

Studies toward the Total Synthesis of Caribbean Ciguatoxin C-CTX-1: Synthesis of the LMN-Ring Fragment through Reductive **Olefin Cross-Coupling**

Makoto Sasaki,*[©] Kotaro Iwasaki, and Keisuke Arai

Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

S Supporting Information

ABSTRACT: Synthesis of the LMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the principal causative toxin for ciguatera fish poisoning around the Caribbean Sea areas, is described. The key feature of the synthesis is the stereoselective introduction of an angular methyl group on the sterically encumbered seven-membered M-ring by the application of a hydrogen atom transfer-based reductive olefin coupling.

iguatera is a naturally occurring seafood poisoning prevalent in tropical and subtropical regions of the Pacific Ocean, Indian Ocean, and Caribbean Sea with more than 20000-60000 victims annually and continues to be a serious worldwide public health concern.^{1,2} Its incidence rates have recently been increasing in temperate regions,³ and thus, eradication of ciguatera is an urgent global issue that needs to be addressed. Pacific ciguatoxins, the principal causative toxins for ciguatera seafood poisoning in the Pacific Ocean, are produced by the benthic dinoflagellate Gambierdiscus toxicus and accumulate in many fish through the food chain; thus, humans are prone to intoxication.⁴ To date, more than 20 Pacific ciguatoxin congeners have been isolated and structurally identified.⁵

Caribbean ciguatoxins, the causative toxins for ciguatera around the Caribbean Sea areas, were isolated in 1998 by Lewis and co-workers from the carnivorous fish horse-eye jack (Caranx latus).⁶ The gross structures, including the relative configurations, of Caribbean ciguatoxin C-CTX-1 (1) and a minor analogue C-CTX-2 (2) were assigned through extensive 2D NMR studies (Figure 1).⁶ The most striking difference in the chemical structure of 1 compared with representative Pacific ciguatoxins, such as CTX3C (3),⁷ is the right-hand LMN-ring domain. In particular, the presence of the M-ring, a sterically encumbered seven-membered ether ring with two pseudoaxially oriented angular methyl groups flanking the ether oxygen, poses a formidable synthetic challenge.⁸ With respect to synthetic strategies toward the M-ring of Caribbean ciguatoxin C-CTX-1, Hirama and co-workers reported two approaches.⁹ One included the use of SmI₂-mediated reductive cyclization,¹⁰ and the other utilized $\begin{bmatrix} 2 + 2 \end{bmatrix}$ photocycloaddition followed by oxidative cleavage of the resultant cyclobutene structure and enzymatic desymmetrization to construct the sterically congested seven-membered M-ring. We previously reported the synthesis of a similar seven-membered ether substructure seen within gymnocin B,¹¹ which relied on ringclosing metathesis.¹² However, these prior synthetic ap-

Figure 1. Structures of Caribbeaan ciguatoxins C-CTX-1 (1), C-CTX-2 (2), and Pacific ciguatoxin CTX3C (3).

proaches lacked the stereoselectivity and efficiency required for practical synthesis. To address these synthetic problems, we decided to develop a new synthetic strategy, and herein we report a synthetic route to the LMN-ring fragment of Caribbean ciguatoxin C-CTX-1 through reductive olefin cross-coupling.

Our retrosynthetic analysis of the LMN-ring fragment 4 is depicted in Scheme 1. Compound 4 could be accessed from ketone 5 through deprotection and simultaneous hemiacetal formation. To install the four-carbon unit in conjunction with construction of a tetrasubstituted stereogenic center at the highly congested position on the right side of the seven-

