of pK_a values against the Hammett constants gave a straight line (see Fig. 1) having a slope of -0.210. The linear, Hammett relation confirmed⁹ the presence of one proton susceptible to abstraction by the base. The small σ values (see Table III) indicate the weak interaction due to absence of conjugation between the respective substituent at the aryl group and the negatively charged oxygen atom. These results were supported by n.m.r.-spectral results, which showed NH α at lower field than NH β for compounds 2-7, even for the strongly electron-attracting, nitro substituent of compound 6 (see Table IV).

Similarly, the aroylhydrazides were also sensitive to variation in pH; the highwavelength absorption (270 nm) showed gradual increase in intensity with gradual increase in the pH (see Fig. 2). The spectra were characterized by the presence of two isosbestic points. Compound 8 showed the isosbestic points at 247, 225 nm, and 12, at 258, 243 nm. This phenomenon indicates the presence of more than one equilibrium between the ionic species in solution, which arises by the ionization of either NH α or

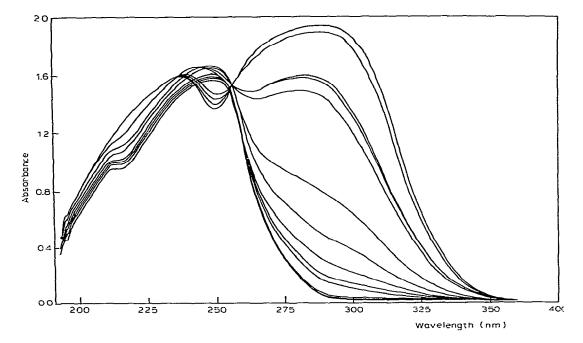


Fig. 2. Effect of pH on the electronic spectrum of D-glycero-D-gulo-heptonic p-bromobenzoyl-hydrazide.

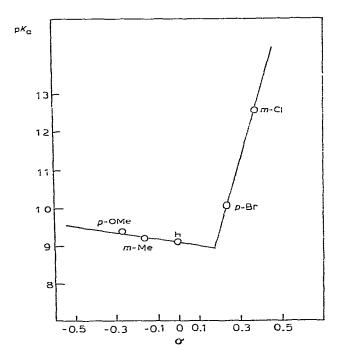
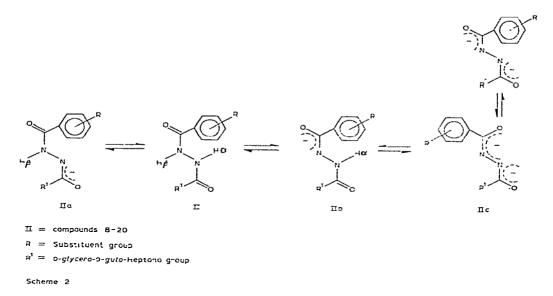



Fig. 3. The Hammett correlation of the dissociation constant of the aroylhydrazides.

NH β or both; IIa \rightleftharpoons II \rightleftharpoons IIb \rightleftharpoons IIc (see Scheme 2). The ionization of NH β is more facilitated by the adjacent aroyl group, as supported by its appearance at low magnetic field (see Table II).

Plotting pK_{a} values for compounds 8, 10, 12, 15, and 16 against the Hammett σ constants of the substituents gave a V-shaped relationship (see Fig. 3). Electrondonating substituents showed a negative slope ($\sigma - 1.26$) and electron-attracting substituents showed a positive value ($\sigma + 19.18$).

The n.m.r. spectra of both types of hydrazide showed the imino protons at low magnetic field as broad peaks exchangeable with deuterium by deuteration with D₂O or CD₃CO₂D. The imino proton NH α appeared at δ 9.50–10.02, for both types of hydrazide, indicating the chemical equivalence of the NH α proton of the hydrazides. Electron attraction or electron release did not show a large change in the chemical shift of this imino proton. On the other hand, NH β for compounds 2–7 appeared at higher field than NH₂, and was sensitive to the aryl substituent as a result of the resonance effect. Contrariwise, the aroylhydrazides showed NH β at lower field than NH α ; this may be explained by the anisotropic effect of both the carbonyl and the phenyl group of the aroyl group. Similarly, NH β for compounds 8-20 was shifted downfield compared to that of compounds 2-7. Substituents on the aroyl group showed little effect on the chemical shift of NH β , due to the absence of conjugation between the substituent and NH β . The small effect observed is due to the inductive effect of the substituent. The aromatic protons of compounds 2-20 were found at δ 6.7–8.08, and, at higher field, there was a doublet of one-proton intensity at δ 5.5–5.7, exchangeable by deuteration, assigned to the hydroxyl group α to the hydrazide residue. The rest of the sugar protons appeared as a multiplet of 12-proton intensity at δ 3.3–4.9 which, by deuteration, collapsed into a multiplet of 7-proton intensity.

