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Abstract: During the course of our synthetic studies on ciguatoxin,
synthesis of H-I-J tricyclic fragment has been stereoselectively
achieved starting from a D-glucal derivative. The key steps are So-
nogashira coupling reaction and cobalt complex-mediated oxocane
cyclization. 
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Ciguatera is one of the most widespread seafood poison-
ings which follows the consumption of warm water fish
contaminated with sodium channel neurotoxins known as
Ciguatoxin (CTX1B).1 The complex molecular structure
of CTX1B presents a formidable synthetic target mole-
cule, particularly with regard to the construction of its
trans-fused medium-sized ether rings.2 During the course
of our synthetic studies on ciguatoxin, we developed a
synthetic methodology for the construction of medium-
sized (7- to 10-membered) ether rings through cobalt
complex-mediated cyclization reaction.3 Recently, we
have achieved the model study on H-I-J ring system using
this methodology,4 we now report the synthesis of H-I-J
fragment 2. The retrosynthetic analysis of H-I-J fragment
2 (A) is illustrated in Scheme 1. 

Figure

Retrosynthetic disconnection of the indicated C-O bond
of J-ring in lactone A provides dihydroxyl aldehyde B as
a potential precursor through a hemiacetal intermediate.5

The cis dihydroxyl group in B would be derived from the
corresponding olefin in C through osmium tetroxide-me-
diated dihydroxylation reaction.6 Olefin C should be ac-
cessible from cobalt complex D.7 The stereochemistry of
its methyl group has to be introduced. Opening the 8-
membered ring-I generates a precursor E. Retrosynthetic
removal of the biscobalthexacarbonyl group and discon-

nection of the indicated bond in E furnishes the vinyl io-
dide F and the acetylene G. The stereogenic center in G
derived from (S)-malic acid represents the C-12 (sugar
numbering) hydroxyl group in K-ring.

Retrosynthetic Analysis of H-I-J Ring Fragment

Scheme 1

Our synthesis plan began with Sonogashira reaction to es-
tablish all the requisite carbon framework;8 thus, coupling
of the vinyl iodide 33 with acetylenic chain9 4 in the pres-
ence of palladium(0) afforded the en-yne compound 5.
Acid-induced removal of the acetonide group, and subse-
quent protection of the corresponding primary alcohol as
TBDPS ether were followed by deacetylation and cobalt
complexation to provide the cobalt complex 6 (Scheme
2).
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Reagents, conditions and yields: a) BuNH2, CuI, Pd(0), benzene, r.t.,
81%. b) MeOH, PPTS, 60 °C, 90%. c) TBDPSCl, Et3N, DMF, r.t.,
86%. d) MeOH, K2CO3, r.t., 91%. e) Co2(CO)8, CH2Cl2, 0 °C-r.t.,
98%. f) BF3∑OEt2, CH2Cl2, 0 °C, 50 min, 84%. g) Ac2O, Py. DMAP,
CH2Cl2, r.t., 90%. h) [HN = NH], MeOH, Et3N, r.t., [8a, 68%; 8b,
20%]. i) Bu3SnH, toluene, 50 °C, 87%. j) MeOH, K2CO3, r.t., 88%. k)
BnBr, NaH, DMF, -40-0 °C, 82%. l) OsO4, NMO, acetone-H2O (8:1),
0 °C-r.t., 80%. m) acetone, TsOH (cat), r.t., 93%. n) TBAF, THF, r.t.,
89%. o) DMSO, SO3∑Py, Et3N, 100%. p) 80% aq. AcOH, r.t., 98%.
q) Br2, DMF, NaOAc, 0 °C-r.t., 89%. r) thiocarbonyldiimidazole,
ClCH2CH2Cl, reflux, 77%. s) Bu3SnH, toluene, reflux, 88%.

Scheme 2

The cobalt complex 6 underwent smooth ring closure
upon treatment with boron trifluoride etherate in degassed
dichloromethane at 0 °C and acetylation to afford bicyclic
compound 7 as a single stereoisomer.10 The critical syn
stereochemistry of 7 was demonstrated by NOESY exper-
iments. The observation of cross peaks between H-4 (d
3.08, ddd, J = 11.0, 9.5, 4.8 Hz) and H-10 (d 4.79, dd,
J = 10.0, 3.0 Hz) indicated a syn relationship between
these protons. Reduction of the exo-cyclic olefin in 7 with
diimide11 afforded a 3:1 mixture of diastereoisomers 8a
and 8b, epimeric at C-7 (sugar numbering), which could
be separated by silica gel chromatography. The configura-

tion of the newly-formed methyl group was determined by
comparison the NOESY data of these two compounds.12

Reductive decomplexation of 8a, and subsequent conver-
sion of the acetyl into benzyl group furnished the cis ole-
fin 9. Dihydroxylation of this olefin 9 with OsO4 in
acetone5 yielded a diol intermediate which was converted
to the corresponding acetonide, from which subsequent
removal of the TBDPS group and oxidation of the alcohol
afforded the corresponding aldehyde 10. Acidic hydroly-
sis of the acetonide group of 10 ended up with a subse-
quent ring-J formation in one step to afford a hemiacetal
intermediate, which was further transformed to the corre-
sponding lactone 11 through bromine oxidation. The sec-
ondary hydroxyl group on the I-ring was removed in 2
steps including 1) treatment of 11 with N,N'-thio-
carbonyldiimidazole13 in refluxing 1,2-dichloroethane to
provide the thioester 12 and 2) Barton's deoxygenation of
12 with tri-n-butyltin hydride14 in refluxing toluene. The
lactone 1315 showed the coupling constant (J9,10 = 9.5 Hz)
between the protons at the junction to indicate the trans
stereochemistry.

We have accomplished the synthesis of the H-I-J tricyclic
fragment directed toward the construction of the right
hand part of ciguatoxin. Further synthetic studies on the
construction of H-I-J-K ring fragment along this line are
now in progress and will be reported.
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