Received: September 28, 2018

Scheme 1. Retrosynthetic Analysis of LMN-Ring Fragment 4 of C-CTX-1

membered M-ring, we planned to use an intermolecular radical coupling reaction, which is an attractive approach in terms of both reactivity and control of the stereoselectivity.¹³ With respect to the generation of carbon radical **6** and subsequent conjugate addition to vinyl ketone 7,¹⁴ the hydrogen atom transfer (HAT)-based reductive olefin coupling reaction developed by the Baran group^{15,16} was envisioned to be the most appealing approach.¹⁷ The precursor *exo*-enol ether **8** would be accessed from allylic selenide **9** by a seleno-Mislow–Evans rearrangement.¹⁸ Selenide **9** would be easily synthesized from allylic alcohol **10**, which in turn would be derived from enol phosphate **11** by Stille coupling with (tributylstannyl)-methanol.^{19,20}

The synthesis of seven-membered lactone 12, the precursor of enol phosphate 11, started with the known alcohol 13,9a which was protected as the benzyl ether 14 in 91% yield (Scheme 2). Ozonolysis of the terminal olefin within 14 provided the corresponding aldehyde, which was subjected to Brown asymmetric allylboration²¹ using (-)-B-allyldiisopinocamphenylborane to give homoallylic alcohol 15 in 73% yield for the two steps with a diastereomeric ratio of 10:1. The configuration of the newly generated stereogenic center at C44 was unambiguously established from NOE data after derivatization to obtain bis(acetonide) 16 (Figure 2). After protection of alcohol 15 as its TIPS ether (TIPSOTf, 2,6lutidine, DCE, 50 °C, 81%), hydroboration of the resulting compound 17 using dicyclohexylborane gave alcohol 18 in 79% yield. At this stage, the C44 diastereomer, which was produced in the Brown allylboration, could be removed by careful flash column chromatography on silica gel. Protection of alcohol 18 as its benzyl ether provided compound 19 in 93% yield. Regioselective reductive cleavage²² of the *p*-methoxybenzylidene acetal of 19 with DIBALH (CH₂Cl₂, -78 to -20 °C) produced primary alcohol 20 in 72% yield, along with a small amount of regioisomer 21 (12%). Triflation of alcohol 20 followed by nucleophilic displacement of the resultant triflate with allylmagnesium bromide in the presence of CuBr²² afforded elongated olefin 22 in 89% yield for the two steps. Oxidative removal of the PMB group of 22 with DDQ followed by oxidation of the derived secondary alcohol with tetra-n-propylammonium perruthenate (TPAP)/NMO²⁴ provided ketone 23 in 85% yield for the two steps. Subsequent treatment of ketone 23 with Me₃Al (CH₂Cl₂, -78 to -15 °C) delivered tertiary alcohol 24 in a highly stereoselective manner

Letter

Figure 2. Stereochemical assignment of homoallylic alcohol 15.

in 94% yield.²⁵ The configuration of the C48 stereogenic center of 24 was established by an NOE as shown. Hydroboration of the terminal olefin of 24 quantitatively provided diol 25, which was subjected to 2-hydroxy-2-azaadamantane (AZADOL)-catalyzed oxidation in the presence of PhI(OAc)₂ (CH₂Cl₂/pH 7 buffer)²⁶ to yield carboxylic acid 26 in 88% yield. Finally, Yamaguchi lactonization²⁷ of hydroxy acid 26 completed the assembly of seven-membered lactone 12 in 95% yield.

With the synthetic route to lactone 12 in hand, we performed the hydroxymethylation by Stille coupling of the corresponding enol phosphate.²⁸ Thus, enolization of lactone 12 with KHMDS in the presence of $(PhO)_2P(O)Cl$ (HMPA, THF, -78 °C) afforded enol phosphate 11 (95%), which was unstable and immediately subjected to hydroxymethylation by Stille coupling with (tributylstannyl)methanol¹⁹ (Scheme 3). Cross-coupling of enol phosphate 11 with (tributylstannyl)-

methanol proceeded in the presence of Pd(PPh₃)₄ and LiCl (THF, reflux) to give allylic alcohol **10** in 83% yield. Alcohol **10** was subsequently transformed to 2-nitrophenyl selenide **9** in 95% yield by means of the Grieco–Nishizawa protocol.²⁹ Upon treatment of selenide **9** with an excess amount of 30% aqueous H₂O₂ solution in the presence of DMAP (5 equiv) in THF at -40 °C to room temperature, the seleno-Mislow–Evans rearrangement¹⁸ proceeded smoothly to give α -hydroxy *exo*-enol ether **27** with the undesired configuration at C52 in 67% yield, along with a small amount of the desired epimer **28** (6%). The relative configuration of the C52 stereogenic center of **27** was established by NOE data as shown in Figure 3. The

Figure 3. Stereochemical assignment of alcohol 27.

observed stereoselectivity of this [2,3]-sigmatropic rearrangement could be ascribed to the steric hindrance of the angular methyl group at C48. Inversion of the C52 hydroxy group of 27 was performed using modified Mitsunobu conditions (4-NO₂C₆H₄CO₂H, Ph₃P, DEAD, THF, 0 °C)³⁰ followed by methanolysis of the resulting 4-nitrobenzoate **29** (K₂CO₃, MeOH) to afford alcohol **28** in 63% yield for the two steps. Silyl protection of **28** using TESCl/imidazole in DMF led to TES ether **8** in 90% yield.

Having completed the synthesis of key intermediate **8**, we examined the crucial HAT-based reductive olefin coupling¹⁵ with known vinyl ketone 7¹⁴ to generate the sterically congested tetrasubstituted stereogenic center at C53. After some experimentation, it was found that the use of (isopropoxy)phenylsilane (Ph(*i*-PrO)SiH₂)³¹ as a reductant in the presence of iron(III) diisobutyrylmethanoate (Fe-(dibm)₃)^{1Sb,c} gave the best result. Thus, addition of Ph(*i*-PrO)SiH₂ (3 equiv) to vinyl ketone 7¹⁴ (3 equiv) and *exo*-enol ether **8** in the presence of Fe(dibm)₃ (10 mol %) and Na₂HPO₄ (1 equiv) in EtOAc/*i*-PrOH (1:1) at room temperature provided the desired cross-coupling product **5** in

Letter

65% yield as a single stereoisomer via the intermediacy of nucleophilic radical **6** (Scheme 4). The configuration of the

Scheme 4. Synthesis of LMN-Ring Fragment 4 of C-CTX-1

newly created tetrasubstituted stereogenic center at C53 was established by the observation of an NOE between two methyl groups as shown. The stereochemical outcome of this intermolecular radical conjugate addition could be explained by the effective shielding of the α -face of the seven-membered ether ring by the angular methyl and silyloxy substituents. To the best of our knowledge, this is the first example of the application of HAT-based reductive olefin cross-coupling to the elaboration of a functionalized seven-membered ether ring system. Selective deprotection of the TBS and TES groups of **5** was achieved under acidic conditions (CSA, CH₂Cl₂/MeOH) to give methyl acetal **30** in 85% yield. Finally, treatment of **30** with scandium(III) triflate^{9a,32} in acetone completed the synthesis of the desired LMN-ring fragment **4** of C-CTX-1 in 73% yield.

In summary, we have developed an efficient synthetic route to the LMN-ring fragment of Caribbean ciguatoxin C-CTX-1. The key features of the synthetic route include a hydroxymethylation by Stille coupling of a seven-membered enol phosphate with (tributylstannyl)methanol, a [3,3]-sigmatropic rearrangement of the allylic selenoxide to construct the α hydroxy *exo*-enol ether, and a HAT-based reductive olefin cross-coupling to access a sterically congested tetrasubstituted stereogenic center on the strained seven-membered M-ring with the pseudoaxially oriented 1,3-diaxial dimethyl structure in a highly stereoselective manner. Further studies aimed at the development of a synthetic route to the right wing of Caribbean ciguatoxin C-CTX-1 and its total synthesis are underway and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b03102.

Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: masasaki@m.tohoku.ac.jp

ORCID ©

Makoto Sasaki: 0000-0003-2964-7986

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by JSPS KAKENHI Grant JP16H03278. We are grateful to Emeritus Professor Masahiro Hirama of Tohoku University for his encouragement. We also thank Ms. Yuka Taguchi (Tohoku University) for FAB mass measurements.

REFERENCES

(1) (a) Scheuer, P. J. *Tetrahedron* **1994**, *50*, 3. (b) Lewis, R. J. *Toxicon* **2001**, *39*, 97. (c) Yasumoto, T.; Murata, M. *Chem. Rev.* **1993**, 93, 1897. (d) Yasumoto, T. *Chem. Rec.* **2001**, *1*, 228.

(2) Tsumuraya, T.; Sato, T.; Hirama, M.; Fujii, I. Anal. Chem. 2018, 90, 7318 and references cited therein .

(3) (a) Aligizaki, K.; Nikolaidis, G.; Fraga, S. *Harmful Algae News* 2008, 36, 6. (b) Dickey, R. W.; Plakas, S. M. *Toxicon* 2010, 56, 123. (c) Boada, L. D.; Zumbado, M.; Luzardo, O. P.; Almeida-González, M.; Plakas, S. M.; Granade, H. R.; Abraham, A.; Jester, E. L.; Dickey, R. W. *Toxicon* 2010, 56, 1516. (d) Yogi, K.; Oshiro, N.; Inafuku, Y.; Hirama, M.; Yasumoto, T. *Anal. Chem.* 2011, 83, 8886. For a recent review, see: (e) Soliño, L.; Costa, P. R. *Toxicon* 2018, 150, 124.

(4) (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967, 155, 1267. (b) Yasumoto, T.; Nakajima, I.; Bagnis, R.; Adachi, R. Nippon Suisan Gakkaishi 1977, 43, 1021. (c) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380.

(5) Yasumoto, T.; Igarashi, T.; Legrand, A.-M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. 2000, 122, 4988 and references cited therein .

(6) (a) Vernoux, J.-P.; Lewis, R. J. Toxicon 1997, 35, 889. (b) Lewis, R. J.; Vernoux, J.-P.; Brereton, I. M. J. Am. Chem. Soc. 1998, 120, 5914.

(7) Satake, M.; Murata, M.; Yasumoto, T. Tetrahedron Lett. 1993, 34, 1975.

(8) The related polycyclic ether natural product gymnocin B also possesses this substructure at the O-ring. See: Satake, M.; Tanaka, Y.; Ishikura, Y.; Oshima, Y.; Naoki, H.; Yasumoto, T. *Tetrahedron Lett.* **2005**, *46*, 3537.

(9) (a) Yoshikawa, K.; Inoue, M.; Hirama, M. *Tetrahedron Lett.* **2007**, 48, 2177. (b) Yamashita, S.; Iijima, N.; Shida, T.; Hirama, M. *Heterocycles* **2010**, 82, 761.

(10) For a review, see: Nakata, T. Chem. Rec. 2010, 10, 159.

(11) Tsukano, C.; Sasaki, M. Tetrahedron Lett. 2005, 46, 4617.

(12) For selected reviews of olefin metathesis, see: (a) Hoveyda, A.
H.; Zhugralin, A. R. Nature 2007, 450, 243. (b) Nicolaou, K. C.;
Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490.
(c) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.

(13) (a) Jamison, C. R.; Overman, L. E. Acc. Chem. Res. 2016, 49, 1578. (b) Yan, M.; Lo, J. L.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692. (c) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.

(14) (a) Bates, R. W.; Song, P. Synthesis **2010**, 2010, 2935. (b) Lu, K.; Huang, M.; Xiang, Z.; Liu, Y.; Chen, J.; Yang, Z. Org. Lett. **2006**, 8, 1193.

(15) (a) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304. (b) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Nature 2014, 516, 343. (c) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.