Although formed after a longer reaction-time than that for the aryl analogs, the aroylhydrazide derivatives are more sensitive to acid hydrolysis. Like the arylhydrazide analogs^{1,2,10}, the aroylhydrazides are decomposed by copper(II) sulfate, or nitrous acid, with the regeneration of the precursor aldonolactone. These properties make these compounds useful derivatives for the separation and characterization of aldonolactones.

EXPERIMENTAL

General. — Melting points were determined with a Kofler-block apparatus and are uncorrected. I.r. spectra were recorded with a Unicam SP-200 and a Beckman IR-33 instrument. U.v. spectra were recorded, for solutions in a buffer, with a Unicam SP-800 spectrometer. N.m.r. spectra were recorded with Varian A (60 MHz) instrument. Microanalyses were performed in the Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt.

D-glycero-D-gulo-*Heptonic arylhydrazides.* — A solution of D-glycero-D-gulo-heptono-1,4-lactone (1, 0.01 mol) in water (5 mL) and acetic acid (3 drops) was treated with a hot, alcoholic solution of the arylhydrazine (11 mmol), and the mixture was boiled under reflux for 1-3 h, and cooled. The crystals that separated were filtered off. and recrystallized from ethanol, or dilute ethanol (see Table 1).

D-glycero-D-gulo-*Heptonic aroylhydrazides.* — A solution of 1 (0.01 mol) in water (3–5 mL) was treated with a solution of the aroylhydrazine (12 mmol) and 3 drops of acetic acid in alcohol (100 mL), and boiled under reflux for 15–48 h. The crystals obtained were recrystallized from 90°_{0} ethanol (see Table II).

Effect of copper(II) sulfate on D-glycero-D-gulo-heptonic benzoylhydrazide (8). — A solution of 8 (2.5 g) in water (25 mL) was treated with a solution of copper(II) sulfate¹⁰ (2 g) in water (25 mL), and boiled under reflux for 5 h. The copper ions were removed by bubbling hydrogen sulfide through the cooled solution, and the suspension was filtered. The sulfate ions were then removed by stirring with barium carbonate, and the suspension was filtered. The filtrate was evaporated under diminished pressure to a thin syrup which was dissolved in water, and the product lactonized in a current of air. D-glycero-D-gulo-Heptono-1,4-lactone (1) separated; it was filtered off, washed with alcohol, and dried; m.p. and mixed m.p. $153-155^{\circ}$.

Effect of nitrous acid on D-glycero-D-gulo-heptonic benzoylhydrazide (8). — Into a solution of 8 (2 g) in a mixture of water (5 mL) and concentrated hydrochloric acid (1 mL) was bubbled a stream of nitrous anhydride¹ for 3 h, the temperature being kept at $15-20^{\circ}$ by cooling in ice. The solution was made alkaline by addition of 50% potassium hydroxide solution, and evaporated under diminished pressure to a syrup. Absolute ethanol (10 mL) was added, the solution was acidified with hydrochloric acid, and the potassium chloride that separated was filtered off, and washed with ethanol. The filtrate and washings were combined, and evaporated under diminished pressure to a syrup; traces of water were removed by repeatedly dissolving in absolute ethanol and evaporating to a syrup, and this was nucleated and kept in a refrigerator. The solid obtained was filtered off, and successively washed with alcohol and ether; m.p. and mixed m.p. with an authentic sample of $1, 152-155^{\circ}$.

REFERENCES

- 1 A. THOMPSON AND M. L. WOLFROM, J. Am. Chem. Soc., 68 (1946) 1509-1510.
- 2 C. S. HUDSON, J. Am. Chem. Soc., 39 (1917) 462-470.
- 3 H. H. STROH AND D. HENNING, Chem. Ber., 100 (1967) 388-394.
- 4 N. K. RICHTMYER, Methods Carbohydr. Chem., 1 (1962) 160-167.
- 5 P. W. ALEXANDER AND R. J. SLEET, Aust. J. Chem., 23 (1970) 1183-1190.
- 6 G. ADEMBRI AND P. SARTI, Tetrahedron, 22 (1966) 3149-3156.
- 7 H. H. JAFFE AND H. ORCHIN, Theory of Ultraviolet Spectroscopy, Wiley, New York, 1962., pp. 556-584.
- 8 H. E. BENT AND C. L. FRENCH, J. Am. Chem. Soc., 63 (1941) 568-572.
- 9 R. F. COOKSON, Chem. Rev., 74 (1974) 5-28.
- 10 R. M. HANN AND C. S. HUDSON, J. Am. Chem. Soc., 56 (1934) 957-958.