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ABSTRACT

OBn

A convergent synthesis of the E'FGH' ring fragment of ciguatoxin has been accomplished through (i) coupling between the E' ring-acetylide
and the H' ring-aldehyde, (ii) stereoselective F ring cyclization via an acetylene cobalt complex, (i) conversion to a carbonyl function, and (iv)

reductive hydroxy-ketone cyclization to construct the G ring.

Ciguatoxin 1B (CTX 1B,1)! is one of the most toxic marine

natural products causing seafood poisoning “ciguatera”.

Several synthetic groupsave been involved in the total
synthesis of CTX due to its remarkable structural complexity,
biological activity, and limited availability from nature.
Recently, Hirama’s group reported the first total synthesis
of CTX-3C22a member of the CTX family?
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During the course of our synthetic studies towdtd
various methodologies have been developed on the basis of
(i) construction of medium-size {710) ether rings via
acetylene cobalt complexes in a highly stereoselecyre
transmode? (i) reductive decomplexation reaction ints-
olefins or vinylsilanes,(iii) ring-opening reactions of cyclic
o,3-epoxysilanes into allyl alcohofsand (iv) stereoselective
heteroconjugate additiofiswe have already reported the
model syntheses of the ABCBCDE?Z D'EF; and HIJK
rings1°

Scheme 1 exhibits retrosynthetic analysis towhréthere
the A, F, and G ring cyclization would be achieved at the
last stage from2 that would be synthesized through a
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a Synthesis of Ering-enyne. (a) NaCN, DMSO, 88C, 85%;
(b) DIBAL, toluene,—78°C, 58%; (c)10, n-BuLi, THF, from —78
to 0°C, and ther®, —78°C, 73%; (d) TBAF, THF, 94%; (e) EVE,
PPTS, CHCIy, 97%.

introduced to the primary iodid&, prepared from tri®-
acetylb-glucal in five steps in a known procedtitéo give
8. After DIBAL reduction of8, the product aldehyd® was

1184

acetylene cobalt complex exclusivéfyElongation of the
C-1 unit by acetylide coupling with formaldehyde gave
propargyl alcohol16 followed by hydroaluminativarans
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aCoupling and F ring cyclization. (a2 (1.5 equiv),n-BulLi,
THF, —78°C, and ther22, 86%; (b) TBAF, THF; (c) AgO, Py,
DMAP, CH,Cl,, 96% in two steps; (d) PPTS, MeOH; (e) £f80),
CHCl,, 96% in two steps; (f) BEFOEt, CH,Cly, from 0°C to rt
aSynthesis of H ring-aldehyde 22. (a) Bistrimethylsilyl- over 30 min, 77%.
acetylene, SnGJ CH,Cl,, —20 °C; (b) NaBH,, CeCk, MeOH, 0
°C, 86% in two steps; (c) TBDPSCI, imidazole, DMF, 100%; (d)
C0y(CO), CHyCly, 1t; (e) BR*OEbL, CH,Cl,, from 0 °C to rt; (f) With the coupling precursors, i.e., Eng-enynel2 and
:ébLHl;bgé%igI?rl/thge EteBS;Tﬁll):zlﬁ(gsémg)?l;l, 99%7: 8(ftl) gggh H’ ring-aldehyde22, in hand, we tried the coupling reaction
, , o; (i)n-Buli, , , from — 0 , . . . .
85%: (j) Ret-Al, 0°C. THF, 95%; (MCPBA. NaHPQ,, CH,Cly, to provide propargyl alcohol in 86% yield as shqwn in
0°C: () Red-Al, toluene, O°C, 86% (1:1) in two steps; (m) H _Scheme_ 4. In addition, protecting group manipulation and
10% Pd/C, NaHCg) EtOH, 100%; (n) separation; (o) TBSCI, installation of a cobalt complex ga&4 as a precursor of
imidazole, DMF, 92%; (p) IBX, DMSO, 82%; (q) DIBAL, C}Cl,, cyclization. Treatment of acetylene cobalt compkebwith
—78 °C, 83% (95:5); () CSA, MeOH, O°C, 100%; (s) Ph-  BF,.OEf, at room-temperature effected the F ring cyclization
CH(OMe), CSA, CHCIz, 99%; (1) BR-THF, reflux, 89%; (U) IBX, iy 7794 yield to afford a single diastereon®8 (on the other
DMSO, 92%. . .
hand, the E)-isomer of 24 could not be cyclized). The
syn stereochemistry of25 was determined by a NOE

reduction to give allyl17. In the next step, Sharpless experiment.

asymmetric epoxidatidh was very sluggish (TBHP, Ti- Scheme 5 illustrates the final stage of the current strategy
(OP¥)g4, (+)-DET, CH,Cl,, —23°C, 12 h) in 30% yield as a  toward the BFGH ring synthesis. In the course of substantial
single diastereomer. ThereforaCPBA oxidation was fol- trials and errors in regard to the conversion of the acetylene

lowed by Red-Al reduction and hydrogenation to furnish the cobalt complex moiety into ketone, we found a novel reaction
desired19 and undesire@0 in 86% overall yield as a 1:1  under high-pressure hydrogenatf@nyhere acetylene cobalt
mixture of two diastereomers. The undesired diastereomercomplex25 gave rise to the desired ketoB6in 37% yield

20, however, was reusable in the following procedure; thus, as a major compound along with conjugated en®dnét%)
temporary protection of the primary alcohol by the TBS and diene€28(15%). This reaction mechanism, however, has
group, IBX oxidationt® DIBAL reduction, and deprotection  not been proven in detail yet. With the precurgérof the

of the TBS group occurred. IBX oxidation of primary alcohol G ring cyclization in hand, we treate2b with K,CO;s in

21 resulting from a protection of secondary alcoli@l by MeOH and BR-OEt in the presence of EBiH in CH;CN2!
way of BH; reductioit® of benzylidene acetal afforded’'H  to accomplish the stereoselective construction of tieSE

ring-aldehyde22. ring 5 as a white solid in 57% yield. In théd NMR analysis
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Scheme 8

aG ring cyclization. (a) H, 100 kg/cni, benzene, 65C, 6 h, P
26 (37%), 27 (4%), 28 (15%); (b) K.CO;, MeOH, 100%; (c) 9. O UP_conformer
BF5-OEbL, E:SiH, CH:CN, from —15 °C to rt over 30 min, 57%. °

: . DOWN caled  found UP caled  found

at room temperature, a considerable broadening phenomenon . 10512 55tz ey oMz oM
i 5,6 : - X . ~

was observed due to the slow conformational changes of the stl:; 14Hz ~OHz %5, 53Hz 55Hz

F ring, as reported for natural product C*PXnd other model %Jgg,10 11.3Hz 9.5 Hz ogro 23Hz -OHz
systemg0c1122 When the NMR measurement & was Naato 18Hz -0Hz Joago 45Hz 50Hz
carried out in CDQ at —20 °C, the spectrum exhibited a Figure 1. DOWN and UP conformers of the'lEGH ring 5 and
2:1 mixture of two conformational isomers (DOWN and UP  their coupling constants at20 °C in CDCk.
conformers, whose olefinic bonds are located below the down
side or above the up side of the ring plane, respectively) as
sharp signals. Comparison of the observed coupling constantshrough the coupling between' Eng-enyne and Hring-
of 3Js s andJs 10 with those of energy-minimized conformers  aldehyde, highly stereoselective cyclization of the F ring
by Macromodel (MM2* force field) should predict the using an acetylene cobalt complex, and a novel conversion
majority to be the DOWN conformer as shown in Figure 1. of the acetylene cobalt complex into the ketone followed by
Although thesyn stereochemistry between H-10 and H-15 reductive cyclization of the G ring. Further studies toward
could not be determined directly by NOE experiments, the the total synthesis of CTX are now in progress and will be
fact that the coupling constants between H-10 and H-11 published elsewhere.
showed 9.5 Hz for the DOWN conformer and 11.0 Hz for
the UP conformer undoubtedly demonstrated thens Acknowledgment. The authors thank JSPS for a DC
stereochemistry o5. scholarship to S.T.

In conclusion, we have accomplished the synthesis of an

E'FGH ring model fragment of CTX in a convergent manner ~ Supporting Information Available: Full experimental
procedures and characterization data. This material is avail-
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