(16) The Baran group has already shown that a carbon radical at an anomeric position could be generated via HAT and that it could subsequently react with an electron-deficient alkene. They also showed that the coupling reaction occurs at the less hindered side (ref 15b,c). However, application of the method to an oxepane moiety has been unknown to the best of our knowledge.

(17) For recent applications of HAT-based reductive cross-coupling in natural product synthesis, see: (a) George, D. T.; Kuenstner, E. J.; Pronin, S. V. J. Am. Chem. Soc. **2015**, 137, 15410. (b) Lu, Z.; Zhang, X.; Guo, Z.; Chen, Y.; Mu, T.; Li, A. J. Am. Chem. Soc. **2018**, 140, 9211. (c) Godfrey, N. A.; Schatz, D. J.; Pronin, S. V. J. Am. Chem. Soc. **2018**, 140, 12770.

(18) (a) Reich, H. J. J. Org. Chem. 1975, 40, 2570. (b) Evans, D. A.; Andrews, G. C. Acc. Chem. Res. 1974, 7, 147. For a review, see: (c) Wirth, T. Angew. Chem., Int. Ed. 2000, 39, 3740.

(19) (a) Danheiser, R. L.; Romines, K. R.; Koyama, H.; Gee, S. K.; Johnson, C. R.; Medich, J. R. Org. Synth. **1993**, 71, 133. (b) Seitz, D. E.; Carroll, J. J.; Cartaya M., C. P.; Lee, S.-H.; Zapata, A. Synth. Commun. **1983**, 13, 129.

(20) (a) Kosugi, M.; Sumiya, T.; Ohhashi, K.; Sano, H.; Migita, T. Chem. Lett. 1985, 14, 997. (b) Yasuda, N.; Yang, C.; Wells, K. M.; Jensen, M. S.; Hughes, D. L. Tetrahedron Lett. 1999, 40, 427. (c) Lu, Z.; Li, H.; Bian, M.; li, A. J. Am. Chem. Soc. 2015, 137, 13764. (d) Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618.

(21) (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. **1983**, 105, 2092. (b) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. **1986**, 51, 432. (c) Sun, H.; Roush, W. R. Org. Synth. **2011**, 88, 87.

(22) (a) Johansson, R.; Samuelsson, B. J. Chem. Soc., Chem.
 Commun. 1984, 201. (b) Takano, S.; Akiyama, M.; Sato, S.;
 Ogasawara, K. Chem. Lett. 1983, 12, 1593.

(23) Kotsuki, H.; Kadota, I.; Ochi, M. *Tetrahedron Lett.* **1990**, *31*, 4609.

(24) (a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. **1987**, 1625. (b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis **1994**, 1994, 639.

(25) (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K. J. Am. Chem. Soc. **1989**, 111, 6666. (b) Ashby, E. C.; Laemmle, J. T. Chem. Rev. **1975**, 75, 521.

(26) (a) Iwabuchi, Y. Yuki Gosei Kagaku Kyokaishi 2008, 66, 1076.
(b) Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.; Nagahama, N.; Iwabuchi, Y. Synthesis 2011, 2011, 3418. (c) Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61, 1197.

(27) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, *52*, 1989.

(28) The use of lactone-derived enol phosphates in Stille coupling was pioneered by the Nicolaou group. See: Nicolaou, K. C.; Shi, G.-Q.; Gunzner, J. L.; Gärtner, P.; Yang, Z. J. Am. Chem. Soc. **1997**, *119*, 5467.

(29) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. **1976**, 41, 1485.

(30) (a) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380. (b) Mitsunobu, O. Synthesis 1981, 1981, 1. (c) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017.

(31) Obradors, C.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 4962.

(32) (a) Fukuzawa, S.-I.; Tsuchimoto, T.; Hotaka, T.; Hiyama, T. Synlett **1995**, 1995, 1077. (b) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Synlett **1996**, 1996, 839. (c) Inoue, M.; Sasaki, M.; Tachibana, T. J. Org. Chem. **1999**, 64, 9416.