Article

2-Amino-5,6-Difluorophenyl-1H-Pyrazole-Directed Pdll Catalysis: Arylation of Unactivated #-C(sp3)-H Bonds

Jinyue Yang, Xiaopan Fu, Shibiao Tang, Kezuan Deng, Lili Zhang, Xian-Jin Yang, and Ya-Fei Ji J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01276 • Publication Date (Web): 17 Jul 2019 Downloaded from pubs.acs.org on July 17, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

2-Amino-5,6-Difluorophenyl-1*H*-Pyrazole-Directed Pd^{II} Catalysis: Arylation of Unactivated β-C(sp³)–H Bonds

Jinyue Yang,[†] Xiaopan Fu,[†] Shibiao Tang,[†] Kezuan Deng,[†] Lili Zhang,[†] Xianjin Yang,^{*, ‡, §} and Yafei Ji^{*, †}

[†] School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China. E-mail: jyf@ecust.edu.cn (Ji)

^{*}Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China. E-mail: yxj@ecust.edu.cn (Yang)

[§] Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, P. R. China.

41 examples, up to 78% yield

ABSTRACT: Palladium-catalyzed arylation of unactivated β -C(sp³)–H bonds in carboxylic acid derivatives with aryl iodides is described for the first time using 2-amino-5,6-difluorophenyl-1*H*-pyrazole as an efficient and readily removable directing group. Two fluoro groups are installed at the 5- and 6-position of the anilino moiety in 2-aminophenyl-1*H*-pyrazole, clearly enhance the directing ability of the auxiliary. In addition, the protocol employs Cu(OAc)₂/Ag₃PO₄ (1.2/0.3) as additives, evidently reducing the stoichiometric amount of expensive silver salts. Furthermore, this process exhibits high β -site selectivity, compatibility with diverse substrates containing α -hydrogen atoms, and excellent functional group tolerance.

INTRODUCTION

The immense potential of organic synthesis based on transition-metal-catalyzed functionalization of $C(sp^2)$ -H bonds has been extensively explored over the decades.¹ In comparison, direct functionalization of unactivated $C(sp^3)$ -H bonds remains underdeveloped and continues to be highly challenging because of the high bond dissociation enery and the absence of stabilizing π -orbital interactions with the metal center.² However, directing-group-assisted strategy has become a powerful and promising method for achieving diverse transformations of inert $C(sp^3)$ -H bonds,³ such as arylation,⁴ alkoxylation,⁵ alkenylation,⁶ alkynylation,⁷ carbonylation,⁸ amination,⁹ and others.¹⁰

β-substituted carboxylic acid derivatives are frequently found in a wide array of bioactive compounds.¹¹ Therefore, direct functionalization of their β-C(sp³)–H bonds is highly appealing. According to previous reports, the bidentate directing groups showed much better performance than the monodentate ones.¹² In 2005, Daugulis and co-workers first demonstrated that 8-aminoquinoline could be employed as bidentate directing group to promote β-arylation of aliphatic amide derivatives (Scheme 1A).^{4a} Following this pioneering work, numerous *N*,*N*-bidentate directing groups have been reasonably developed for the unactivated C(sp³)–H bond arylation in aliphatic amide derivatives (Scheme 1B).¹³

Scheme 1. Directing Group Strategies for Unactivated C(sp³)-H Bond Arylation of Aliphatic Amides.

Previous works

A) The first example of C(sp³)–H bond arylation via a bidentate directing group^{4a}

Despite all these great advances, some inherent limitations

59

60

also remain. For instance, arylation of secondary $C(sp^3)$ –H bond or various substrates containing α -hydrogen atoms can not be tolerated,^{4d, e, 14} possibly because that the palladacycle can undergo β -hydride elimination with the α -hydrogen atom, which inhibited the desired step.^{3a, 4b} Additionally, strong auxiliaries give thermodynamically stable palladacycles, as a result, the subsequent functionalization steps are less reactive. In contrast, the palladacycles are less stable with weakly coordinating directing groups, which is unfavorable to C–H cleavage step.^{1a, 15} To break through these limitations, efforts are still in high demand to develop new types of directing groups.

Recently, Li's and Baidya's groups presented 2aminophenyl-1H-pyrazole as an effective N,N-bidentate auxiliaries to realize various $C(sp^2)$ -H functionalizations.¹⁶ Most recently, our groups reported *ortho*-arylation of aromatic amides directed by 2-amino-5-chlorophenyl-1H-pyrazole with general work conditions, broader substrate scope and wider functional group tolerance.¹⁷ Compared to C(sp²)-H bond activation, C(sp³)-H functionalizations directed by aminopyrazole auxiliaries deserve to be paid more attention. Meanwhile, considering adjusting the coordination ability of this auxiliary, we undertake to introduce halide substituents which exert inductive and conjugation effects with the benzene ring at the anilino moiety. Herein, we describe the first palldium-catalyzed arylation of unactivated β -C(sp³)–H in carboxylic acid derivatives using 2-amino-5,6-difluorophenyl-1*H*-pyrazole as a bidentate auxiliary (Scheme 1C). Particularly, the protocol can afford arylated product of carboxylic acid derivatives that contain α -hydrogen atoms in moderate to good yields, ortho-substituted aryl iodides are also tolerated.

RESULTS AND DISCUSSION

 Table 1. Influence of Substituent Electronegativity on the Directing Groups.^{a,b}

^{*a*} Reaction conditions: **1** (0.3 mmol), **2a** (0.9 mmol), Pd(OAc)₂ (10 mol%), Ag₃PO₄ (1.0 equiv), *p*-xylene (3.0 mL), 130 °C, 16 h. ^{*b*} Isolated yields of **3**.

Initially, our efforts focused on substituent electronegativity on the 2-aminophenyl-1*H*-pyrazole directing group. The reaction was conducted in the presence of substrate **1** (0.3 mmol), Pd(OAc)₂ (10 mol%), 4-iodoanisole **2a** (3.0 equiv), Ag₃PO₄ (1.0 equiv) in *p*-xylene (3.0 mL) at 130 °C for 16 hours (Table 1). And the target product **3a** was obtained in 43% yield by the unmodified directing group. In fact, a chloro group at the 5-position offered a lower yield than the unmodified directing group (3a, 3b). To our delight, the addition of a fluoro substituent group at the anilino moiety improved the yield of the arylated product 3c. When two fluoro groups were separately installed at the 5- and 6-position, the yield of 3d evidently increased to 58%. However, with more fluoro groups, the yield of 3e was slightly diminished. Additionally, we also introduced a methoxy substituent group at the 5-position, which offered a lower yield (3f). 2-Amino-5,6-difluorophenyl-1*H*-pyrazole was ultimately opted as the most effective directing group for further surveys.

Table 2. Optimization of the Reaction Conditions.^a

Entry	Additive $(n_l$ equiv)	Solvent	Yield (%) ^b
1	$Ag_{3}PO_{4}(1.0)$	<i>p</i> -xylene	58
2	AgOAc (2.0)	<i>p</i> -xylene	47
3	AgTFA (2.0)	<i>p</i> -xylene	32
4	Ag ₂ CO ₃ (2.0)	<i>p</i> -xylene	20
5	$Cu(OAc)_2(2.0)$	<i>p</i> -xylene	56
6	Cu(acac) ₂ (2.0)	<i>p</i> -xylene	51
7	CuCl ₂ (2.0)	<i>p</i> -xylene	<5
8	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.6/0.4)	<i>p</i> -xylene	71
9	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	<i>p</i> -xylene	72
10	Cu(OAc) ₂ /Ag ₃ PO ₄ (0.8/0.2)	<i>p</i> -xylene	64
11	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.0/0.5)	<i>p</i> -xylene	55
12	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.3/0.2)	<i>p</i> -xylene	64
13	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	DMF	58
14	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	DCE	55
15	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	DMSO	45
16	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	<i>p</i> -xylene/DMF (1:1)	78
17	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	p-xylene/DMF (3:1)	70
18	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	p-xylene/DMF (1:3)	63
19	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	p-xylene/DMF (1:1)	$67^{c} (76^{d})$
20	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	p-xylene/DMF (1:1)	$0^e(0^f\!,0^g)$
21	Cu(OAc) ₂ /Ag ₃ PO ₄ (1.2/0.3)	p-xylene/DMF (1:1)	$0^{h}(51^{i})$
22	Ag ₃ PO ₄ (0.3)	p-xylene/DMF (1:1)	36 (27 ^{<i>i</i>})

^{*a*} Reaction conditions: **1d** (0.3 mmol), **2a** (0.9 mmol), Pd(OAc)₂ (10 mol%), additive (n_1 equiv), solvent (3.0 mL), 130 °C, 16 h. ^{*b*} Isolated yields of **3d**. ^{*c*} 120 °C. ^{*d*} 140 °C. ^{*e*} 4-Bromoanisole instead of 4-iodoanisole. ^{*f*} 4-Chloroanisole instead of 4-iodoanisole. ^{*g*} 4-Methoxyphenylboronic acid instead of 4-iodoanisole. ^{*h*} No Pd(OAc)₂. ^{*i*} No Ag₃PO₄.

With the optimized directing group in hand, We attempted to improve the yield of the arylated product by changing the reaction conditions (Table 2). We first screened various Ag salts, and Ag₃PO₄ was considered as the best one (entries 1–4). Inspired by previous literature,^{4d, 18} we attempted to employ Cu(OAc)₂ as the single additive instead of expensive silver salts, successfully obtaining **3d** in 56% yield (entry 5). And this is significant, since iodide scavenging is completed without the need for silver salts. Notably, direct arylation of C(sp³)–H aided by Cu salts is rather rare in bidentate directing groups.^{4c, d, 14a, 19} Subsequently, we screened other copper (II)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33 34 35

43

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38 39 40

41

42

47

48 49 50

51

52

53

54

55

56

57

58 59

60

salts, and $Cu(acac)_2$ resulted in inferior efficiency (entry 6) while CuCl₂ was almost inefficient (entres 7). Considering the economy and reaction efficiency, we attempt to use Cu(OAc)₂ (1.6 equiv) as the primary additive in concert with small stoichiometric amount of Ag_3PO_4 (0.4 equiv) (entry 8), and the yield of 3d was distinctly improved to 71%. Reducing the mixed additives to 1.5 equiv had no adverse effect on the yield (entry 9). But, further reducing additives lead to relative lower vield (entry 10). Additionly, increasing or decreasing the amount of Ag₃PO₄ in the common additives was detrimental (entries 11 and 12). In contrast to our initial solvent choice of p-xylene, DCE, DMF and DMSO were all diminished the yield of 3d (entries 13-15). However, when p-xylene and DMF was used as mixed solvent (*p*-xylene:DMF, 1:1, v/v), the yield of the product 3d was improved to 78% (entry 16). Changing the ratio of *p*-xylene and DMF, no better reaction vields were observed. (entries 17 and 18). Inferior reaction performance was observed in the reaction temperature of 120 °C or 140 °C (entry 19). Then several other arylation reagents instead of 2a were not reactive (entry 20). Finally, control experiments were conducted. No desired product was detected without Pd(OAc)₂, which demonstrated the essential role of Pd(OAc)₂ as catalyst (entry 21). Movever, 51% and 36% isolated yield of 3d was separately obtained in the absence of Ag_3PO_4 and without $Cu(OAc)_2$, while $Pd(OAc)_2$ alone was only able to furnish 3d in 27% yield under similar conditions (entries 21 and 22). It was proved that Cu(OAc)₂ and Ag₃PO₄ played crucial roles and had a cooperative effect on promoting the transformation. From the series of above examinations, entry 16 was determined to be the optimal reaction conditions.

Table 3. Substrate Scope of the Aliphatic Amides.^{*a,b*}

^{*a*} Reaction conditions: **1** (0.3 mmol), **2a** (0.9 mmol), $Pd(OAc)_2$ (10 mol%), $Cu(OAc)_2$ (0.36 mmol), Ag_3PO_4 (0.09 mmol), *p*-xylene (1.5 mL), DMF (1.5 mL), 130 °C, 16 h. ^{*b*} Isolated yields of **3**. ^{*c*} Cu(OAc)₂ (0.6 mmol) in the absence of Ag_3PO_4 .

With the established reaction conditions, a series of

aliphatic amides derived from carboxylic acids with α quaternary centers or α -tertiary centers were examined. The results are summarized in Table 3. The substrate 1g reacted with **2a** to afford the target β -monoarylated product **3g** in 32% yield and $\beta_{,\beta}$ -diarylated product **3g'** in 41% yield due to the existence of two equivalent reactive β -C(sp³)–H sites. As for substrate 1h, the corresponding product 3h of β -methyl C(sp³)-H bond arylation was observed in 23% yield along with 47% yield of β -methyl and β -methylene C(sp³)–H bonds diarylated product **3h**'. We then examined the site selectivity of substrates containing β -methyl, linear β -methylene C(sp³)-H bonds and γ -C(sp²)-H bonds. Arylation of the β methyl C(sp³)-H bonds was exclusively observed in moderate to good yields, indicating the high selectivity of the directing group (3d, 3i-3q). Additionally, we found that alkyl side chains at the α -position had little effect on the yields of the target products and substrates bearing arvl groups were less reactive than those with aliphatic chains. Noteworthy, aliphatic amides with α -hydrogen atoms all reacted smoothly. Moreover, the arylation of β -methylene C(sp³)-H bond with four-, five-, and six-membered cycloalkyl substituted aliphatic amides was also tolerated, exclusively affording the corresponding monoarylated products (3r-3t) in moderate overall yields (51-55%), and no diarylated products were obtained. For α -secondary substrate 1u, arylated product 3u was successfully obtained in 41% yield. It should be noted that the target products were obtained severally when employing Cu(OAc)₂ as the sole additive (**3g**, **3i**, **3l**, **3o**, **3s**), which has economic advantage and potential application value in organic synthetic chemistry.

Table 4. Substrate Scope of Aryl Iodides.^{a,b}

^{*a*} Reaction conditions: **1** (0.3 mmol), **2a** (0.9 mmol), $Pd(OAc)_2$ (10 mol%), $Cu(OAc)_2$ (0.36 mmol), Ag_3PO_4 (0.09 mmol), *p*-xylene (1.5 mL), DMF (1.5 mL), 130 °C, 16 h. ^{*b*} Isolated yields of **4**.

Next, the scope of substrates bearing various substituents on the iodoarene rings was examined (Table 4). *para*-Substituents

including Me, CF₃, F, Cl, Br, COOEt and COMe were tolerated to afford the target products 4c-4h in moderate to good yields (54–75%), whereas the reaction of 1d with unsubstituted phenyl iodide (2b) formed 4b in a lower yield (47%). meta-OMe, Me, CF₃, COOMe and COMe-subsitituded aryl iodides also reacted well with 1d to yield the products 4i-4m in moderate yields (58-67%). The reactions of 1d with ortho-methoxy and orthofluoro-substituted aryl iodides generated the target products 4n and 40 in 64–67% yields. Notably, an obvious diminution aroused from ortho-COOMe substituent, and as a result 4p was only obtained in 33% yield. In addition, disubstituted iodobenzene derivatives reacted cleanly to give the arylated products (4q-4t)with the moderate yields from 1d. However, when iodoethane was used to reacted with 1d, arylated product 4u was not detected. Electron-rich aryl iodides were found to give slightly higher yields than electron-poor aryl iodides. The molecular structure of the desired product 4k was further confirmed by the X-ray single crystal structure (See Supporting Information).²⁰

Scheme 2. Further Study on Pd-Catalyzed C(sp³)-H Arylation Reaction

A) Arylation of 1d with diiodobenzene

In addition, we also tested the structural generality of the reaction by using 1,4-diiodobenzene (2v) as an aryl iodide under the optimized conditions (Scheme 2A). The result displayed that the reaction of 1d (0.6 mmol) with 2v (0.2 mmol) proceeded smoothly to obtain the difunctionalized product (5) in 58% yield. Reproducibility and scalability of this protocol were successfully tested by proforming a gramscale reaction (Scheme 2B). Further, the directing group could be effectively removed through treatment of arylated product with HCl (12 M) at 110 °C to give the free arylated acid 6 in 71% yield (Scheme 2C). And aryl methyl ether is also demethylated with the reaction.

Scheme 3. Competition Experiment.

A competition experiment with electronically biased aryl

iodides was carried out to futher probe the electronic effect, in order to collect some mechanistic information regarding the arylation reaction.²¹ The mixture of **2a** and **2e** (1:1) was treated with aliphatic amide derivative **1d** under standard reaction conditions. It was observed that **3d** gave higher yield than **4e** (Scheme 3), which indicated that electron-donating aryl groups would facilitate the reaction.

To gain insights into the reaction mechanism, a radical quencher 2,2,6,6-tetramethylpiperidine-*N*-oxyl (TEMPO) was added under standard conditions (Scheme 4A). It was found that TEMPO have negligible effect on the yield, thus it was unlikely to render a radical pathway. Additionally, we carried out deuterium labelling experiments to investigate further mechanism.^{13c, 14a, 22} When substrate **1d** was exposed to the standard consitions without 4-iodoanisole in AcOD, deuterium was observed at *beta* position of aliphatic amide (Scheme 4B), which indicated that the possibility of arylation of β -C(sp³)–H bonds. Finally, deuterium labeling kinetic isotope effect (KIE, $k_H/k_D = 3.76$) implied that the rate-determining step involved breaking a C(sp³)–H bond (Scheme 4C).

Scheme 4. The Effect of TEMPO and Deuterium Labelling Experiments.

Scheme 5. Plausible Reaction Mechanism.

ACS Paragon Plus Environment

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

From the above experimental results and relevant literature reports,^{4b, f, g, 13d, f, h} a proposed mechanism for the reaction is depicted in Scheme 5. The substrate **1d** is probably coordinated with Pd (II), to form *N*,*N*-chelated complex **I**, which further undergoes β -C(sp³)–H bond activation *via* a concerted metalation deprotonation passway to give intermediate **II**. The next step involves oxidative addition of aryl iodides generating Pd (IV) complex **III**. Subsequently, accompanied by reductive elimination, the arylated product **3d** is furnished by exchanging ligand. Meanwhile, the active Pd (II) catalyst is regenerated to accomplish the catalytic cycle. We speculates that Cu and Ag salts play dual roles in this transformation.^{19a, 23} First, Cu^{II} and Ag^I salts may be facilitate oxidative addition of aryl iodides to Pd^{II} centers. Second, they acts as iodide scavengers for success of the transformation.

CONCLUSION

In summary, we have developed a Pd-catalyzed arylation of unactivated β -C(sp³)–H bonds in carboxylic acid derivatives *via* 2-amino-5,6-difluorophenyl-1*H*-pyrazole as an easily removable auxiliary in the presence of Cu(OAc)₂ and Ag₃PO₄ (1.2/0.3) as additives. These findings prove that the transformation is significantly facilitated by introducing two fluoro groups at initial directing group. This protocol exhibits excellent β -site selectivity, which is compatible with diverse substrates containing α -hydrogen atoms and arylation of methylene C(sp³)–H bonds. Futher explorations of new reactions with the novel modified *N*,*N*-bidentate directing group are underway in our lab.

EXPERIMENTAL SECTION

General Information. Unless otherwise indicated, all reagents were obtained from commercial sources and used as received without further purification. All solvents were only dried over 4 Å molecular sieves. Reaction products were purified *via* column chromatography on silica gel (100–200 mesh). Melting points were determined using an open capillaries and uncorrected. NMR spectra were determined on Bruker AV400 in CDCl₃ with TMS as internal standard for ¹H NMR (400 MHz) and ¹³C NMR (100 MHz), respectively. HRMS were measured on a QSTAR Pulsar I LC/TOF MS mass spectrometer or Micromass GCTTM gas chromatograph-mass spectrometer.

General Procedure for the Preparation of Substrates. ^{16a, 24} To a solution of fluorinated nitrobenzene (5 mmol) and DMSO (20.0 mL) was slowly added NaOH (200.0 mg, 5 mmol), and pyrazole (408.5 mg, 6 mmol) in sequence. After the addition, the mixture was stirred at room temperture for 4 h. Water (20 mL \times 3) was added to the mixture, then the product extracted with ethyl acetate (20 mL \times 3). The combined organic layer was dried over anhydrous MgSO₄. Finally, the solution was concentrated in vacuo to provide a crude product. A mixture of iron powder (1.07 g, 19.1 mmol) and NH₄Cl (0.14 g, 2.6 mmol), in water (5.0 mL) was heated to 100 °C (oil bath) for 15 min. Then the crude product of the previous step was quickly added, and and stirred for corresponding time (TLC monitored). Upon completion of the reaction, the mixture was cooled to room temperature and neutralized with 5% NaHCO₃ solution(V/V) and extracted with ethyl acetate (20 mL \times 3) and dryed with MgSO₄. Finally, the solution was concentrated in vacuo to provide a crude product of 2-aminophenyl-1H-pyrazole derivatives.

To a solution of the carboxylic acid (6 mmol) and DCM (15.0 mL) at 0 °C (ice-water bath) was added 1–3 drops of DMF. After effervescing subsided, oxalyl chloride (2.0 mL) was added drop wise. After stirring and refluxing at 40 °C (oil bath) for 10 h, the reaction was concentrated *in vacuo* to give the acid chloride as an oil. It was taken back with DCM (5 mL), cooled back 0°C. A solution of 2aminophenyl-1*H*-pyrazole derivatives in DCM (15.0 mL) was added, followed by Et₃N (607.1 mg, 6 mmol). The corresponding acid chloride was added drop wise. Then the reaction was stirred at 0 °C for 10 min, and then room temperture for 2 h. The mixture was washed with saturated Na₂CO₃ and brine. Then the organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 80:1 to 30:1) to supply the substrate **1**.

N-(2-(*1H*-Pyrazol-1-yl)phenyl)-2-methylbutanamide (*1a*). White solid; 1.08 g, 89% yield; m.p. 44.9–46.1 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.22 (s, 1H), 8.48 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.2$ Hz, 1H), 7.81 (d, J = 1.6 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.38–7.30 (m, 2H), 7.15 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.50 (t, J = 2.4 Hz, 1H), 2.32–2.23 (m, 1H), 1.75–1.64 (m, 1H), 1.54–1.43 (m, 1H), 1.18 (d, J = 6.8 Hz, 3H), 0.88 (t, J = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.1, 141.0, 131.8, 130.3, 129.1, 128.1, 123.8, 123.1, 122.5, 107.1, 44.5, 27.3, 17.2, 11.7; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₄H₁₇N₃O: 243.1372; found: 243.1371.

N-(4-*Chloro-2-(1H-pyrazol-1-yl)phenyl)-2-methylbutanamide* (**1b**). Yellow solid; 1.21 g, 87% yield; m.p. 33.2–35.0 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.33 (s, 1H), 8.48 (d, *J* = 8.8 Hz, 1H), 7.81–7.80 (m, 2H), 7.29–7.26 (m, 2H), 6.51 (t, *J* = 2.4 Hz, 1H), 2.32–2.23 (m, 1H), 1.75–1.64 (m, 1H), 1.54–1.43 (m, 1H), 1.18 (d, *J* = 6.8 Hz, 3H), 0.88 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.2, 141.4, 130.4, 130.2, 129.6, 128.5, 127.8, 124.1, 122.2, 107.6, 44.5, 27.2, 17.1, 11.7; HRMS (EI): *m/z* [M⁺] calcd. for C₁₄H₁₆N₃OCl: 277.0982; found: 277.0980.

N-(4-Fluoro-2-(1H-pyrazol-1-yl)phenyl)-2-methylbutanamide (1c). White solid; 0.82 g, 63% yield; m.p. 38.3–40.0 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.23 (s, 1H), 8.44 (dd, $J_1 = 10.0$ Hz, $J_2 = 5.6$ Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.78 (d, J = 2.8 Hz, 1H), 7.08–7.04 (m, 2H), 6.51 (dd, $J_1 = 2.4$ Hz, $J_2 = 2.0$ Hz, 1H), 2.31–2.22 (m, 1H), 1.74–1.63 (m, 1H), 1.53–1.43 (m, 1H), 1.17 (d, J = 6.8 Hz, 3H), 0.87 (t, J = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.1, 158.3 (d, $J_{CF} = 242.9$ Hz), 141.4, 130.2, 129.81 (d, $J_{CF} = 9.3$ Hz), 127.9 (d, $J_{CF} = 3.1$ Hz), 124.8 (d, $J_{CF} = 8.3$ Hz), 114.4 (d, $J_{CF} = 21.3$ Hz), 109.5 (d, $J_{CF} = 25.9$ Hz), 107.6, 44.4, 27.3, 17.2, 11.7. HRMS (EI): m/z [M⁺] calcd. for C₁₄H₁₆N₃OF: 261.1277; found: 261.1278.

N-(*3*,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-methylbutanamide* (*1d*). White solid; 0.58 g, 42% yield; m.p. 45.4–47.1 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.59 (s, 1H), 8.18–8.14 (m, 1H), 7.86 (d, *J* = 1.6 Hz, 1H), 7.81 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.19 (q, *J* = 9.2 Hz, 1H), 6.56 (t, *J* = 2.0 Hz, 1H), 2.26–2.17 (m, 1H), 1.70–1.59 (m, 1H), 1.50–1.40 (m, 1H), 1.14 (d, *J* = 6.8 Hz, 3H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.1, 146.9 (dd, *J*_{CF} = 244.8, 11.9 Hz), 143.8 (dd, *J*_{CF} = 248.9, 15.5 Hz), 141.6, 133.1 (d, *J*_{CF} = 6.4 Hz), 129.8 (d, *J*_{CF} = 3.2 Hz), 120.0 (d, *J*_{CF} = 9.8 Hz), 118.0 (dd, *J*_{CF} = 6.6 (Hz), 115.9 (d, *J*_{CF} = 17.3 Hz), 107.5, 44.3, 27.2, 17.0, 11.6; HRMS (EI): *m/z* [M⁺] calcd. for C₁₄H₁₅N₃OF₂: 279.1183; found: 279.1182.

2-Methyl-N-(3,4,5-trifluoro-2-(1H-pyrazol-1-yl)phenyl)butanamide (1e). Yellow oil; 0.42 g, 28% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.57 (s, 1H), 8.30–8.25 (m, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.77 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 1H), 6.57 (t, J = 2.4 Hz, 1H), 2.25–2.17 (m, 1H), 1.70–1.59 (m, 1H), 1.51–1.40 (m, 1H), 1.14 (d, J = 6.8 Hz, 3H), 0.85 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.1, 148.7 (ddd, $J_{CF} = 247.5$, 9.8, 4.5 Hz), 143.9 (ddd, $J_{CF} = 248.9$, 12.2, 5.3 Hz), 140.9, 135.2 (ddd, $J_{CF} = 248.2$, 16.3, 14.4 Hz), 132.0 (d, $J_{CF} = 6.0$ Hz), 128.5 (dd, $J_{CF} = 11.4$, 3.6 Hz), 114.5 (dd, $J_{CF} = 10.9$, 4.4 Hz), 106.6, 104.9 (dd, $J_{CF} = 23.6$, 3.5 Hz), 43.3, 26.1, 15.9, 10.5; HRMS (EI): m/z [M⁺] calcd. for C₁₄H₁₄N₃OF₃: 297.1089; found: 297.1092.

N-(4-methoxy-2-(1*H*-pyrazol-1-yl)phenyl)-2-methylbutanamide (**1f**). Yellow solid; 1.13 g, 83% yield; m.p. 60.4–62.0 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.88 (s, 1H), 8.30 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.77 (d, J = 2.4 Hz, 1H), 6.90 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.8$ Hz, 1H), 6.85 (d, J = 2.8 Hz, 1H), 6.48 (t, J = 2.0 Hz, 1H), 3.82 (s, 3H), 2.28–2.19 (m, 1H), 1.71–1.64 (m, 1H), 1.50–1.43 (m, 1H), 1.16 (d, J = 6.8 Hz, 3H), 0.85 (t, J = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.9, 155.9, 141.1, 130.4, 130.2, 125.0, 124.7, 112.6, 108.9, 107.2, 55.8, 44.3, 27.3, 17.2, 11.7; HRMS (EI): *m*/z [M⁺] calcd. for C₁₅H₁₉N₃O₂: 273.1477; found: 273.1476.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2,2-dimethylbutanami-

Page 6 of 14

de (*1g*). White solid; 0.59 g, 40% yield; m.p. 55.6–57.5 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.71 (s, 1H), 8.17–8.13 (m, 1H), 7.86 (d, *J* = 2.0 Hz, 1H), 7.80 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.4 Hz, 1H), 7.19 (q, *J* = 9.2 Hz, 1H), 6.56 (dd, *J*₁ = 2.4 Hz, *J*₂ = 2.0 Hz, 1H), 1.53 (q, *J* = 7.6 Hz, 2H), 1.14 (s, 6H), 0.76 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 176.7, 146.8 (dd, *J*_{CF} = 244.7, 11.9 Hz), 143.8 (dd, *J*_{CF} = 248.9, 15.6 Hz), 141.6, 133.1 (d, *J*_{CF} = 6.2 Hz), 130.1 (d, *J*_{CF} = 3.3 Hz), 120.1 (d, *J*_{CF} = 10.1 Hz), 118.0 (dd, *J*_{CF} = 6.6, 4.5 Hz), 115.9 (d, *J*_{CF} = 17.4 Hz), 107.5, 43.6, 33.8, 24.7 (2C), 9.0; HRMS (EI): *m/z* [M⁺] calcd. for C₁₅H₁₇N₃OF₂: 293.1340; found: 293.1339.

N-(3,4-*Difluoro*-2-(*1H*-*pyrazol*-*1*-*yl*)*phenyl*)-*1*-*methylcyclohexanecarboxamide* (*1h*). White solid; 0.59 g, 37% yield; m.p. 53.6–54.4 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.73 (s, 1H), 8.18–8.14 (m, 1H), 7.85 (d, *J* = 2.0 Hz, 1H), 7.79 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.8 Hz, 1H), 7.19 (q, *J* = 9.2 Hz, 1H), 6.55 (6, *J* = 2.0 Hz, 1H), 1.96–1.93 (m, 2H), 1.50–1.44 (m, 3H), 1.32–1.27 (m, 5H), 1.12 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 176.6, 146.8 (dd, *J*_{CF} = 244.6, 11.9 Hz), 143.9 (dd, *J*_{CF} = 248.8, 15.5 Hz), 141.7, 133.1 (d, *J*_{CF} = 6.1 Hz), 130.2 (d, *J*_{CF} = 3.2 Hz), 120.1 (d, *J*_{CF} = 10.1 Hz), 118.0 (d, *J*_{CF} = 6.5, 4.6 Hz), 115.9 (d, *J*_{CF} = 17.3 Hz), 107.5, 44.0, 35.5 (2C), 26.7, 25.6, 22.9 (2C); HRMS (EI): *m/z* [M⁺] calcd. for C₁₇H₁₉N₃OF₂: 319.1496; found: 319.1497.

N-(3, 4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)isobutyramide* (1i). White solid; 0.57 g, 43% yield; m.p. 76.5–78.3 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.64 (s, 1H), 8.20–8.15 (m, 1H), 7.86 (d, *J* = 2.0 Hz, 1H), 7.8 (dd, *J*₁ = 4.4 Hz, *J*₂ = 2.8 Hz, 1H), 7.19 (q, *J* = 9.6 Hz, 1H), 6.56 (t, *J* = 2.4 Hz, 1H), 2.49–2.42 (m, 1H), 1.17 (s, 3H), 1.15 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.5, 146.8 (dd, *J*_{CF} = 244.8, 12.0 Hz), 143.8 (dd, *J*_{CF} = 248.8, 15.4 Hz), 141.6, 133.2 (d, *J*_{CF} = 6.5 Hz), 129.9 (d, *J*_{CF} = 3.2 Hz), 119.9 (d, *J*_{CF} = 10.2 Hz), 117.8 (dd, *J*_{CF} = 6.6, 4.6 Hz), 115.9 (d, *J*_{CF} = 17.1 Hz), 107.5, 36.9, 19.2 (2C); HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₃H₁₃N₃OF₂: 265.1027; found: 265.1028.

N-(*3*, *4*-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-methylpentanamide* (*Ij*). White solid; 0.61 g, 42% yield; m.p. 62.1–63.4 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.57 (s, 1H), 8.17–8.13 (m, 1H), 7.86 (d, *J* = 1.6 Hz, 1H), 7.80 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.18 (q, *J* = 9.2 Hz, 1H), 6.55 (t, *J* = 2.0 Hz, 1H), 2.34–2.25 (m, 1H), 1.64–1.55 (m, 1H), 1.41–1.32 (m, 1H), 1.28–1.19 (m, 2H), 1.13 (d, *J* = 6.8 Hz, 3H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.2, 146.9 (dd, *J*_{CF} = 244.9, 12.0 Hz), 143.8 (dd, *J*_{CF} = 248.9, 15.5 Hz), 141.6, 133.1 (d, *J*_{CF} = 6.6 Hz), 129.8 (d, *J*_{CF} = 3.2 Hz), 120.0 (d, *J*_{CF} = 10.2 Hz), 118.0 (dd, *J*_{CF} = 6.6, 4.6 Hz), 115.9 (d, *J*_{CF} = 17.2 Hz), 107.4, 42.5, 36.4, 20.3, 17.5, 13.9; HRMS (EI): *m/z* [M⁺] calcd. for C₁₅H₁₇N₃OF₂: 293.1340; found: 293.1341.

N-(3, 4-Difluoro-2-(*IH-pyrazol-1-yl*)phenyl)-2-methylhexanamide (*Ik*). White solid; 0.55 g, 36% yield; m.p. 60.5–62.3 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.56 (s, 1H), 8.16–8.12 (m, 1H), 7.86 (d, *J* = 2.0 Hz, 1H), 7.81 (dd, J_1 = 3.6 Hz, J_2 = 2.8 Hz, 1H), 7.19 (q, *J* = 9.2 Hz, 1H), 6.56 (t, *J* = 2.4 Hz, 1H), 2.32–2.23 (m, 1H), 1.65–1.56 (m, 1H), 1.43–1.34 (m, 1H), 1.32–1.88 (m, 4H), 1.13 (d, *J* = 6.8 Hz, 3H), 0.83 (t, *J* = 6.8 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.3, 146.9 (dd, J_{CF} = 244.9, 11.9 Hz), 143.8 (dd, J_{CF} = 248.9, 15.5 Hz), 141.7, 133.1 (d, J_{CF} = 6.3 Hz), 129.8 (d, J_{CF} = 3.3 Hz), 120.0 (d, J_{CF} = 9.3 Hz), 118.1 (dd, J_{CF} = 6.7, 4.7 Hz), 115.9 (d, J_{CF} = 17.4 Hz), 107.5, 42.7, 33.9, 29.3, 22.6, 17.5, 13.9; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₆H₁₉N₃OF₂: 307.1496; found: 307.1494.

N-(*3*,*4*-*Difluoro-2*-(*1H-pyrazol-1-yl*)*phenyl*)-2-*methylheptanamide* (*1I*). White solid; 0.59 g, 37% yield; m.p. 39.3–41.1 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.58 (s, 1H), 8.17–8.13 (m, 1H), 7.85 (d, *J* = 1.6 Hz, 1H), 7.80 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.18 (q, *J* = 9.6 Hz, 1H), 6.55 (t, *J* = 2.0 Hz, 1H), 2.32–2.23 (m, 1H), 1.64–1.55 (m, 1H), 1.42–1.33 (m, 1H), 1.97–1.25 (m, 6H), 1.13 (d, *J* = 6.8 Hz, 3H), 0.83 (t, *J* = 6.8 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.3, 146.9 (dd, *J*_{CF} = 244.8, 12.1 Hz), 143.8 (dd, *J*_{CF} = 248.9, 15.5 Hz), 141.6, 133.1 (d, *J*_{CF} = 6.4 Hz), 129.8 (d, *J*_{CF} = 3.2 Hz), 120.0 (d, *J*_{CF} = 9.8 Hz), 118.0 (dd, *J*_{CF} = 6.6, 4.7 Hz), 115.9 (d, *J*_{CF} = 17.3 Hz), 107.5, 42.8, 34.2, 31.7, 26.8, 22.5, 17.5, 14.0.; HRMS (EI): *m/z* [M⁺] calcd. for C₁₇H₂₁N₃OF₂: 321.1653; found: 321.1650.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-methyl-3-phenylpropanamide (1m). Yellow oil; 0.68 g, 40% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.56 (s, 1H), 8.16−8.12 (m, 1H), 7.81 (d, *J* = 2.0 Hz,

1H), 7.74 (dd, J_1 = 4.0 Hz, J_2 = 2.4 Hz, 1H), 7.23–7.18 (m, 3H), 7.17–7.15 (m, 1H), 7.12–7.09 (m, 2H), 6.52 (t, J = 2.4 Hz, 1H), 2.99 (dd, J_1 = 13.6 Hz, J_2 = 7.2 Hz, 1H), 2.67 (dd, J_1 = 13.6 Hz, J_2 = 7.6 Hz, 1H), 2.61–2.52 (m, 1H), 1.17 (d, J = 6.8 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.3, 146.9 (dd, J_{CF} = 245.1, 12.1 Hz), 143.7 (dd, J_{CF} = 248.8, 15.4 Hz), 141.6, 139.2, 133.1 (d, J_{CF} = 6.7 Hz), 129.5 (d, J_{CF} = 3.3 Hz), 128.8 (2C), 128.4 (2C), 126.4, 119.9 (d, J_{CF} = 9.3 Hz), 117.9 (dd, J_{CF} = 6.7, 4.8 Hz), 115.9 (d, J_{CF} = 17.5 Hz), 107.5, 44.8, 40.2, 17.1; HRMS (EI): m/z [M⁺] calcd. for C₁₉H₁₇N₃OF₂: 341.1340; found: 341.1342.

N-(3,4-Difluoro-2-(*IH-pyrazol-1-yl*)phenyl)-2-phenylpropanamide (*In*). Yellow oil; 0.52 g, 32% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.40 (s, 1H), 8.19–8.14 (m, 1H), 7.65 (dd, J_1 = 3.6 Hz, J_2 = 2.8 Hz, 1H), 7.52 (d, J = 1.6 Hz, 1H), 7.33–7.27 (m, 3H), 7.23–7.21 (m, 2H), 7.16 (q, J = 9.6 Hz, 1H), 6.41 (t, J = 2.4 Hz, 1H), 3.65 (q, J = 7.2 Hz, 1H), 1.54 (d, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.0, 146.8 (dd, J_{CF} = 244.9, 11.9 Hz), 143.8 (dd, J_{CF} = 248.8, 15.4 Hz), 141.6, 140.3, 132.7 (d, J_{CF} = 6.2 Hz), 129.9 (d, J_{CF} = 3.2 Hz), 129.0 (2C), 127.8 (2C), 127.5, 119.9 (d, J_{CF} = 10.2 Hz), 117.6 (dd, J_{CF} = 6.6, 4.6 Hz), 115.8 (d, J_{CF} = 17.4 Hz), 107.1, 48.4, 18.0; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₈H₁₅N₃OF₂: 327.1183; found: 327.1185.

N-(3, 4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(p-tolyl)propanamide (**10**). Yellow solid; 0.58 g, 34% yield; m.p. 57.6–59.1 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.32 (s, 1H), 8.19–8.15 (m, 1H), 7.65 (dd, J_1 = 3.6 Hz, J_2 = 2.8 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.16 (q, J = 9.2 Hz, 1H), 7.13–7.08 (m, 4H), 6.42 (t, J = 2.4 Hz, 1H), 3.61 (q, J = 7.2 Hz, 1H), 2.36 (s, 3H), 1.52 (d, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.2, 146.8 (dd, J_{CF} = 244.8, 11.9 Hz), 143.8 (dd, J_{CF} = 248.8, 15.4 Hz), 141.5, 137.2, 137.0, 132.7 (d, J_{CF} = 6.1 Hz), 130.0 (d, J_{CF} = 3.2 Hz), 129.7 (2C), 127.7 (2C), 119.9 (d, J_{CF} = 10.6 Hz), 117.5 (dd, J_{CF} = 6.5, 4.6 Hz), 115.9 (d, J_{CF} = 17.4 Hz), 107.0, 47.9, 21.1, 18.0; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₉H₁₇N₃OF₂: 341.1340; found: 341.1339.

2-(3-Chlorophenyl)-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)propanamide (**1***p*). White solid; 0.56 g, 31% yield; m.p. 72.5–73.3 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.50 (s, 1H), 8.18–8.14 (m, 1H), 7.70 (dd, J_1 = 3.6 Hz, J_2 = 2.4 Hz, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.28–7.26 (m, 1H), 7.25–7.23 (m, 2H), 7.21–7.17 (m, 1H), 7.14–7.12 (m, 1H), 6.46 (t, J = 2.0 Hz, 1H), 3.64 (q, J = 7.2Hz, 1H), 1.54 (d, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 172.1, 147.0 (dd, J_{CF} = 245.2, 12.0 Hz), 143.7 (dd, J_{CF} = 249.1, 15.5 Hz), 142.3, 141.6, 134.7, 132.8 (d, J_{CF} = 6.5 Hz), 130.2, 129.6 (d, J_{CF} = 3.2 Hz), 128.0, 127.7, 126.0, 119.9 (d, J_{CF} = 9.9 Hz), 117.7 (dd, J_{CF} = 6.5, 4.7 Hz), 115.8 (d, J_{CF} = 17.4 Hz), 107.3, 48.0, 17.9; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₄N₃OF₂Cl: 361.0793; found: 361.0789.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(6-methoxynaphthalen-2-yl)propanamide (1q). Yellow solid; 0.61 g, 30% yield; m.p. 106.2–107.4 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.29 (s, 1H), 8.21–8.17 (m, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.59 (s, 1H), 7.53 (dd, $J_1 = 3.6$ Hz, $J_2 = 2.8$ Hz, 1H), 7.26–7.24 (m, 1H), 7.20 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 7.17–7.12 (m, 2H), 6.79 (d, J = 1.6 Hz, 1H), 6.14 (t, J = 2.0 Hz, 1H), 3.95 (s, 3H), 3.89 (q, J = 7.2 Hz, 1H), 1.83 (d, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.3, 157.9, 146.8 (dd, $J_{CF} = 244.6$, 11.6 Hz), 143.8 (dd, $J_{CF} = 248.8$, 15.4 Hz), 129.3, 129.1, 127.7, 126.7, 126.2, 119.8 (d, $J_{CF} = 9.1$ Hz), 119.2, 117.4 (dd, $J_{CF} = 6.5$, 4.7 Hz), 115.8 (d, $J_{CF} = 17.2$ Hz), 106.9, 105.6, 55.4, 48.3, 17.8; HRMS (EI): *m*/z [M⁺] calcd. for C₂₃H₁₉N₃O₂F₂: 407.1445; found: 407.1447.

N-(*3*,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)cyclobutanecarboxamide (<i>Ir*). Yellow solid; 0.54 g, 39% yield; m.p. 88.7–90.7 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.55 (s, 1H), 8.22–8.18 (m, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.80 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.18 (q, *J* = 9.6 Hz, 1H), 6.54 (t, *J* = 2.4 Hz, 1H), 3.13–3.05 (m, 1H), 2.29–2.16 (m, 4H), 2.01–1.90 (m, 1H), 1.87–1.80 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.6, 146.8 (dd, *J*_{CF} = 244.8, 12.0 Hz), 143.8 (dd, *J*_{CF} = 248.7, 15.4 Hz), 141.6, 133.2 (d, *J*_{CF} = 6.6 Hz), 129.8 (d, *J*_{CF} = 3.2 Hz), 119.7 (d, *J*_{CF} = 10.1 Hz), 117.6 (dd, *J*_{CF} = 6.0, 4.6 Hz), 115.9 (d, *J*_{CF} = 17.3 Hz), 107.4, 41.1, 25.2 (2C), 17.9; HRMS (EI): *m/z* [M⁺] calcd. for C₁₄H₁₃N₃OF₂: 277.1027; found: 277.1026.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)cyclopentanecarboxa-

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

mide (1s). White solid; 0.62 g, 43% yield; m.p. 83.1–84.8 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.58 (s, 1H), 8.19–8.15 (m, 1H), 7.88 (d, J = 1.2 Hz, 1H), 7.81 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.8$ Hz, 1H), 7.19 (q, J = 9.2 Hz, 1H), 6.57 (t, J = 2.0 Hz, 1H), 2.67–2.59 (m, 1H), 1.92–1.85 (m, 2H), 1.78–1.69 (m, 4H), 1.63–1.57 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.9, 146.8 (dd, $J_{CF} = 244.7$, 11.9 Hz), 143.8 (dd, $J_{CF} = 248.8$, 15.5 Hz), 141.6, 133.2 (d, $J_{CF} = 6.5$ Hz), 133.0 (d, $J_{CF} = 3.2$ Hz), 119.8 (d, $J_{CF} = 10.0$ Hz), 117.8 (dd, $J_{CF} = 6.5$, 4.6 Hz), 115.9 (d, $J_{CF} = 17.3$ Hz), 107.4, 47.1, 30.1 (2C), 25.8 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₅H₁₅N₃OF₂: 291.1183; found: 291.1182.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)cyclohexanecarboxamide (1t). White solid; 0.64 g, 42% yield; m.p. 92.1–93.6 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.59 (s, 1H), 8.19–8.14 (m, 1H), 7.88 (d, *J* = 1.6 Hz, 1H), 7.81 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.18 (q, *J* = 9.2 Hz, 1H), 6.56 (t, *J* = 2.0 Hz, 1H), 2.20–2.13 (m, 1H), 1.86 (dd, *J*₁ = 12.8 Hz, *J*₂ = 2.0 Hz, 2H), 1.80–1.76 (m, 2H), 1.68–1.65 (m, 1H), 1.44–1.35 (m, 2H), 1.29–1.21 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.6, 146.8 (dd, *J*_{CF} = 244.8, 12.0 Hz), 143.8 (dd, *J*_{CF} = 248.8, 15.5 Hz), 141.6, 133.2 (d, *J*_{CF} = 6.5 Hz), 129.9 (d, *J*_{CF} = 3.2 Hz), 119.9 (d, *J*_{CF} = 9.2 Hz), 117.9 (dd, *J*_{CF} = 6.5, 4.7 Hz), 115.9 (d, *J*_{CF} = 17.2 Hz), 107.5, 46.4, 29.3 (2C), 25.7, 25.6 (2C); HRMS (EI): *m/z* [M⁺] calcd. for C₁₆H₁₇N₃OF₂: 305.1340; found: 305.1339. *N*-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)propionamide (1u).

N-(3,4-*aljtuoro-2-(1H-pyrazol-1-yl)phenyl)propionamide* (1*u*). Yellow soild; 0.47 g, 37% yield; m.p. 59,3–61.1 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.61 (s, 1H), 8.20–8.16 (m, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.81 (dd, *J*₁ = 4.4 Hz, *J*₂ = 2.8 Hz, 1H), 7.17 (q, *J* = 9.6 Hz, 1H), 6.54 (t, *J* = 2.0 Hz, 1H), 2.32 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 172.3, 146.8 (dd, *J*_{CF} = 244.8, 11.9 Hz), 143.8 (dd, *J*_{CF} = 248.8, 15.6 Hz), 141.7, 133.2 (d, *J*_{CF} = 6.7 Hz), 129.7 (d, *J*_{CF} = 3.2 Hz), 119.7 (d, *J*_{CF} = 10.2 Hz), 117.7 (dd, *J*_{CF} = 6.5, 4.8 Hz), 115.9 (d, *J*_{CF} = 17.4 Hz), 107.4, 31.0, 9.3; HRMS (EI): *m/z* [M⁺] calcd. for C₁₂H₁₁N₃OF₂: 251.0870; found: 251.0869.

General Procedure for Pd(II)-Catalyzed C(sp³)–H Bond Arylation. A mixture of substrate 1 (0.3 mmol), aryl iodide 2 (0.9 mmol), Pd(OAc)₂ (6.7 mg, 10 mol%), Cu(OAc)₂ (65.4 mg, 0.36 mmol), Ag₃PO₄ (37.7 mg, 0.09 mmol), in *p*-xylene (1.5 mL) and DMF (1.5 mL) was charged in a glass sealed-tube and stirred at 130 °C (oil bath) for 16 h. Upon completion of the reaction, saturated brine (15 mL) and dichloromethane (15 mL) were added to the mixture, then the aqueous layer was extracted with dichloromethane (15 mL × 3). The combined organic layer was dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was further purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 70:1 to 20:1) to supply the desired products **3** and **4**.

N-(2-(*1H*-*pyrazol*-*1*-*yl*)*phenyl*)-2-(4-*methoxybenzyl*)*butanamide* (*3a*).Yellow oil; 45.1 mg, 43% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.34 (s, 1H), 8.38 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.36–7.31 (m, 1H), 7.28 (d, *J* = 1.2 Hz, 1H), 7.16–7.12 (m, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 6.46 (t, *J* = 2.0 Hz, 1H), 3.74 (s, 3H), 2.90 (dd, *J*₁ = 13.6 Hz, *J*₂ = 8.4 Hz, 1H), 2.70 (dd, *J*₁ = 14.0 Hz, *J*₂ = 6.4 Hz, 1H), 2.39–2.32 (m, 1H), 1.75–1.68 (m, 1H), 1.60–1.53 (m, 1H), 0.88 (t, *J* = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.7, 157.9, 141.0, 131.6, 131.4, 130.1, 129.7 (2C), 129.2, 128.0, 124.0, 123.4, 122.5, 113.7 (2C), 107.1, 55.1, 53.3, 38.0, 25.6, 11.9; HRMS (EI): *m/z* [M⁺] calcd. for C₂₁H₂₃N₃O₂: 349.1790; found: 349.1792.

N-(4-Chloro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)butanamide (**3b**). Yellow oil; 37.9 mg, 33% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.11 (s, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 1.2 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.30–7.26 (m, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.47 (t, *J* = 2.4 Hz, 1H), 3.73 (s, 3H), 2.88 (dd, *J*₁ = 13.6 Hz, *J*₂ = 8.8 Hz, 1H), 2.70 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.37–2.33 (m, 1H), 1.76–1.68 (m, 1H), 1.60–1.54 (m, 1H), 0.89 (t, *J* = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.8, 157.9, 141.3, 131.4, 130.1, 130.0, 129.8, 129.7 (2C), 128.7, 127.7, 124.4, 122.2, 113.7 (2C), 107.5, 55.1, 53.4, 38.0, 25.6, 11.9; HRMS (EI): *m*/z [M⁺] calcd. for C₂₁H₂₂N₃O₂Cl: 383.1401; found: 383.1400.

N-(4-Fluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)buta-

namide (*3c*). Yellow oil; 50.7 mg, 46% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.99 (s, 1H), 8.33 (dd, $J_1 = 9.2$ Hz, $J_2 = 5.6$ Hz, 1H), 7.73 (d, J = 1.2 Hz, 1H), 7.67 (d, J = 2.0 Hz, 1H), 7.054 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.8$ Hz, 1H), 7.03–7.00 (m, 3H), 6.70 (d, J = 8.4 Hz, 2H), 6.47 (s, 1H), 3.74 (s, 3H), 2.88 (dd, $J_1 = 13.6$ Hz, $J_2 = 8.8$ Hz, 1H), 2.70 (dd, $J_1 = 14.0$ Hz, $J_2 = 6.0$ Hz, 1H), 2.36–2.32 (m, 1H), 1.75–1.68 (m, 1H), 1.60–1.53 (m, 1H), 0.87 (t, J = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.8, 158.5 (d, $J_{CF} = 243.0$ Hz), 157.9, 141.3, 131.5, 130.0, 129.9, 129.7 (2C), 127.5 (d, $J_{CF} = 3.2$ Hz), 125.1 (d, $J_{CF} = 8.4$ Hz), 114.4 (d, $J_{CF} = 21.4$ Hz), 113.7 (2C), 109.6 (d, $J_{CF} = 25.8$ Hz), 107.5, 55.1, 53.3, 38.0, 25.6, 11.9; HRMS (EI): *m/z* [M⁺] calcd. for C₂₁H₂₂N₃O₂F: 367.1696; found: 367.1695.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)butanamide (3d).* Yellow oil; 66.9 mg, 58% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.41 (s, 1H), 8.07–8.02 (m, 1H), 7.78 (d, *J* = 1.2 Hz, 1H), 7.70 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.16 (q, *J* = 9.6 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.51 (t, *J* = 2.4 Hz, 1H), 3.75 (s, 3H), 2.83 (dd, *J*₁ = 14.0 Hz, *J*₂ = 8.8 Hz, 1H), 2.67 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.32–2.24 (m, 1H), 1.71–1.63 (m, 1H), 1.57–1.51 (m, 1H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.8, 158.0, 147.0 (dd, *J*_{CF} = 245.0, 12.0 Hz), 143.8 (dd, *J*_{CF} = 248.9, 15.5 Hz), 141.5, 133.0 (d, *J*_{CF} = 6.4 Hz), 131.3, 129.6 (2C), 129.4 (d, *J*_{CF} = 3.3 Hz), 120.1 (d, *J*_{CF} = 10.9 Hz), 118.3 (dd, *J*_{CF} = 6.7, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.5 Hz), 113.8 (2C), 107.4, 55.1, 53.2, 38.0, 25.6, 11.8; HRMS (EI): *m/z* [M⁺] calcd. for C₂₁H₂₁N₃O₂F₂: 385.1602; found: 385.1601.

2-(4-Methoxybenzyl)-N-(3, 4, 5-trifluoro-2-(1H-pyrazol-1-yl)phenyl-)butanamide (3e). Yellow oil; 62.7 mg, 52% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.37 (s, 1H), 8.20–8.14 (m, 1H), 7.79 (d, J = 2.0 Hz, 1H), 7.65 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.8$ Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.52 (t, J = 2.0 Hz, 1H), 3.75 (s, 3H), 2.82 (dd, $J_1 = 13.6$ Hz, $J_2 = 8.8$ Hz, 1H), 2.68 (dd, $J_1 = 13.6$ Hz, $J_2 = 6.0$ Hz, 1H), 2.29–2.25 (m, 1H), 1.71–1.64 (m, 1H), 1.58–1.52 (m, 1H), 0.86 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.9, 158.0, 149.6 (ddd, $J_{CF} = 247.5$, 9.6, 4.5 Hz), 144.9 (ddd, $J_{CF} = 249.1$, 12.0, 5.3 Hz), 141.8, 136.4 (ddd, ¹ $J_{CF} = 249.4$, $^2_{J_{CF}} = 31.0$, $J_{CF} = 11.8$, 3.5, 1.9 Hz), 115.5 (dd, $J_{CF} = 10.7$, 4.0 Hz), 113.8 (2C), 107.5, 106.1 (dd, $J_{CF} = 23.4$, 3.4 Hz), 55.1, 53.4, 37.9, 25.5, 11.8; HRMS (EI): m/z [M⁺] calcd. for C₂₁H₂₀N₃O₂F₃: 403.1508; found: 403.1509.

N-(4-methoxy-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)butanamide (**3f**). White solid; 35.3 mg, 44% yield; m.p. 134.2–135.4 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.65 (s, 1H), 8.18 (d, *J* = 9.2 Hz, 1H), 7.71 (d, *J* = 1.6 Hz, 1H), 7.65 (d, *J* = 2.4 Hz, 1H), 7.02 (d, *J* = 8.8 Hz, 2H), 6.88 (dd, *J*₁ = 9.2 Hz, *J*₂ = 2.8 Hz, 1H), 6.81 (d, *J* = 2.8 Hz, 1H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.43 (t, *J* = 2.0 Hz, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 2.88 (dd, *J*₁ = 13.6 Hz, *J*₂ = 8.4 Hz, 1H), 2.67 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.35–2.27 (m, 1H), 1.73–1.64 (m, 1H), 1.57–1.51 (m, 1H), 0.85 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.5, 157.9, 156.1, 141.0, 131.7, 130.6, 130.0, 129.7 (2C), 125.1, 124.5, 113.7 (2C), 112.6, 108.9, 107.1, 55.7, 55.1, 53.1, 38.0, 25.6, 11.8; HRMS (EI): *m*/z [M⁺] calcd. for C₂₂H₂₅N₃O₃: 379.1896; found: 379.1895.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)-2-methylbutanamide* (**3g**). Yellow oil; 38.6 mg, 32% yield (11.5mg, 10% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.57 (s, 1H), 8.14–8.10 (m, 1H), 7.74 (d, *J* = 2.0 Hz, 1H), 7.70 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.20 (q, *J* = 9.6 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 6.48 (t, *J* = 2.0 Hz, 1H), 3.75 (s, 3H), 2.95 (d, *J* = 13.6 Hz, 1H), 2.54 (d, *J* = 13.6 Hz, 1H), 1.87–1.78 (m, 1H), 1.43–1.34 (m, 1H), 1.06 (s, 3H), 0.79 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 175.4, 158.1, 146.6 (dd, *J*_{CF} = 244.9, 11.9 Hz), 143.8 (dd, *J*_{CF} = 248.9, 15.5 Hz), 141.5, 132.9 (d, *J*_{CF} = 6.3 Hz), 131.0 (2C), 129.7 (d, *J*_{CF} = 3.2 Hz), 129.4, 120.2 (d, *J*_{CF} = 9.9 Hz), 118.2 (dd, *J*_{CF} = 6.7, 4.6 Hz), 115.9 (d, *J*_{CF} = 17.4 Hz), 113.3 (2C), 107.4, 55.10, 48.7, 45.3, 32.6, 19.5, 8.9; HRMS (EI): *m*/z [M⁺] calcd. for C₂₂H₂₃N₃O₂F₂: 399.1758; found: 399.1759.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2,2-bis(4-methoxyben-zyl)butanamide (3g'). Yellow oil; 62.3 mg, 41% yield (46.5 mg, 31% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.42 (s, 1H), 8.12–8.08 (m, 1H), 7.59–7.57 (m, 2H), 7.20 (q, *J* = 9.2 Hz, 1H), 6.98 (d, *J* = 8.4

Hz, 4H), 6.68 (d, J = 8.8 Hz, 4H), 6.37 (t, J = 2.0 Hz, 1H), 3.75 (s, 6H), 3.04 (d, J = 14.0 Hz, 2H), 2.74 (d, J = 14.0 Hz, 2H), 1.41 (q, J = 7.2 Hz, 2H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.8, 158.0 (2C), 146.9 (dd, $J_{CF} = 244.9$, 11.9 Hz), 143.7 (dd, $J_{CF} = 248.7$, 15.3 Hz), 141.3, 132.6 (d, $J_{CF} = 6.3$ Hz), 130.8 (4C), 129.4 (d, $J_{CF} = 3.2$ Hz), 129.3 (2C), 120.2 (d, $J_{CF} = 9.4$ Hz), 118.4 (dd, $J_{CF} = 6.6$, 4.7 Hz), 115.8 (d, $J_{CF} = 17.4$ Hz), 113.4 (4C), 107.3, 55.1 (2C), 53.1, 40.5 (2C), 22.6, 8.6; HRMS (EI): m/z [M⁺] calcd. for C₂₉H₂₉N₃O₃F₂: 505.2177; found: 505.2175.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-1-(4-methoxybenzyl)c-yclohexanecarboxamide (3h).* Yellow oil; 29.0 mg, 23% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.53 (s, 1H), 8.18−8.16 (m, 1H), 7.71 (s, 2H), 7.19 (q, *J* = 9.2 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 8.4 Hz, 2H), 6.48 (s, 1H), 3.74 (s, 3H), 2.68 (s, 2H), 1.99 (d, *J* = 11.2 Hz, 2H), 1.59−1.52 (m, 4H), 1.35−1.30 (m, 2H), 1.25−1.22 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.7, 158.1, 146.8 (dd, *J*_{CF} = 244.7, 11.9 Hz), 143.8 (dd, *J*_{CF} = 248.7, 15.5 Hz), 141.5, 132.8 (d, *J*_{CF} = 6.3 Hz), 130.8 (2C), 129.8 (d, *J*_{CF} = 3.1 Hz), 128.7, 120.0 (d, *J*_{CF} = 9.8 Hz), 117.9 (d, *J*_{CF} = 6.8, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.3 Hz), 113.2 (2C), 107.3, 55.1, 49.3, 35.3, 33.9, 25.8, 25.7, 23.1, 23.0; HRMS (EI): *m*/*z* [M⁺] calcd. for C₂₄H₂₅N₃O₂F₂: 425.1915; found: 425.1916.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-1-(4-methoxybenzyl)-

2-(4-methoxyphenyl)cyclohexanecarboxamide (**3h**'). Yellow oil; 74.3 mg, 47% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.18 (s, 1H), 7.99–7.95 (m, 1H), 7.61 (dd, J_1 = 3.6 Hz, J_2 = 2.8 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.10 (q, J = 8.8 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 6.40 (t, J = 2.4 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.03 (d, J = 13.6Hz, 1H), 2.88–2.84 (m, 2H), 2.02–1.91 (m, 2H), 1.86–1.81 (m, 2H), 1.73–1.71 (m, 2H), 1.50–1.45 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.5, 158.1, 157.9, 146.7 (dd, J_{CF} = 244.6, 12.0 Hz), 143.7 (dd, J_{CF} = 248.5, 15.5 Hz), 141.4, 135.2, 132.6 (d, J_{CF} = 6.4 Hz), 130.8 (2C), 130.6 (2C), 129.3 (d, J_{CF} = 3.1 Hz), 128.8, 119.9 (d, J_{CF} = 9.4 Hz), 118.1 (dd, J_{CF} = 6.5, 4.5 Hz), 115.7 (d, J_{CF} = 17.3 Hz), 113.3 (2C), 113.1 (2C), 107.2, 55.1, 52.0 (2C), 51.0, 44.0, 30.8, 30.0, 24.1, 22.4; HRMS (EI): *m*/z [M⁺] calcd. for C₃₁H₃₁N₃O₃F₂: 531.2333; found: 531.2329.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-3-(4-methoxyphenyl)-2-methylpropanamide (3i). Brown oil; 47.6 mg, 43% yield (38.8 mg, 35% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.53 (s, 1H),

35% yield); 'H NMR (400 MHz, CDCl₃, ppm): δ 9.53 (s, 1H), 8.14–8.10 (m, 1H), 7.80 (d, J = 1.6 Hz, 1H), 7.74 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 1H), 7.17 (q, J = 9.6 Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 6.52 (t, J = 2.0 Hz, 1H), 3.76 (s, 3H), 2.90 (dd, $J_1 = 13.6$ Hz, $J_2 = 7.2$ Hz, 1H), 2.61 (dd, $J_1 = 13.6$ Hz, $J_2 = 7.2$ Hz, 1H), 2.61 (dd, $J_1 = 13.6$ Hz, $J_2 = 7.2$ Hz, 1H), 2.61 (dd, $J_1 = 13.6$ Hz, $J_2 = 7.2$ Hz, 1H), 2.61 (dd, $J_1 = 13.6$ Hz, $J_2 = 7.2$ Hz, 1H), 2.61 (dd, $J_1 = 13.6$ Hz, $J_2 = 7.2$ Hz, 1H), 2.66 (dd, $J_{CF} = 245.1$, 12.2 Hz), 143.7 (dd, $J_{CF} = 248.9$, 15.6 Hz), 141.6, 133.0 (d, $J_{CF} = 6.6$ Hz), 131.2, 129.8 (2C), 129.5 (d, $J_{CF} = 3.2$ Hz), 119.9 (d, $J_{CF} = 10.1$ Hz), 117.9 (dd, $J_{CF} = 6.6$, 4.8 Hz), 115.8 (d, $J_{CF} = 17.4$ Hz), 113.8 (2C), 107.4, 55.2, 45.1, 39.4, 17.1; HRMS (EI): m/z [M⁺] calcd. for C₂₀H₁₉N₃O₂F₂: 371.1445; found: 371.1444.

N-(3,4-*D*ifluoro-2-(*1H*-*pyrazol*-1-*y*)*phenyl*)-2-(4-*methoxybenzyl*)-3-(4-*methoxyphenyl*)*propanamide* (**3***i*^{*}). Brown oil; 45.6 mg, 32% yield (34.5 mg, 24%); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.22 (s, 1H), 7.96–7.92 (m, 1H), 7.68 (d, *J* = 1.6 Hz, 1H), 7.59 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.4 Hz, 1H), 7.12 (q, *J* = 9.2 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 4H), 6.70 (d, *J* = 8.8 Hz, 4H), 6.45 (t, *J* = 2.0 Hz, 1H), 3.75 (s, 6H), 2.90 (dd, *J*₁ = 13.6 Hz, *J*₂ = 9.2 Hz, 2H), 2.73 (dd, *J*₁ = 13.6 Hz, *J*₂ = 5.6 Hz, 2H), 2.60–2.54 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 172.1, 157.0 (2C), 145.9 (dd, *J*_{CF} = 245.0, 12.0 Hz), 142.6 (dd, *J*_{CF} = 249.0, 15.3 Hz), 140.4, 131.7 (d, *J*_{CF} = 6.7 Hz), 130.0 (2C), 128.6 (4C), 128.0 (d, *J*_{CF} = 3.1 Hz), 118.9 (d, *J*_{CF} = 9.7 Hz), 117.2 (dd, *J*_{CF} = 6.7, 4.2Hz), 114.6 (d, *J*_{CF} = 17.3 Hz), 112.8 (4C), 106.2, 54.1 (2C), 53.0, 36.9 (2C); HRMS (EI): *m*/*z* [M⁺] calcd. for C₂₇H₂₅N₃O₃F₂: 477.1864; found: 477.1866.

N-(3, 4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)p*entanamide (3j). Yellow oil; 77.1 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.39 (s, 1H), 8.05–8.01 (m, 1H), 7.79 (d, *J* = 1.6 Hz, 1H), 7.71 (t, *J* = 2.8 Hz, 1H), 7.16 (q, *J* = 9.2 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 8.0 Hz, 2H), 6.51 (s, 1H), 3.75 (s, 3H), 2.84 (dd, *J*₁ = 13.6 Hz, *J*₂ = 8.8 Hz, 1H), 2.66 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.40–2.33 (m, 1H), 1.67–1.59 (m, 1H), 1.49–1.40 (m, 1H), 1.29–1.16 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.9, 158.0, 147.0 (dd, $J_{CF} = 245.0$, 11.9 Hz), 143.8 (dd, $J_{CF} = 248.9$, 15.4 Hz), 141.6, 133.0 (d, $J_{CF} = 6.3$ Hz), 131.3, 129.6 (2C), 129.3 (d, $J_{CF} = 3.2$ Hz), 120.1 (d, $J_{CF} = 10.2$ Hz), 118.3 (dd, $J_{CF} = 6.5$, 4.6 Hz), 115.8 (d, $J_{CF} = 17.4$ Hz), 113.8 (2C), 107.4, 55.1, 51.4, 38.3, 34.7, 20.6, 14.0; HRMS (EI): m/z [M⁺] calcd. for C₂₂H₂₃N₃O₂F₂: 399.1758; found: 399.1759.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)h-exanamide (**3k**). Yellow oil; 93.8 mg, 76% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.40 (s, 1H), 8.05–8.01 (m, 1H), 7.78 (d, *J* = 1.2 Hz, 1H), 7.70 (dd, *J*₁ = 3.2 Hz, *J*₂ = 2.8 Hz, 1H), 7.16 (q, *J* = 9.2 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.51 (t, *J* = 2.0 Hz, 1H), 3.75 (s, 3H), 2.84 (dd, *J*₁ = 14.0 Hz, *J*₂ = 9.2 Hz, 1H), 2.67 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.38–2.31 (m, 1H), 1.69–1.60 (m, 1H), 1.52–1.43 (m, 1H), 1.26–1.21 (m, 2H), 1.19–1.13 (m, 2H), 0.81 (t, *J* = 6.8 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.9, 157.9, 147.0 (dd, *J*_{CF} = 244.9, 11.8 Hz), 143.8 (dd, *J*_{CF} = 249.1, 15.5 Hz), 120.1 (d, *J*_{CF} = 10.4 Hz), 118.3 (dd, *J*_{CF} = 6.6, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.3 Hz), 113.8 (2C), 107.4, 55.2, 51.7, 38.3, 32.4, 29.5, 22.6, 14.0; HRMS (EI): *m*/z [M⁺] calcd. for C₂₃H₂₅N₃O₂F₂: 413.1915; found: 413.1913.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxybenzyl)h ptanamide* (3*I*). Yellow oil; 89.1 mg, 70% yield (67.9 mg, 53%); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.39 (s, 1H), 8.04–8.00 (m, 1H), 7.79 (d, *J* = 2.0 Hz, 1H), 7.70 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.4 Hz, 1H), 7.16 (q, *J* = 9.2 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 6.51 (t, *J* = 2.4 Hz, 1H), 3.75 (s, 3H), 2.84 (dd, *J*₁ = 14.0 Hz, *J*₂ = 9.2 Hz, 1H), 2.66 (dd, *J*₁ = 13.6 Hz, *J*₂ = 5.6 Hz, 1H), 2.38–2.31 (m, 1H), 1.69–1.60 (m, 1H), 1.47–1.43 (m, 1H), 1.19–1.17 (m, 6H), 0.88–0.81 (m, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.0, 157.9, 147.0 (dd, *J*_{CF} = 245.0, 11.8 Hz), 143.7 (dd, *J*_{CF} = 249.0, 15.5 Hz), 141.6, 132.9 (d, *J*_{CF} = 6.4 Hz), 131.3, 129.6 (2C), 129.3 (d, *J*_{CF} = 3.2 Hz), 120.1 (d, *J*_{CF} = 9.6 Hz), 118.4 (dd, *J*_{CF} = 6.6, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.4 Hz), 113.7 (2C), 107.4, 55.1, 51.7, 38.3, 32.6, 31.8, 27.1, 22.5, 14.0; HRMS (EI): *m*/*z* [M⁺] calcd. for C₂₄H₂₇N₃O₂F₂: 427.2071; found: 427.2072.

2-Benzyl-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)-3-(4-methoxyphenyl)propanamide (**3m**). Brown oil; 69.6 mg, 49% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.24 (s, 1H), 7.98–7.95 (m, 1H), 7.68 (d, J = 1.2 Hz, 1H), 7.58 (dd, J₁ = 3.6 Hz, J₂ = 2.4 Hz, 1H), 7.18 (q, J = 6.8 Hz, 2H), 7.14–7.12 (m, 1H), 7.12–7.09 (m, 3H), 6.99 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.45 (t, J = 2.0 Hz, 1H), 3.75 (s, 3H), 2.98 (dd, J₁ = 13.2 Hz, J₂ = 8.8 Hz, 1H), 2.92 (dd, J₁ = 14.0 Hz, J₂ = 9.6 Hz, 1H), 2.80 (dd, J₁ = 13.6 Hz, J₂ = 5.6 Hz, 1H), 2.75 (dd, J₁ = 14.0 Hz, J₂ = 6.0 Hz, 1H), 2.65–2.59 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.0, 158.0, 147.0 (dd, J_{CF} = 245.0, 12.2 Hz), 143.6 (dd, J_{CF} = 249.0, 15.6 Hz), 141.4, 139.0, 132.8 (d, J_{CF} = 6.4 Hz), 130.9, 129.7 (2C), 129.0 (d, J_{CF} = 3.3 Hz), 128.7 (2C), 128.5 (2C), 126.4, 119.9 (d, J_{CF} = 10.2 Hz), 118.2 (dd, J_{CF} = 6.5, 4.7 Hz), 115.7 (d, J_{CF} = 17.3 Hz), 113.8 (2C), 107.3, 55.1, 53.8, 38.7, 38.0; HRMS (EI): *m*/z [M⁺] calcd. for C₂₆H₂₃N₃O₂F₂: 447.1758; found: 447.1759.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-3-(4-methoxyphenyl)-2-phenylpropanamide (3*n*). Yellow oil; 49.2 mg, 38% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.49 (s, 1H), 8.11–8.07 (m, 1H), 7.63 (t, *J* = 3.2 Hz, 1H), 7.60 (d, *J* = 1.6 Hz, 1H), 7.29–7.27 (m, 1H), 7.25–7.23 (m, 2H), 7.19 (dd, *J*₁ = 7.6 Hz, *J*₂ = 2.0 Hz, 2H), 7.15 (q, *J* = 10.0 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.42 (t, *J* = 2.0 Hz, 1H), 3.74 (s, 3H), 3.63 (t, *J* = 7.2 Hz, 1H), 3.48 (dd, *J*₁ = 14.0 Hz, *J*₂ = 7.6 Hz, 1H), 2.97 (dd, *J*₁ = 13.6 Hz, *J*₂ = 7.2 Hz, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 171.6, 158.0, 146.9 (dd, *J*_{CF} = 245.3, 12.0 Hz), 131.2, 129.9 (2C), 129.6 (d, *J*_{CF} = 3.3 Hz), 128.8 (dz), 128.2 (2C), 127.5, 119.9 (d, *J*_{CF} = 9.7 Hz), 117.9 (dd, *J*_{CF} = 6.6, 4.4 Hz), 115.8 (d, *J*_{CF} = 17.3 Hz), 113.7 (2C), 107.2, 56.9, 55.2, 38.1; HRMS (EI): *m*/z [M⁺] calcd. for C₂₅H₂₁N₃O₂F₂: 433.1602; found: 433.1604.

*N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-3-(4-methoxyphenyl)-*2-(*p-tolyl)propanamide* (**30**). Brown oil, 61.3 mg, 43% yield (45.8 mg, 32% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.43 (s, 1H), 8.12–8.07 (m, 1H), 7.63 (t, *J* = 2.8 Hz, 1H), 7.59 (d, *J* = 1.6 Hz, 1H),

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

58

59

60

7.15 (t, J = 9.2 Hz, 1H), 7.13–7.10 (m, 1H), 7.08 (s, 3H), 6.96 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.43 (t, J = 2.0 Hz, 1H), 3.74 (s, 3H), 3.60 (t, J = 7.6 Hz, 1H), 3.47 (dd, $J_1 = 14.0$ Hz, $J_2 = 7.6$ Hz, 1H), 2.95 (dd, $J_1 = 14.0$ Hz, $J_2 = 7.6$ Hz, 1H), 2.32 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 171.9, 158.0, 146.9 (dd, $J_{CF} = 244.8$, 11.6 Hz), 143.8 (dd, $J_{CF} = 248.8$, 15.3 Hz), 141.5, 137.1, 135.6, 132.8 (d, $J_{CF} = 6.3$ Hz), 131.4, 129.9 (2C), 129.7 (d, $J_{CF} = 3.2$ Hz), 129.5 (2C), 128.0 (2C), 119.9 (d, $J_{CF} = 9.8$ Hz), 117.8 (dd, $J_{CF} = 5.9$, 5.3 Hz), 115.8 (d, $J_{CF} = 17.3$ Hz), 113.7 (2C), 107.1, 56.4, 55.2, 38.0, 21.1; HRMS (EI): m/z [M⁺] calcd. for C₂₆H₂₃N₃O₂F₂: 447.1758; found: 447.1759.

2-(3-Chlorophenyl)-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)-3-(4-methoxyphenyl)propanamide (**3p**). Yellow oil; 48.7 mg, 35% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.57 (s, 1H), 8.07–8.04 (m, 1H), 7.67–7.65 (m, 2H), 7.21 (s, 1H), 7.21–7.17 (m, 2H), 7.14 (t, *J* = 8.4 Hz, 1H), 7.11–7.08 (m, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.45 (t, *J* = 2.4 Hz, 1H), 3.74 (s, 3H), 3.61 (t, *J* = 7.6 Hz, 1H), 3.46 (dd, *J*₁ = 13.6 Hz, *J*₂ = 7.6 Hz, 1H), 2.95 (dd, *J*₁ = 13.6 Hz, *J*₂ = 7.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 170.9, 158.1, 147.1 (dd, *J*_{CF} = 245.5, 12.0 Hz), 143.7 (dd, *J*_{CF} = 249.2, 15.5 Hz), 141.5, 140.7, 134.6, 132.8 (d, *J*_{CF} = 6.6 Hz), 130.7, 130.0, 129.8 (2C), 129.3 (d, *J*_{CF} = 6.3, 4.8 Hz), 115.8 (d, *J*_{CF} = 17.5 Hz), 113.8 (2C), 107.4, 56.5, 55.2, 38.0; HRMS (EI): *m*/z [M⁺] calcd. for C₂₅H₂₀N₃O₂F₂Cl: 467.1212; found: 467.1214.

20 N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(6-methoxynaphthal-21 en-2-yl)-3-(4-methoxyphenyl)propanamide (3q). Yellow solid; 68.1 22 mg, 44% yield; m.p. 82.8-84.2 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.41 (s, 1H), 8.15–8.11 (m, 1H), 7.66 (d, J = 3.6 Hz, 1H), 7.64 (d, J 23 = 2.8 Hz, 1H), 7.54–7.52 (m, 2H), 7.28 (dd, J_1 = 8.4 Hz, J_2 = 1.6 Hz, 24 1H), 7.18–7.14 (m, 2H), 7.11 (d, J = 2.0 Hz, 1H), 7.08 (d, J = 1.6 Hz, 25 1H), 6.98 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 6.20 (t, J = 2.4 26 Hz, 1H), 3.93 (s, 3H), 3.79 (t, J = 8.4 Hz, 1H), 3.93 (s, 3H), 3.60 (dd, 27 $J_1 = 14.0$ Hz, $J_2 = 6.8$ Hz, 1H), 3.08 (dd, $J_1 = 14.0$ Hz, $J_2 = 8.0$ Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 171.9, 157.9, 157.8, 28 146.9 (dd, J_{CF} = 245.5, 12.3 Hz), 143.7 (dd, J_{CF} = 248.8, 15.2 Hz), 29 141.3, 134.0, 133.5, 132.6 (d, $J_{CF} = 6.2$ Hz), 131.3, 129.9 (2C), 129.7 30 (d, $J_{CF} = 3.2$ Hz), 129.4, 129.0, 127.6, 127.5, 126.4, 119.9 (d, $J_{CF} =$ 31 9.4 Hz), 119.1, 117.7 (dd, J_{CF} = 6.5, 4.5 Hz), 115.8 (d, J_{CF} = 17.4 Hz), 113.7 (2C), 107.0, 105.6, 56.7, 55.4, 55.1, 37.7; HRMS (EI): m/z [M⁺] 32 calcd. for C₃₀H₂₅N₃O₃F₂: 513.1864; found: 513.1859. 33

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxyphenyl)c-34 yclobutanecarboxamide (3r). Brown oil; 59.2 mg, 52% yield; ¹H 35 NMR (400 MHz, CDCl₃, ppm): δ 9.20 (s, 1H), 7.84 (d, J = 1.6 Hz, 36 1H), 7.80–7.75 (m, 1H), 7.66 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 1H), 7.05 (q, J = 9.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.8 Hz, 2H), 37 6.54 (t, J = 2.0 Hz, 1H), 3.91–3.85 (m, 1H), 3.70 (s, 3H), 3.44–3.38 38 (m, 1H), 2.54-2.48 (m, 1H), 2.47-2.40 (m, 1H), 2.33-2.28 (m, 1H), 39 2.20-2.15 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 171.1, 40 158.0, 146.6 (dd, J_{CF} = 244.6, 12.4 Hz), 143.6 (dd, J_{CF} = 248.4, 15.5 Hz), 141.5, 133.1 (d, $J_{CF} = 6.6$ Hz), 132.4, 129.3 (d, $J_{CF} = 3.2$ Hz), 41 128.2 (2C), 119.6 (d, J_{CF} = 10.8 Hz), 117.7 (dd, J_{CF} = 6.9, 4.7 Hz), 42 115.7 (d, $J_{CF} = 17.2$ Hz), 113.5 (2C), 107.3, 55.2, 47.6, 42.6, 24.9, 43 20.0; HRMS (EI): m/z [M⁺] calcd. for C₂₁H₁₉N₃O₂F₂: 383.1445; found: 44 383.1443

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxyphenyl)c-45 yclopentanecarboxamide (3s). Yellow solid; 65.2 mg, 55% yield 46 (54.9, 46% yield); m.p. 86.5-87.9 °C; ¹H NMR (400 MHz, CDCl₃, 47 ppm): δ 9.21 (s, 1H), 7.85–7.83 (m, 1H), 7.81 (d, J = 1.2 Hz, 1H), 48 7.64 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.8$ Hz, 1H), 7.05 (q, J = 9.6 Hz, 1H), 6.95 49 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 8.4 Hz, 2H), 6.53 (t, J = 2.0 Hz, 1H), 3.69 (s, 3H), 3.32 (dd, $J_1 = 15.6$ Hz, $J_2 = 8.4$ Hz, 1H), 2.92 (dd, $J_1 = 15.6$ Hz, $J_2 = 15.6$ Hz, 50 14.4 Hz, $J_2 = 8.0$ Hz, 1H), 2.19–2.13 (m, 1H), 2.10–2.05 (m, 2H), 51 2.01-1.91 (m, 2H), 1.75-1.67 (m, 1H); ¹³C{¹H} NMR (100 MHz, 52 CDCl₃, ppm): δ 172.8, 157.8, 146.6 (dd, J_{CF} = 244.5, 12.1 Hz), 143.5 53 (dd, $J_{CF} = 248.4$, 15.5 Hz), 141.4, 133.0 (d, $J_{CF} = 6.4$ Hz), 133.0, 129.4 (d, J_{CF} = 3.2 Hz), 128.6 (2C), 119.5 (d, J_{CF} = 9.8 Hz), 117.5 (dd, 54 $J_{\rm CF} = 6.6, 4.6$ Hz), 115.6 (d, $J_{\rm CF} = 17.3$ Hz), 113.4 (2C), 107.2, 55.1, 55 52.9, 49.0, 31.5, 28.3, 24.7; HRMS (EI): m/z [M⁺] calcd. for 56 C₂₂H₂₁N₃O₂F₂: 397.1602; found: 397.1599. 57

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-methoxyphenyl)c-yclohexanecarboxamide (*3t*). White solid, 62.8 mg, 51% yield; m.p.

137.1–138.6 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.98 (s, 1H), 8.00–7.97 (m, 1H), 7.72 (d, J = 1.2 Hz, 1H), 7.58 (dd, $J_1 = 3.6$ Hz, $J_2 = 2.8$ Hz, 1H), 7.10 (q, J = 9.2 Hz, 1H), 7.04 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.4 Hz, 2H), 6.46 (s, 1H), 3.72 (s, 3H), 2.87–2.82 (m, 1H), 2.61 (d, J = 3.2 Hz, 1H), 2.40–2.30 (m, 1H), 1.99–1.89 (m, 3H), 1.73–1.66 (m, 2H), 1.53 (dd, $J_1 = 8.4$ Hz, $J_2 = 4.0$ Hz, 1H), 1.39 (dd, $J_1 = 24.0$ Hz, $J_2 = 11.6$ Hz, 1H); ${}^{13}C{}^{11}$ NMR (100 MHz, CDCl₃, ppm): δ 173.0, 157.7, 146.7 (dd, $J_{CF} = 248.4$, 15.5 Hz), 143.7 (dd, $J_{CF} = 248.7$, 15.3 Hz), 141.5, 136.1, 132.8 (d, $J_{CF} = 6.3$ Hz), 129.5 (d, $J_{CF} = 3.2$ Hz), 128.3 (2C), 119.8 (d, $J_{CF} = 10.1$ Hz), 117.8 (dd, $J_{CF} = 6.6$, 4.7 Hz), 115.7 (d, $J_{CF} = 17.4$ Hz), 113.5 (2C), 107.2, 55.1, 49.0, 44.4, 28.9, 27.2, 25.7, 21.7; HRMS (EI): m/z [M⁺] calcd. for C₂₃H₂₃N₃O₂F₂: 411.1758; found: 411.1756.

N-(3,4-difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-3-(4-methoxyphenyl)propanamide (**3u**). Yellow oil, 43.6 mg, 41% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.62 (s, 1H), 8.19–8.14 (m, 1H), 7.82 (d, *J* = 1.6 Hz, 1H), 7.80 (dd, *J*₁ = 4.4 Hz, *J*₂ = 2.8 Hz, 1H), 7.18 (q, *J* = 9.6 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.54 (t, *J* = 2.4 Hz 1H), 3.77 (s, 3H), 2.91 (t, *J* = 7.6 Hz, 2H), 2.57 (t, *J* = 8.0 Hz 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 170.7, 158.1, 146.9 (dd, *J*_{CF} = 245.1, 12.0 Hz), 143.7 (dd, *J*_{CF} = 248.8, 15.5 Hz), 141.7, 133.2 (d, *J*_{CF} = 6.6 Hz), 132.3, 129.5 (d, *J*_{CF} = 3.2 Hz), 129.2 (2C), 119.8 (d, *J*_{CF} = 9.6 Hz), 117.8 (dd, *J*_{CF} = 6.1, 4.8 Hz), 115.9 (d, *J*_{CF} = 17.5 Hz), 114.0 (2C), 107.4, 55.3, 39.9, 30.4; HRMS (EI): *m*/z [M⁺] calcd. for C₁₉H₁₇N₃O₂F₂: 357.1289; found: 357.1287.

2-Benzyl-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)butanamide (4b). Yellow solid; 50.1 mg, 47% yield, m.p. 63.2–64.8 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.42 (s, 1H), 8.07–8.03 (m, 1H), 7.80 (d, J = 1.6 Hz, 1H), 7.70 (dd, J_1 = 4.0 Hz, J_2 = 2.8 Hz, 1H), 7.20–7.17 (m,, 2H), 7.15–7.12 (m, 2H), 7.09 (d, J = 6.8 Hz, 2H), 6.51 (t, J = 2.4 Hz, 1H), 2.92 (dd, J_1 = 13.6 Hz, J_2 = 8.8 Hz, 1H), 2.74 (dd, J_1 = 13.6 Hz, J_2 = 6.0 Hz, 1H), 2.37–2.30 (m, 1H), 1.72–1.64 (m, 1H), 1.59–1.52 (m, 1H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.7, 147.0 (dd, J_{CF} = 244.9, 12.0 Hz), 143.8 (dd, J_{CF} = 249.0, 15.0 Hz), 141.6, 139.3, 133.0 (d, J_{CF} = 6.4 Hz), 129.3 (d, J_{CF} = 3.2 Hz), 128.7 (2C), 128.4 (2C), 126.3, 120.1 (d, J_{CF} = 3.7 Hz), 118.3 (d, J_{CF} = 3.6 Hz), 115.9 (d, J_{CF} = 17.3 Hz), 107.5, 52.9, 38.8, 25.6, 11.7; HRMS (EI): *m*/*z* [M⁺] calcd. for C₂₀H₁₉N₃OF₂: 355.1496; found: 355.1497.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-methylbenzyl)butanamide (4c). Yellow oil; 82.8 mg, 75% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.42 (s, 1H), 8.08–8.03 (m, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.70 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.8$ Hz, 1H), 7.18 (q, J = 9.6 Hz, 1H), 6.70 (d, J = 1.2 Hz, 4H), 6.51 (t, J = 2.4 Hz, 1H), 2.87 (dd, $J_1 = 14.0$ Hz, $J_2 = 8.8$ Hz, 1H), 2.69 (dd, $J_1 = 13.6$ Hz, $J_2 = 6.4$ Hz, 1H), 2.35–2.31 (m, 1H), 2.27 (s, 3H), 1.71–1.63 (m, 1H), 1.58–1.51 (m, 1H), 0.84 (t, J = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.8, 147.0 (dd, $J_{CF} = 245.2$, 11.8 Hz), 143.8 (dd, $J_{CF} = 247.4$, 16.4 Hz), 141.6, 136.2, 135.6, 132.9 (d, $J_{CF} = 7.0$ Hz), 129.4, 129.1 (2C), 128.6 (2C), 120.1 (d, $J_{CF} = 10.2$ Hz), 118.3, 115.8 (d, $J_{CF} = 17.0$ Hz), 107.3, 53.0, 38.4, 25.6, 21.1, 11.7; HRMS (EI): m/z [M⁺] calcd. for C₂₁H₂₁N₃OF₂: 369.1653; found: 369.1652.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(4-(trifluoromethyl)-benzyl)butanamide* (4d). White solid; 86.5 mg, 68% yield; m.p. 80.4–81.8 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.50 (s, 1H), 8.03–8.00 (m, 1H), 7.75 (d, *J* = 2.0 Hz, 1H), 7.67 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.20–7.13 (m, 3H), 6.49 (t, *J* = 2.0 Hz, 1H), 2.95 (dd, *J*₁ = 14.0 Hz, *J*₂ = 9.2 Hz, 1H), 2.78 (dd, *J*₁ = 13.6 Hz, *J*₂ = 5.6 Hz, 1H), 2.37–2.29 (m, 1H), 1.78–1.68 (m, 1H), 1.61–1.55 (m, 1H), 0.89 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 172.0, 146.1 (dd, *J*_{CF} = 245.4, 11.9 Hz), 142.4, 142.6 (dd, *J*_{CF} = 249.3, 15.6 Hz), 140.4, 132.0 (d, *J*_{CF} = 3.7 Hz, 2C), 123.2 (q, *J*_{CF} = 270.2 Hz), 119.0 (d, *J*_{CF} = 9.6 Hz), 117.2 (dd, *J*_{CF} = 6.8, 4.7 Hz), 114.8 (d, *J*_{CF} = 17.2 Hz), 106.5, 51.8, 37.5, 25.0, 10.7; HRMS (EI): *m/z* [M⁺] calcd. for C₂₁H₁₈N₃OF₅: 423.1370; found: 423.1367.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-fluorobenzyl)butanamide (4e). Yellow oil; 77.0 mg, 69% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.43 (s, 1H), 8.04–8.00 (m, 1H), 7.76 (d, *J* = 1.6 Hz, 1H), 7.71 (dd, *J*₁ = 4.4 Hz, *J*₂ = 2.8 Hz, 1H), 7.16 (q, *J* = 9.6 Hz, 1H), 7.01 (dd, *J*₁ = 8.4 Hz, *J*₂ = 5.2 Hz, 2H), 6.82 (t, *J* = 8.8 Hz, 2H), 6.52 (t, *J* = 2.4 Hz, 1H), 2.85 (dd, *J*₁ = 13.6 Hz, *J*₂ = 9.2 Hz, 1H), 2.70 (dd, $\begin{array}{l} J_1 = 13.6 \; {\rm Hz}, J_2 = 5.6 \; {\rm Hz}, 1{\rm H}), 2.31 - 2.23 \; ({\rm m}, 1{\rm H}), 1.74 - 1.66 \; ({\rm m}, 1{\rm H}), \\ 1.59 - 1.52 \; ({\rm m}, 1{\rm H}), 0.86 \; ({\rm t}, J = 7.6 \; {\rm Hz}, 3{\rm H}); {}^{13}{\rm C} \{ {}^{1}{\rm H} \} \; {\rm NMR} \; (100 \; {\rm MHz}, \\ {\rm CDCl}_3, \; {\rm ppm}): \; \delta \; 173.5, \; 161.4 \; ({\rm d}, J_{\rm CF} = 242.6 \; {\rm Hz}), \; 147.0 \; ({\rm dd}, J_{\rm CF} = 245.1, \; 11.8 \; {\rm Hz}), 143.7 \; ({\rm dd}, J_{\rm CF} = 249.1, \; 15.5 \; {\rm Hz}), \; 141.6, \; 134.9 \; ({\rm d}, J_{\rm CF} = 3.1 \; {\rm Hz}), \; 133.0 \; ({\rm d}, J_{\rm CF} = 6.5 \; {\rm Hz}), \; 130.0 \; ({\rm d}, J_{\rm CF} = 7.8 \; {\rm Hz}, \; 2{\rm C}), \; 129.1 \; ({\rm d}, J_{\rm CF} = 3.3 \; {\rm Hz}), \; 120.1 \; ({\rm d}, J_{\rm CF} = 10.5 \; {\rm Hz}), \; 118.3 \; ({\rm dd}, J_{\rm CF} = 6.8, \; 4.8 \; {\rm Hz}), \; 115.8 \; ({\rm d}, J_{\rm CF} = 17.5 \; {\rm Hz}), \; 115.2 \; ({\rm d}, J_{\rm CF} = 21.0 \; {\rm Hz}, \; 2{\rm C}), \; 107.4 \; \\ 53.3, \; 38.0, \; 25.9, \; 11.8; \; {\rm HRMS} \; ({\rm EI}): \; m/z \; [{\rm M}^+] \; {\rm calcd.} \; {\rm for} \; {\rm C}_{20}{\rm H}_{18}{\rm N}_{3}{\rm OF}_{3} : \; 373.1402; \; {\rm found:} \; 373.1401. \end{split}$

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

2-(4-Chlorobenzyl)-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)butanamide (4f). Yellow solid, 78.2 mg, 67% yield; m.p. 95.8–97.6 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.41 (s, 1H), 8.04–8.00 (m, 1H), 7.75 (d, *J* = 1.6 Hz, 1H), 7.70 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.16 (q, *J* = 9.2 Hz, 1H), 7.09 (d, *J* = 8.4 Hz 2H), 6.97 (d, *J* = 8.4 Hz 2H), 6.54 (t, *J* = 2.4 Hz, 1H), 2.84 (dd, *J*₁ = 13.6 Hz, *J*₂ = 9.2 Hz, 1H), 2.70 (dd, *J*₁ = 13.6 Hz, *J*₂ = 5.2 Hz, 1H), 2.31–2.23 (m, 1H), 1.75–1.68 (m, 1H), 1.59–1.52 (m, 1H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.3, 147.1 (dd, *J*_{CF} = 245.2, 12.1 Hz), 143.7 (dd, *J*_{CF} = 249.0, 15.5 Hz), 141.5, 137.7, 133.0 (d, *J*_{CF} = 6.5 Hz), 132.0, 130.0 (2C), 129.1 (d, *J*_{CF} = 3.3 Hz), 128.5 (2C), 120.1 (d, *J*_{CF} = 9.9 Hz), 118.3 (dd, *J*_{CF} = 6.5, 4.5 Hz), 115.8 (d, *J*_{CF} = 17.4 Hz), 107.5, 53.1, 38.2, 25.8, 11.8; HRMS (EI): *m*/z [M⁺] calcd. for C₂₀H₁₈N₃OF₂Cl: 389.1106; found: 389.1108.

Ethyl 4-(2-((3,4-difluoro-2-(1*H*-pyrazol-1-yl)phenyl)carbamoyl)butyl)benzoate (4g). Yellow oil; 68.9 mg, 54% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.46 (s, 1H), 8.02–7.98 (m, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 1.6 Hz 1H), 7.67 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 1H), 7.16 (q, J = 9.6 Hz, 1H), 7.12 (d, J = 8.0 Hz 2H), 6.48 (t, J = 2.0 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 2.94 (dd, $J_1 = 13.6$ Hz, $J_2 = 9.6$ Hz, 1H), 2.78 (dd, $J_1 = 13.6$ Hz, $J_2 = 5.6$ Hz, 1H), 2.37–2.29 (m, 1H), 1.76–1.69 (m, 1H), 1.60–1.53 (m, 1H), 1.39 (t, J = 7.2 Hz, 3H); 0.87 (t, J = 7.2 Hz, 3H); 1³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 172.2, 165.5, 146.0 (dd, $J_{CF} = 245.3, 11.9$ Hz), 143.6, 142.6 (dd, $J_{CF} = 249.1, 15.7$ Hz), 140.5, 131.9 (d, $J_{CF} = 6.6$ Hz), 128.6 (2C), 127.9 (d, $J_{CF} = 3.3$ Hz), 127.6 (2C), 127.5, 119.0 (d, $J_{CF} = 10.5$ Hz), 117.3 (dd, $J_{CF} = 6.6, 4.5$ Hz), 114.7 (d, $J_{CF} = 17.5$ Hz), 106.4, 59.8, 51.8, 37.8, 24.9, 13.4, 10.7; HRMS (EI): *m/z* [M⁺] calcd. for C₂₃H₂₃N₃O₃F₂: 427.1707; found: 427.1708.

2-(4-Acetylbenzyl)-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)butanamide (4h). Yellow oil; 82.3 mg, 69% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.53 (s, 1H), 8.03–7.99 (m, 1H), 7.76 (d, J = 2.0 Hz, 2H), 7.74 (s, 1H), 7.68 (dd, $J_1 = 4.4$ Hz, $J_2 = 2.8$ Hz, 1H), 7.19–7.12 (m, 3H), 6.48 (t, J = 2.4 Hz, 1H), 2.96 (dd, $J_1 = 13.6$ Hz, $J_2 = 9.2$ Hz, 1H), 2.79 (dd, $J_1 = 13.2$ Hz, $J_2 = 5.6$ Hz, 1H), 2.54 (s, 3H), 2.38–2.31 (m, 1H), 1.76–1.68 (m, 1H), 1.60–1.53 (m, 1H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 197.7, 173.1, 148.3 (dd, $J_{CF} = 245.3$, 12.0 Hz), 145.1, 143.6 (dd, $J_{CF} = 249.3$, 15.7 Hz), 141.5, 135.3, 132.9 (d, $J_{CF} = 6.7$ Hz), 129.0 (d, $J_{CF} = 3.4$ Hz), 128.9 (2C), 128.5 (2C), 120.0 (d, $J_{CF} = 10.4$ Hz), 118.3 (dd, $J_{CF} = 6.6$, 4.6 Hz), 115.8 (d, $J_{CF} = 17.4$ Hz), 107.4, 52.7, 38.7, 26.6, 25.9, 11.7; HRMS (EI): m/z [M⁺] calcd. for C₂₂H₂₁N₃O₂F₂: 397.1602; found: 397.1601.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(3-methoxybenzyl)butanamide* (*4i*). Yellow solid, 67.3 mg, 58% yield; m.p. 78.8–80.5 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.42 (s, 1H), 8.09–8.05 (m, 1H), 7.79 (d, *J* = 1.6 Hz, 1H), 7.71 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.4 Hz, 1H), 7.16 (q, *J* = 9.2 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.69–6.65 (m, 3H), 6.50 (t, *J* = 2.4 Hz, 1H), 3.73 (s, 3H), 2.89 (dd, *J*₁ = 13.2 Hz, *J*₂ = 8.4 Hz, 1H), 2.70 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.35–2.30 (m, 1H), 1.71–1.62 (m, 1H), 1.60–1.51 (m, 1H), 0.83 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.7, 159.5, 147.0 (dd, *J*_{CF} = 245.0, 12.0 Hz), 143.8 (dd, *J*_{CF} = 249.1, 15.5 Hz), 141.6, 140.9, 133.0 (d, *J*_{CF} = 6.4 Hz), 129.4, 129.3, 121.1, 120.1 (d, *J*_{CF} = 9.2 Hz), 118.2 (dd, *J*_{CF} = 6.6, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.5 Hz), 114.4, 111.7, 107.4, 55.1, 52.8, 38.9, 25.6, 11.7; HRMS (EI): *m/z* [M⁺] calcd. for C₂₁H₂₁N₃O₂F₂: 385.1602; found: 385.1601.

N-(3, 4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(3-methylbenzyl)butanamide (4j)*. Yellow oil; 74.1 mg, 67% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.41 (s, 1H), 8.08–8.04 (m, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.71 (dd, J_1 = 4.0 Hz, J_2 = 2.4 Hz, 1H), 7.17 (q, J = 9.2 Hz, 1H), 6.08 (t, J = 7.2 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.91 (s, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.51 (t, J = 2.4 Hz, 1H), 2.88 (dd, J_1 = 13.6 Hz, J_2 =

8.8 Hz, 1H), 2.69 (dd, $J_1 = 13.6$ Hz, $J_2 = 6.4$ Hz, 1H), 2.33–2.30 (m, 1H), 2.27 (s, 3H), 1.71–1.63 (m, 1H), 1.58–1.51 (m, 1H), 0.83 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.8, 147.0 (dd, $J_{CF} = 245.0$, 11.8 Hz), 143.8 (dd, $J_{CF} = 249.0$, 15.5 Hz), 141.5, 139.2, 137.9, 133.0 (d, $J_{CF} = 6.4$ Hz), 129.6, 129.4 (d, $J_{CF} = 3.2$ Hz), 128.3, 127.1, 125.7, 120.1 (d, $J_{CF} = 10.2$ Hz), 118.2 (dd, $J_{CF} = 6.5$, 4.4 Hz), 115.9 (d, $J_{CF} = 17.5$ Hz), 107.4, 52.9, 38.7, 25.6, 21.4, 11.7; HRMS (EI): m/z [M⁺] calcd. for C₂₁H₂₁N₃OF₂: 369.1653; found: 369.1652

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(3-(trifluoromethyl)benzyl)butanamide (4k). White solid; 79.8 mg, 63% yield; m.p. 83.6– 84.9 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.50 (s, 1H), 8.04–8.00 (m, 1H), 7.75 (d, *J* = 2.0 Hz, 1H), 7.70 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.39–7.37 (m, 1H), 7.35 (s, 1H), 7.30–7.27 (m, 2H), 7.17 (q, *J* = 9.6 Hz, 1H), 6.49 (t, *J* = 2.4 Hz, 1H), 2.97 (dd, *J*₁ = 13.6 Hz, *J*₂ = 9.6 Hz, 1H), 2.78 (dd, *J*₁ = 13.6 Hz, *J*₂ = 5.6 Hz, 1H), 2.35–2.27 (m, 1H), 1.76–1.68 (m, 1H), 1.60–1.53 (m, 1H), 0.86 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.1, 147.1 (dd, *J*_{CF} = 245.5, 12.2 Hz), 143.6 (dd, *J*_{CF} = 249.2, 15.7 Hz), 141.5, 140.3, 133.0 (d, *J*_{CF} = 6.7 Hz), 132.2, 130.6 (d, *J*_{CF} = 31.7 Hz), 129.0 (d, *J*_{CF} = 3.3 Hz), 128.8, 125.4 (q, *J*_{CF} = 3.8 Hz), 124.1 (q, *J*_{CF} = 266.8 Hz), 123.3 (q, *J*_{CF} = 3.7 Hz), 120.1 (d, *J*_{CF} = 10.1 Hz), 118.3 (dd, *J*_{CF} = 6.7, 4.5 Hz), 115.8 (d, *J*_{CF} = 17.4 Hz), 107.5, 53.0, 38.6, 25.9, 11.7; HRMS (EI): *m*/z [M⁺] calcd. for C₂₁H₁₈N₃OF₅: 423.1370; found: 423.1372.

Methyl 3-(2-((3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)carbamoyl)butyl)benzoate (41). Yellow solid; 76.5 mg, 62% yield; m.p. 89.6–91.2 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.47 (s, 1H), 8.05–8.00 (m, 1H), 7.80–7.78 (m, 2H), 7.75 (d, J = 2.0 Hz 1H), 7.68 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 1H), 7.27 (d, J = 8.4 Hz 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.15 (q, J = 9.2 Hz, 1H), 6.47 (t, J = 2.4 Hz, 1H), 3.90 (s, 3H), 2.94 (dd, $J_1 = 13.6$ Hz, $J_2 = 9.2$ Hz, 1H), 1.74–1.66 (m, 1H), 1.58–1.51 (m, 1H), 0.84 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.3, 167.0, 147.0 (dd, $J_{CF} = 245.1$, 11.9 Hz), 144.1 (dd, $J_{CF} = 249.0$, 15.5 Hz), 141.5, 139.7, 133.5, 133.0 (d, $J_{CF} = 6.6$ Hz), 130.2, 129.8, 129.1 (d, $J_{CF} = 3.2$ Hz), 115.8 (d, $J_{CF} = 17.4$ Hz), 107.4, 52.9, 52.1, 38.6, 25.7, 11.7; HRMS (EI): m/z [M⁺] calcd. for C₂₂H₂₁N₃O₃F₂: 413.1551; found: 413.1549.

2-(3-Acetylbenzyl)-N-(3,4-difluoro-2-(1H-pyrazol-1-yl)phenyl)butanamide (4m). White solid; 71.6 mg, 60% yield; m.p. 92.3–94.0 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.51 (s, 1H), 8.06–8.02 (m, 1H), 7.76 (d, *J* = 2.0 Hz, 1H), 7.72–7.69 (m, 3H), 7.37–7.26 (m, 2H), 7.15 (q, *J* = 9.2 Hz, 1H), 6.48 (t, *J* = 2.0 Hz, 1H), 2.97 (dd, *J*₁ = 13.6 Hz, *J*₂ = 9.2 Hz, 1H), 2.79 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.0 Hz, 1H), 2.54 (s, 3H), 2.38–2.30 (m, 1H), 1.74–1.66 (m, 1H), 1.59–1.52 (m, 1H), 0.85 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 198.1, 173.3, 147.0 (dd, *J*_{CF} = 245.3, 12.0 Hz), 143.6 (dd, *J*_{CF} = 6.7 Hz), 129.1 (d, *J*_{CF} = 3.3 Hz), 128.6, 128.4, 126.6, 120.0 (d, *J*_{CF} = 9.0 Hz), 118.2 (dd, *J*_{CF} = 6.6, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.4 Hz), 107.4, 52.9, 38.6, 26.7, 25.8, 11.7; HRMS (EI): *m*/z [M⁺] calcd. for C₂₂H₂₁N₃O₂F₂: 397.1602; found: 397.1600.

N-(3,4-Difluoro-2-(1*H*-pyrazol-1-yl)phenyl)-2-(2-methoxybenzyl)butanamide (*4n*). White solid; 77.7 mg, 67% yield; m.p. 114.9–115.5 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.28 (s, 1H), 8.08–8.04 (m, 1H), 7.79 (d, *J* = 1.6 Hz, 1H), 7.70 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.19–7.11 (m, 2H), 7.01 (dd, *J*₁ = 7.6 Hz, *J*₂ = 2.0 Hz, 1H), 6.79–6.75 (m, 2H), 6.51 (t, *J* = 2.4 Hz, 1H), 3.80 (s, 3H), 2.81 (dd, *J*₁ = 8.0 Hz, *J*₂ = 4.4 Hz, 2H), 2.46–2.39 (m, 1H), 1.71–1.63 (m, 1H), 1.54–1.48 (m, 1H), 0.82 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.3, 157.3, 146.8 (dd, *J*_{CF} = 244.8, 11.9 Hz), 143.9 (dd, *J*_{CF} = 248.8, 15.2 Hz), 127.7, 127.5, 120.3, 120.0 (d, *J*_{CF} = 9.2 Hz), 118.1 (dd, *J*_{CF} = 6.3, 4.8 Hz), 115.9 (d, *J*_{CF} = 17.1 Hz), 110.2, 107.4, 55.2, 50.5, 33.9, 25.5, 11.8; HRMS (EI): *m*/*z* [M⁺] calcd. for C₂₁H₂₁N₃O₂F₂: 385.1602; found: 385.1600.

N-(3,4-Difluoro-2-(*1H-pyrazol-1-yl*)*phenyl*)-2-(2-fluorobenzyl)*butanamide* (40). Yellow solid; 71.7 mg, 64% yield; m.p. 59.6–61.4 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.52 (s, 1H), 8.06–8.02 (m, 1H), 7.81 (d, *J* = 1.6 Hz, 1H), 7.71 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.17 (t, *J* = 9.6 Hz, 1H), 7.09 (q, *J* = 7.6 Hz, 2H), 6.96–6.90 (m, 2H), 6.51

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

(t, J = 2.4 Hz, 1H), 2.86 (d, J = 7.6 Hz, 2H), 2.44-2.36 (m, 1H),1.74-1.66 (m, 1H), 1.58-1.51 (m, 1H), 0.84 (t, J = 7.2 Hz, 3H); 1 ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.5, 161 (d, J_{CF} = 243.5 2 Hz), 147.0 (dd, $J_{CF} = 244.8$, 12.0 Hz), 143.7 (dd, $J_{CF} = 248.9$, 15.5 3 Hz), 141.6, 132.9 (d, J_{CF} = 6.6 Hz), 131.3 (d, J_{CF} = 4.8 Hz), 129.3 (d, 4 $J_{\rm CF}$ = 3.2 Hz), 128.2 (d, $J_{\rm CF}$ = 8.1 Hz), 126.1 (d, $J_{\rm CF}$ = 15.6 Hz), 123.9 5 $(d, J_{CF} = 3.5 \text{ Hz}), 120.1 (d, J_{CF} = 9.1 \text{ Hz}), 118.2 (dd, J_{CF} = 6.6, 4.6 \text{ Hz}),$ 115.8 (d, $J_{CF} = 17.4$ Hz), 115.2 (d, $J_{CF} = 21.8$ Hz), 107.4, 51.1, 32.4, 6 25.6, 11.7; HRMS (EI): *m/z* [M⁺] calcd. for C₂₀H₁₈N₃OF₃: 373.1402; 7 found: 373.1401. 8

Methyl 2-(2-((3,4-difluoro-2-(1*H*-pyrazol-1-yl)phenyl)carbamoyl)butyl)benzoate (4**p**). Yellow solid; 40.9 mg, 33% yield; m.p. 82.0– 84.2 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.28 (s, 1H), 8.07–8.03 (m, 1H), 7.85 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 1H), 7.73 (d, J = 2.0 Hz, 1H), 7.66 (dd, J_1 = 4.0 Hz, J_2 = 2.8 Hz, 1H), 7.31–7.27 (m, 1H), 7.20 (d, J = 6.0 Hz, 1H), 7.16 (d, J = 5.6 Hz, 1H), 7.13 (t, J = 4.4 Hz, 1H), 6.47 (t, J = 2.0 Hz, 1H), 3.89 (s, 3H), 3.21 (dd, J_1 = 12.8 Hz, J_2 = 6.0 Hz, 1H), 3.09 (dd, J_1 = 12.8 Hz, J_2 = 8.8 Hz, 1H), 2.50–2.53 (m, 1H), 1.77–1.69 (m, 1H), 1.59–1.53 (m, 1H), 0.83 (t, J = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.0, 167.6, 146.9 (dd, J_{CF} = 244.8, 11.6 Hz), 143.9 (dd, J_{CF} = 250.3, 16.4 Hz), 141.6, 141.4, 132.8 (d, J_{CF} = 6.2 Hz), 132.0, 131.9, 131.1, 129.5 (d, J_{CF} = 3.2 Hz), 128.9, 126.5, 120.1 (d, J_{CF} = 10.6 Hz), 118.2 (dd, J_{CF} = 6.2, 4.8 Hz), 115.8 (d, J_{CF} = 17.3 Hz), 107.3, 52.2, 52.0, 37.9, 25.7, 11.8; HRMS (EI): m/z [M⁺] calcd, for C₂₂H₂₁N₃O₃F₂: 413.1551; found: 413.1548.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(2,4-dimethoxybenz-yl)butanamide (4q)*. Yellow solid; 83.3 mg, 67% yield; m.p. 95.0– 97.1 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.26 (s, 1H), 8.10–8.06 (m, 1H), 7.78 (d, *J* = 1.6 Hz, 1H), 7.69 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.8 Hz, 1H), 7.16 (q, *J* = 9.6 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.51 (t, *J* = 2.4 Hz, 1H), 6.34(d, *J* = 2.4 Hz, 1H), 6.28 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 2.73 (d, *J* = 7.6 Hz, 2H), 2.41–2.33 (m, 1H), 1.69–1.62 (m, 1H), 1.53–1.47 (m, 1H), 0.82 (t, *J* = 7.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 174.4, 159.5, 158.2, 146.8 (dd, *J*_{CF} = 244.7, 11.8 Hz), 143.8 (dd, *J*_{CF} = 3.2 Hz), 120.0 (d, *J*_{CF} = 10.9 Hz), 119.9, 118.1 (dd, *J*_{CF} = 6.3, 4.6 Hz), 115.9 (d, *J*_{CF} = 17.6 Hz), 107.3, 103.6, 98.5, 55.3, 55.2, 50.8, 33.3, 25.5, 11.8; HRMS (EI): *m/z* [M⁺] calcd. for C₂₂H₂₃N₃O₃F₂: 415.1707; found: 415.1708.

N-(3,4-Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(3,5-

dimethylbenzyl-)butanamide (4r). Brown oil; 70.7 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.39 (s, 1H), 8.09–8.05 (m, 1H), 7.80 (d, J = 1.6 Hz, 1H), 7.72 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.8$ Hz, 1H), 7.17 (q, J = 9.6 Hz, 1H), 6.76 (s, 1H), 6.71 (s, 2H), 6.51 (t, J = 2.4 Hz, 1H), 2.84 (dd, $J_1 = 13.2$ Hz, $J_2 = 8.4$ Hz, 1H), 2.64 (dd, $J_1 = 13.6$ Hz, $J_2 = 6.4$ Hz, 1H), 2.32–2.28 (m, 1H), 2.22 (s, 6H), 1.70–1.62 (m, 1H), 1.57–1.51 (m, 1H), 0.82 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.9, 147.0 (dd, $J_{CF} = 245.0$, 11.9 Hz), 143.8 (dd, $J_{CF} = 249.0$, 15.4 Hz), 141.5, 139.2, 137.7 (2C), 132.9 (d, $J_{CF} = 6.4$ Hz), 129.4 (d, $J_{CF} = 3.2$ Hz), 128.0, 126.6 (2C), 120.1 (d, $J_{CF} = 9.2$ Hz), 118.2 (dd, $J_{CF} = 6.5$, 4.6 Hz), 115.8 (d, $J_{CF} = 17.3$ Hz), 107.4, 53.0, 38.7, 25.6, 21.3 (2C), 11.7; HRMS (EI): *m/z* [M⁺] calcd. for $C_{22}H_{23}N_3OF_2$: 383.1809; found: 383.1810.

N-(3,4-*Difluoro-2-(1H-pyrazol-1-yl)phenyl)-2-(2,4-difluorobenzyl)butanamide (4s).* Yellow solid; 67.0 mg, 57% yield; m.p. 105.5–107.7 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.54 (s, 1H), 8.04–8.00 (m, 1H), 7.78 (d, *J* = 1.6 Hz, 1H), 7.72 (dd, *J*₁ = 4.0 Hz, *J*₂ = 2.4 Hz, 1H), 7.16 (q, *J* = 9.6 Hz, 1H), 7.04–6,99 (m, 1H), 6.68–6.61 (m, 2H), 6.52 (t, *J* = 2.4 Hz, 1H), 2.80 (d, *J* = 8.0 Hz, 2H), 2.38–2.30 (m, 1H), 1.75–1.68 (m, 1H), 1.58–1.51 (m, 1H), 0.86 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.3, 161.6 (dd, *J*_{CF} = 245.3, 11.7 Hz), 160.9 (dd, *J*_{CF} = 246.1, 11.7 Hz), 147.1 (dd, *J*_{CF} = 245.3, 11.9 Hz), 143.7 (dd, *J*_{CF} = 249.0, 15.6 Hz), 141.6, 132.9 (d, *J*_{CF} = 6.8 Hz), 131.8 (dd, *J*_{CF} = 9.3, 6.4 Hz), 129.1 (d, *J*_{CF} = 3.2 Hz), 122.0 (dd, *J*_{CF} = 15.7, 3.7 Hz), 120.0 (d, *J*_{CF} = 9.4 Hz), 118.3 (dd, *J*_{CF} = 6.7, 4.6 Hz), 115.8 (d, *J*_{CF} = 17.2 Hz), 110.9 (dd, *J*_{CF} = 20.6, 3.5 Hz), 107.4, 103.7 (t, *J*_{CF} = 25.5 Hz), 51.3, 31.8, 25.7, 11.7; HRMS (EI): *m/z* [M⁺] calcd. for C₂₀H₁₇N₃OF₄: 391.1308; found: 391.1307.

2-(3,5-Dichlorobenzyl)-N-(3,4-difluoro-2-(1H-pyrazol-1-

yl)phenyl-)butanamide (4t). Yellow solid; 75.0 mg, 59% yield; m.p. 91.0–92.4 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.54 (s, 1H), 8.04–8.00 (m, 1H), 7.78 (d, J = 2.0 Hz, 1H), 7.75 (dd, J₁ = 4.4 Hz, J₂)

= 2.8 Hz, 1H), 7.18 (q, J = 9.6 Hz, 1H), 7.09 (t, J = 1.6 Hz, 1H), 6.96 (s, 1H), 6.95 (s, 1H), 6.51 (t, J = 2.4 Hz, 1H), 2.84 (dd, J_1 = 13.6 Hz, J_2 = 9.6 Hz, 1H), 2.66 (dd, J_1 = 13.6 Hz, J_2 = 5.2 Hz, 1H), 2.30–2.22 (m, 1H), 1.75–1.67 (m, 1H), 1.58–1.51 (m, 1H), 0.86 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 172.8, 147.1 (dd, J_{CF} = 245.3, 12.0 Hz), 143.6 (dd, J_{CF} = 249.1, 15.5 Hz), 142.7, 141.5, 134.7 (2C), 132.9 (d, J_{CF} = 6.9 Hz), 128.9 (d, J_{CF} = 3.3 Hz), 127.2 (2C), 126.8, 120.2 (d, J_{CF} = 10.2 Hz), 118.4 (dd, J_{CF} = 6.7, 4.8 Hz), 115.8 (d, J_{CF} = 17.5 Hz), 107.5, 52.8, 38.2, 25.9, 11.7; HRMS (EI): m/z [M⁺] calcd. for C₂₀H₁₇N₃OF₂Cl₂: 423.0717; found: 423.0719.

General Procedure for Arylation of 1d with Diiodobenzene. A mixture of substrate 1d (167.6 mg, 0.6 mmol), 1,4-diiodobenzene 2v (66.0 mg, 0.2 mmol), $Pd(OAc)_2$ (13.5 mg, 10 mol%), $Cu(OAc)_2$ (130.8 mg, 0.72 mmol), Ag_3PO_4 (75.3 mg, 0.18 mmol) in *p*-xylene (1.5 mL) and DMF (1.5 ml) was charged in a glass sealed-tube and stirred at 130 °C (oil bath) for 16 h. Upon completion of the reaction, saturated brine (15 mL) and dichloromethane (15 mL) were added to the mixture, then the aqueous layer was extracted with dichloromethane (15 mL × 3). The combined organic layer was dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was further purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 30:1 to 10:1) to supply the product 5. 2,2'-(1,4-Phenylenebis(methyle-ne))bis(N-(3,4-difluoro-2-(1H-pyra-zol-1-

yl)phenyl)butanamide) (5). Yellow gum; 73.3 mg, 58% yield; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.42 (s, 2H), 8.03–7.97 (m, 2H), 7.78 (t, J = 2.4 Hz, 2H), 7.71–7.69 (m, 2H), 7.14 (q, J = 9.6 Hz, 2H), 6.91 (d, J = 1.6 Hz, 4H), 6.51 (t, J = 2.0 Hz, 2H), 2.83 (dd, $J_1 = 13.6$ Hz, $J_2 = 8.4$ Hz, 2H), 2.68–2.61 (m, 2H), 2.31–2.23 (m, 2H), 1.66–1.58 (m, 2H), 1.53–1.46 (m, 2H), 0.79 (td, $J_1 = 7.6$ Hz, $J_2 = 2.8$ Hz, 6H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm): δ 173.7, 173.6, 147.0 (dd, $J_{CF} = 245.1$, 11.3 Hz, 2C), 143.8 (dd, $J_{CF} = 241.5$, 17.5 Hz, 2C), 141.5 (2C), 137.1 (2C), 133.0 (t, $J_{CF} = 6.3$ Hz, 2C), 129.3 (t, $J_{CF} = 3.3$ Hz, 2C), 128.8 (2C), 128.7 (2C), 107.4 (2C), 52.8, 52.6, 38.3 (2C), 25.6, 25.5, 11.7 (2C); HRMS (EI): m/z [M⁺] calcd. for C₃₄H₃₂N₆O₂F₄: 632.2523; found: 632.2521.

General Procedure for Gram-Scale Reaction. A mixture of substrate **1d** (1.12 g, 4 mmol), 4-iodoanisole **2a** (2.81 g, 12 mmol), Pd(OAc)₂ (111.7 mg, 10 mol%), Cu(OAc)₂ (871.8 mg, 4.8 mmol), Ag₃PO₄ (502.3 mg, 1.2 mmol), in *p*-xylene (20 mL) and DMF (20 mL) was charged in a round-bottomed flask (100 mL) and stirred at 130 °C (oil bath) for 16 h. Upon completion of the reaction, saturated brine (100 mL) and dichloromethane (100 mL) were added to the mixture, then the aqueous layer was extracted with dichloromethane (30 mL × 3). The combined organic layer was dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was further purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 60:1 to 30:1) to supply the desired product **3d** (1.06 g, 69%).

General Procedure for the Removal of the Directing Group. The reaction was performed in an air atmosphere. A mixture of the arylated producted 3d (96.4 mg, 0.25 mmol) and HCl (5 mL, 12 M) were added to a round-bottomed flask (25 mL) and stirred at 110 °C (oil bath) for 20 h. Upon completion of the reaction, water (20 mL) and was slowly added to the mixture, then the aqueous layer was extracted with ethyl acetate (20 mL \times 5). The combined organic layer was dried over anhydrous MgSO4. Finally, the solution was concentrated in vacuo to provide a crude product, which was further purified via a column chromatography on silica gel (eluents: dichloromethane/ methanol = 200:1 to 100:1) to supply the free acid 6. 2-(4-hydroxybenz-yl)butanoic acid (6). Yellow oil; 34.4 mg, 71%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.97 (d, J = 8.0 Hz, 2H), 6.64 (d, J= 8.4 Hz, 2H), 2.80 (dd, J_1 = 14.0 Hz, J_2 = 9.6 Hz, 1H), 2.71 (dd, J_1 = 14.0 Hz, $J_2 = 6.0$ Hz, 1H), 2.58–2.51 (m, 1H), 1.70–1.55 (m, 2H), 0.96 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm): δ 180.6, 152.9, 130.0, 128.9 (2C), 114.4 (2C), 48.6, 36.1, 24.1, 10.7; HRMS (EI): *m/z* [M⁺] calcd. for: C₁₁H₁₄O₃: 194.0943; found: 194 0942

General Procedure for Competition Experiment. A mixture of substrate 1d (83.8 mg, 0.3 mmol), 1-iodo-4-methoxybenzene 2a (105.3 mg, 0.45 mmol), 1-fluoro-4-iodobenzene 2e (99.9 mg, 0.45

mmol), Pd(OAc)₂ (6.7 mg, 10 mol%), Cu(OAc)₂ (65.4 mg, 0.36 mmol), Ag₃PO₄ (37.7 mg, 0.09 mmol), in *p*-xylene (1.5 mL) and DMF (1.5 mL) was charged in a glass sealed-tube and stirred at 130 °C (oil bath) for 16 h. Upon completion of the reaction, saturated brine (15 mL) were added to the mixture, then the aqueous layer was extracted with dichloromethane (15 mL × 3). The combined organic layer was dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was further purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 70:1 to 30:1) to supply the desired product **3d** (28.3 mg, 23%) and **4e** (52.7 mg, 48%).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

General Procedure for Deuterium Labelling Experiments. A mixture of substrate 1d (55.8 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%), Cu(OAc)₂ (43.6 mg, 0.24 mmol), Ag₃PO₄ (25.1 mg, 0.06 mmol), in p-xylene (1.0 mL), DMF (1.0 mL) and AcOD (1.0 mL) was charged in a glass sealed-tube and stirred at 130 °C (oil bath) for 1.5 h. After the reaction, saturated brine (15 mL) was added to the mixture, then the aqueous layer was extracted with dichloromethane (15 mL \times 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo to provide a crude product, which was further purified via a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 50:1 to 30:1) to supply the product H/D-1d (49.7 mg, 89%). The ¹H NMR of H/D-1d was ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.58 (s, 1H), 8.18–8.14 (m, 1H), 7.86 (s, 1H), 7.81 (d J = 3.2 Hz, 1H), 7.18 (q, J = 9.6 Hz, 1H), 6.55 (t, J = 2.4 Hz, 0.82H), 2.24-2.17 (m, 1H), 1.67-1.60 (m, 1H), 1.48-1.41 (m, 1H), 1.13 (d, J = 6.8 Hz, 2.16H), 0.84 (t, J = 7.2 Hz, 3H).

The preparation of $[D_3]$ -1d. Under the atmosphere of N_2 , to a stirred solution of lithium diisopropylamide (LDA) (20 mL, 2.0 M/L in THF) cooled at -15 °C (ice salt bath) was added dropwise butyric acid (0.80 g, 9.0 mmol). After 30 min, 1,3-dimethylpropyleneurea (DMPU) (1.15 g, 9.0 mmol) was added drop by drop. Then, the mixture was stirred at room temperture for 1 h and cooled again at -15 °C, CD₃I (2.84 g, 20 mmol) in 10 mL of anhydrous THF was added dropwise. Then, the reaction mixture was raised to room temperature and stirred for 3 h. Finally, the reaction was neutralized by ice cold 20% H₂SO₄. The aqueous layer was extracted with ethyl acetate (15 mL \times 3). The combined organic layer was washed with water and brine, dried over anhydrous MgSO4, and concentrated in vacuo to afford 2-[²H₃]methylbutyric acid (0.71 g, 75%).²⁵ The following steps are same as those for the substrates. [D₃]-1d was obtained in 40% vield (0.56 g). The ¹H NMR of [D₃]-1d was ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.57 (s, 1H), 8.18–8.14 (m, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.81 (dd, $J_1 = 4.0$ Hz, $J_2 = 2.4$ Hz, 1H), 7.19 (q, J = 9.2 Hz, 1H), 6.56 (t, J = 2.4 Hz, 1H), 2.20 (t, J = 6.8 Hz, 1H), 1.67–1.59 (m, 1H), 1.48-1.41 (m, 1H), 0.84 (t, J = 7.6 Hz, 3H).

A mixture of substrate [D₃]-1d (28.2 mg, 0.1 mmol), 1d (27.9 mg, 0.1 mmol), 4-iodoanisole (140.4 mg, 0.6 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%), Cu(OAc)₂ (43.6 mg, 0.24 mmol), Ag₃PO₄ (25.1 mg, 0.06 mmol), in p-xylene (1.0 mL) and DMF (1.0 mL) was charged in a glass sealed-tube and stirred at 130 °C (oil bath) for 1.5 h. Upon completion of the reaction, saturated brine (15 mL) was added to the mixture, then the aqueous layer was extracted with dichloromethane (15 mL \times 3). The combined organic layer was dried over anhydrous MgSO₄. Finally, the solution was concentrated in vacuo to provide a crude product, which was further purified via a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 70:1 to 30:1) to supply the product 3d and [D₂]-3d (14.9 mg, 19%). The ¹H NMR of **3d** and [D₂]-**3d** was ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.40 (s, 1H), 8.06–8.02 (m, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.70 (dd, *J*₁ = 3.6 Hz, *J*₂ = 2.4 Hz, 1H), 7.16 (q, *J* = 9.6 Hz, 1H), 6.98 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.51 (t, J = 2.0 Hz, 1H), 3.75 (s, 1H), 2.84 (dd, $J_1 = 13.6$ Hz, $J_2 = 8.8$ Hz, 0.79H), 2.67 (dd, J_1 = 13.6 Hz, J_2 = 6.0 Hz, 0.79H), 2.30–2.26 (m, 1H), 1.65–1.57 (m, 1H), 1.56–1.51 (m, 1H), 0.84 (t, J = 7.2 Hz, 3H). The ¹H NMR analysis showed that the ratio of 3d to $[D_2]$ -3d is 3.76.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Spectral data for all new compounds (PDF) Crystallographic data for **4k** (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: jyf@ecust.edu.cn (Ji). *E-mail: yxj@ecust.edu.cn (Yang).

ORCID

Yafei Ji: 0000-0002-3562-6703 XianJin Yang: 0000-0002-1368-3643

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully thank the National Natural Science Foundation of China (Project Nos. 21676088 and 21476074) for financial support.

REFERENCES

(1) Selected recent reviews on C(sp²)-H functionalization, see: (a) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions. *Acc. Chem. Res.* 2012, *45*, 788-802. (b) Kozhushkov, S. I.; Ackermann, L. Ruthenium-Catalyzed Direct Oxidative Alkenylation of Arenes through Twofold C-H Bond Functionalization. *Chem. Sci.* 2013, *4*, 886-896. (c) Chen, Z. K.; Wang, B. j.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Transition Metal-Catalyzed C-H Bond Functionalizations by the Use of Diverse Directing Groups. *Org. Chem. Front.* 2015, *2*, 1107-1295. (d) Gensch, T.; James, M. J.; Dalton, T.; Glorius, F. Increasing Catalyst Efficiency in C-H Activation Catalysis. *Angew. Chem. Int. Ed.* 2018, *57*, 2296-2306.

(2) (a) Li, H.; Li, B. J.; Shi, Z. J. Challenge and Progress: Palladium-Catalyzed sp³ C–H Activation. *Catal. Sci. Technol.* **2011**, *1*, 191–206. (b) Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp²)–H and C(sp³)–H Bonds by Using Bidentate Directing Groups. *Angew. Chem. Int. Ed.* **2013**, *52*, 11726–11743. (c) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Palladium-Catalyzed Transformations of Alkyl C–H Bonds. *Chem. Rev.* **2017**, *117*, 8754–8786. (d) Xu, Y.; Dong, G. B. sp³ C–H Activation via exo-type Directing Groups. *Chem. Sci.* **2018**, *9*, 1424–1432. (e) Chu, J. C. K.; Rovis, T. Complementary Strategies for Directed C(sp³)–H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. *Angew. Chem. Int. Ed.* **2018**, *57*, 62–101.

(3) Selected recent reviews on C(sp³)-H functionalization, see: (a) Wasa, M.; Engle, K. M.; Yu, J. Q. Cross-Coupling of C(sp³)-H Bonds with Organometallic Reagents *via* Pd(II)/Pd(0) Catalysis. *Isr. J. Chem.*. **2010**, *50*, 605–616. (b) Rouquet, G.; Chatani, N. Katalytische Funktionalisierung von C(sp²)-H- und C(sp³)-H-Bindungen unter Verwendung von zweizähnigen dirigierenden Gruppen. *Angew. Chem.* **2013**, *125*, 11942–11959. (c) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon-Hydrogen Bonds. *Acc. Chem. Res.* **2015**, *48*, 1053–1064. (d) Akhrem, I. S. Recent Achievements in Intermolecular sp³ C-H bond Functionalization of Organic Compounds by Superelectrophilic Trihalomethyl Metal Complex. *J. Org. Chem.* **2015**, *793*, 54–77. (e) Karimov, R. R.; Hartwig, J. F. Transition-Metal-Catalyzed Selective Functionalization of C(sp³)-H Bonds in Natural Products. *Angew. Chem. Int. Ed.* **2018**, *57*, 4234–4241.

(4) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of sp³ C–H Bonds Catalyzed by Palladium Acetate. *J. Am. Chem. Soc.* **2005**, *127*, 13154–13155. (b) Shabashov, D.; Daugulis, O. Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp² and sp³ Carbon–Hydrogen Bonds. *J. Am. Chem. Soc.* **2010**, *132*, 3965–3972. (c) Liu, J.; Xie, Z. Y.; Zeng, W.; Lin, D.

2

3

4

5

6

7

8

9

59

60

G.; Deng, Y. F.; Lu, X. X. Pd(II)-Catalyzed Pyridine N-Oxides Directed Arylation of Unactivated C_{sp3}-H Bonds. J. Org. Chem. 2015, 80, 4618-4626. (d) Reddy, M. D.; Watkins, E. B. Palladium-Catalyzed Direct Arylation of C(sp3)-H Bonds of a-Cyano Aliphatic Amides. J. Org. Chem. 2015, 80, 11447-11459. (e) Milena, L. C.; David, W. L.; Anastasios, P. Auxiliary-Directed C(sp3)-H Arylation by Synergistic Photoredox and Palladium Catalysis. Chem. Eur. J. 2017, 23, 14450-11453. (f) Gou, Q.; Liu, G.; Zhou, L. X.; Chen, S. Y.; Qin, J. Palladium-Catalyzed Base-Promoted Arylation of Unactivated C(sp³)–H Bonds by Aryl Iodides: A Practical Approach To Synthesize β -Aryl Carboxylic Acid Derivatives. Eur. J. Org. Chem. 2017, 6314-6318. (g) Yan, X. F.; Long, R. R.; Luo, F. H.; Yang, L.; Zhou, X. G. Palladium(II)-Catalyzed Arylation of 10 Unactivated C(sp3)-H Bonds by Using 2,1,3-Benzoselenadiazole-4-11 Amine as Directing Ligand. Tetrahedron Lett. 2017, 58, 54-58. (h) 12 Dey, A.; Pimparkar, S.; Deb, A.; Guin, S.; Maiti, D.; Chelation-13 Assisted Palladium-Catalyzed y-Arylation of Aliphatic Carboxylic 14 Acid Derivatives. Adv. Synth. Catal. 2017, 359, 1301-1307. (i) Guin, S.; Dolui, P. Zhang, X. L.; Paul, S.; Singh, V. K.; Pradhan, S. B. 15 Chandrashekar, H.; Anjana, S. S.; S. Paton, R.; Maiti, D. Iterative 16 Arylation of Amino Acids and Aliphatic Amines via δ -C(sp³)-H 17 Activation: Experimental and Computational Exploration. Angew. 18 Chem. Int. Ed. 2019, 58, 5633-5638.

(5) (a) Shan, G.; Yang, X. L.; Zong, Y.; Rao, Y. An Efficient 19 Palladium-Catalyzed C-H Alkoxylation of Unactivated Methylene 20 and Methyl Groups with Cyclic Hypervalent Iodine (I3+) Oxidants. 21 Angew. Chem. Int. Ed. 2013, 52, 13606-13610. (b) Zong, Y.; Rao, Y. 22 Developing Pd(II) Catalyzed Double sp3 C-H Alkoxylation for Synthesis of Symmetric and Unsymmetric Acetals. Org. Lett. 2014, 23 16, 5278-5281. (c) Chen, K.; Zhang, S. Q.; Jiang, H. Z.; Xu, J. W.; 24 Shi, B. F. Practical Synthesis of anti-β-Hydroxy-α-Amino Acids by 25 Pd^{II}-Catalyzed Sequential C(sp³)-H Functionalization. Chem. Eur. J. 26 2015, 21, 3264-3270.

27 (6) (a) Liu, Y. J.; Zhang, Z. Z.; Yan, S. Y.; Liu, Y. H.; Shi, B. F. Ni(II)/BINOL-catalyzed Alkenylation of Unactivated C(sp3)-H bonds. 28 Chem. Commun. 2015, 51, 7899-7902. (b) Lin, C.; Chen, Z. K.; Liu, 29 Z. X.; Zhang, Y. H. Nickel-Catalyzed Stereoselective Alkenylation of 30 C(sp³)-H Bonds with Terminal Alkynes. Org. Lett. 2017, 19, 850-31 853. (c) Thrimurtulu, N.; Khan, S.; Maity, S.; Volla C. M. R.; Maiti, D. Palladium Catalyzed Direct Aliphatic $\gamma C(sp^3)$ -H Alkenylation with 32 Alkenes and Alkenyl Iodides. Chem. Commun. 2017, 53, 12457-33 12460

34 (7) (a) Xie, J.; Shi, S.; Zhang, T.; Mehrkens, N.; Rudolph, M.; 35 Hashmi, A. S. K. A Highly Efficient Gold-Catalyzed Photoredox a-36 C(sp³)-H Alkynylation of Tertiary Aliphatic Amines with Sunlight. Angew. Chem. Int. Ed. 2015, 54, 6046-6050. (b) Paul, S.; Guin, J. 37 Radical C(sp3)-H Alkenylation, Alkynylation and Allylation of Ethers 38 and Amides Enabled by Photocatalysis. Green Chem. 2017, 19, 2530-39 2534

40 (8) (a) Wu, X. S.; Zhao, Y.; Ge, H. Direct Aerobic Carbonylation of C(sp²)–H and C(sp³)–H Bonds through Ni/Cu Synergistic Catalysis 41 with DMF as the Carbonyl Source. J. Am. Chem. Soc. 2015, 137, 42 4924-4927. (b) Williamson, P.; Galván, A.; Gaunt, M. J. Cobalt-43 Catalysed C-H Carbonylative Cyclisation of Aliphatic Amides. Chem. 44 Sci. 2017, 8, 2588-2591.

(9) (a) Timsina, Y. N.; Gupton, B. F.; Ellis, K. C. Palladium-45 Catalyzed C-H Amination of C(sp²) and C(sp³)-H Bonds: 46 Mechanism and Scope for N-Based Molecule Synthesis. ACS Catal. 47 2018, 8, 5732-5776. (b) Zhou, Z. J.; Chen, S. M.; Qin, J.; Nie, X.; 48 Zheng, X. W.; Harms, K.; Riedel, R.; Houk, K. N.; Meggers, E. Catalytic Enantioselective Intramolecular C(sp3)-H Amination of 2-49 Azidoacetamides. Angew. Chem. Int. Ed. 2019, 58, 1088-1093. 50

(10) (a) Giri, R.; Chen, X.; Yu, J. Q. Palladium-Catalyzed 51 Asymmetric Iodination of Unactivated C-H Bonds under Mild 52 Conditions. Angew. Chem. 2005, 117, 2150-2153. (b) Rit, R. K.; 53 Yadav, M. R.; Sahoo, A. K. Pd(II)-Catalyzed Primary-C(sp3)-H 54 Acyloxylation at Room Temperature. Org. Lett. 2012, 14, 3724-3727. (c) Rao, W. H.; Zhan, B. B.; Chen, K.; Ling, P. X.; Zhang Z. Z.; Shi, 55 B. F. Pd(II)-Catalyzed Direct Sulfonylation of Unactivated C(sp³)-H 56 Bonds with Sodium Sulfinates. Org. Lett. 2015, 17, 3552-3555. (d) 57 Yang, X. L.; Sun, Y. H.; Sun, T. Y.; Rao, Y. Auxiliary-Assisted 58 Palladium-Catalyzed Halogenation of Unactivated C(sp3)-H Bonds at

Room Temperature. Chem. Commun. 2016, 52, 6423-6426. (e) Michigami, K.; Mita, T.; Sato, Y. Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2. J. Am. Chem. Soc. 2017, 139, 6094-6097. (f) Feng, J. J.; Oestreich, M. Copper-Catalyzed Silylation of C(sp3)-H Bonds Adjacent to Amide Nitrogen Atoms. Org. Lett. 2018, 20, 4273-4276.

(11) (a) Misawa, N.; Nakamura, R.; Kagiyama, Y.; Ikenaga, H.; Furukawa, K.; Shindo, K. Synthesis of Vicinal Diols from Various Arenes with a Heterocyclic, Amino or Carboxyl Group by Using Recombinant Escherichia coli Cells Expressing Evolved Biphenyl Dioxygenase and Dihydrodiol Dehydrogenase Genes. Tetrahedron 2005, 61, 195-204. (b) Fujiwara, M.; Marumoto, S.; Yagi, N.; Miyazawa, M. Biotransformation of Turmerones by Aspergillus niger. J. Nat. Prod. 2011, 74, 86-89. (c) Huang, Z. X.; Dong, G. B. Catalytic C-C Bond Forming Transformations via Direct β -C-H Functionalization of Carbonyl Compounds. