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Chemoselective Formation of
8,9-Epoxy-limonene

Queli A. R. Almeida and Joel Jones Jr.

Sı́ntese Orgânica Ambiental, Instituto de Quı́mica, Universidade Federal

do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract: We present here a synthetic path to produce, exclusively, 8,9-epoxy-

limonene in 75% overall yields. We developed a three step synthetic route. First, the

1,2-double bond of limonene was protected by the formation of the bromo-methyl-

ether by cohalogenation with NBS in MeOH. Then, this product was oxidized by

m-chloro-perbenzoic acid to give the corresponding epoxides. Finally, the 1,2-double

bond was restored by a reaction with NH4Cl/Zn leading to 8,9-epoxy-limonene.

The great advantage of this methodology is that the intermediate purification steps

are not necessary.

Keywords: Epoxy, limonene, terpene

INTRODUCTION

8,9-Epoxy-limonene is an important synthetic intermediate that can be used to

synthesize natural compounds such as uroterpenol,[1] a-bisabolol,[1,2]

anymol,[1,2] and 9-hydroxycineoles.[3]

In the literature, we find different methodologies for 8,9-epoxy-limonene

preparation from limonene, such as oxidations with porphyrins metallic

complexes,[4] titanium complexes,[5] tungsten,[6] ruthenium,[7] hydroperoxide

and peroxides formed in situ,[8] photooxidation,[9] and microbiological

transformations.[10]
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Until now, the reaction of limonene with nitriles-H2O2 has been the most

important methodology to prepare 8,9-epoxy-limonene.[11] However, it

produces a 1:1 mixture of 1,2-epoxy-limonene and 8,9-epoxy-limonene.

The isomers are separated by distillation.

A synthetic method to 8,9-epoxy-limonene at gram scale was described

by Carlson in 1971.[11e] This method uses limonene and a mixture of benzoni-

trile and hydrogen peroxide (35%), and produces a mixture of mono- and di-

epoxides (30% being 8,9-epoxy-limonene).

RESULTS

Here we present a specific synthetic route to 8,9-epoxy-limonenes (I) in a 75%
overall yield.

Recently, de Mattos and Sanseverino[12] published the cohalogenation of

limonene (II) with I2/Cu(OAc)2 . H2O in aqueous dioxane to produce chemo-

and regiospecifically pure iodohydrin.

Based on this result, we developed a three-step synthetic route. First,

the 1,2-double bond of limonene was protected by the formation of the

bromo-methyl-ether (III) by cohalogenation with NBS in MeOH at 08C
(Scheme 1). Then, this product was oxidized by m-chloro-perbenzoic acid

(m-CPBA) to give epoxides (IV). Finally, the 1,2-double bond was restored

Scheme 1.
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by a reaction with NH4Cl/Zn. The great advantage of this methodology is that

the intermediate purification steps are not necessary. In this process,

we employed a 10 g scale of limonene to produce 8.4 g of 1:1 mixture of

(4R,8R)-8,9-epoxy-limonene and (4R,8S)-8,9-epoxy-limonene (I) in 75%

overall yield after purification (Scheme 1).

The analysis of the reaction was performed by high-resolution gaseous

chromatography (HRGC), and the product was characterized by spectroscopic

methods[13] and co-injection with the standard sample.

This synthetic route is a simple and efficient one for preparing a 1:1

mixture of (4R,8R)-8,9-epoxy-limonene and (4R,8S)-8,9-epoxy-limonene in

good yields and in .99% purity without any trace of 1,2-epoxide-limonenes.

EXPERIMENTAL

10 g (73.5mmol) of limonene, 60mL of methanol, and 13 g (73.5mmol) of

N-bromo-succinimide (added slowly) were added to a 250-mL flask in an

ice bath. The solution was stirred for 24 h and filtered, and the solvent was

evaporated to obtain an oil. The oil was dissolved in 15mL of CH2Cl2, the

solution was cooled in an ice bath, and 13 g of m-chloroperbenzoic acid in

50mL of CH2Cl2 was added dropwise for 20min. The reaction was stirred

for 72 h. Then, a solution of an aqueous 20% KI was added, producing a

violet solution. A saturated solution of sodium thiosulfate was added until

the violet color vanished completely. The phases were separated and

the organic phase was washed with an aqueous 20% NaHCO3 solution. The

organic combined extracts were dried over anhydrous Na2SO4 and the

solvent was evaporated. The oil was dissolved in 25mL of EtOH, and 3 g

of Zn and 3 g of NH4Cl were added. The suspension was stirred vigorously

for 24 h at rt, filtered through celite, and fractionated by chromatography

on a silica column (hexano/ethyl acetate 9:1), producing 8.4 g (55.3mmol)

of 1:1 mixture of (4R,8R)-8,9-epoxy-limonene and (4R,8S)-8,9-epoxy-

limonene (75% yield and .99% purity by HRGC).

Lit. data:[12] 1H NMR, d: 1.26 (3H, s), 1.64 (3H, bs), 1.75–2.05 (5H, m),

2.57, 2.64 (Abq 1H, J ¼ 5Hz, 2H), 5.36 (1H, bs); 13C NMR, d: 18.16 (CH3),

23.42 (CH3), 25.05 (CH2), 27.57 (CH2), 30.14 (CH2), 40.21 (CH), 53.33

(CH2), 59.18 (C), 119.92 (CH), 134.12 (C); m/z (rel. int.%) 152 (Mþ † 2),

121 (23), 119 (11), 105 (16), 95 (17), 94 (100), 93 (38), 91 (33), 79 (89), 77

(24), 67 (34), 55 (27), 53 (30), 43 (38), 41 (55).

(4R,8R)-8,9-epoxy-limonene and (4R,8S)-8,9-epoxy-limonene (I): 1H

NMR (TMS, CDCl3), d: 1.26 (3H, s), 1.50 (2H, m), 1.64 (3H, bs), 1.75–

2.05 (5H, m), 2.57 (1H, dd, J ¼ 4.5Hz), 2.64 (1H, dd, J ¼ 4.5Hz), 5.37

(1H, bs); 13C NMR (TMS, CDCl3), d: 18.51 (CH3), 23.37 (CH3), 24.95

(CH2), 27.51 (CH2), 30.05 (CH2), 40.12 (CH), 53.44 (CH2), 59.47 (C),

120.04 (CH), 134.12 (C); EIMS m/z (rel. int.%) 152 (Mþ † 3), 137 (19),

121 (90), 119 (25), 109 (13), 105 (39), 93 (72), 91 (65), 84 (28), 79 (100),
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77 (42), 67 (48), 55 (25), 53 (30), 43 (48), 41 (40), and 39 (44). Lit. data:[11e]

1H NMR, d: 1.20 (3 H, s), 1.3–2.2 (10 H, m), 1.63 (3 H, s), 2.35–2.60 (2 H,

dd), 5.37 (1 H, bs).
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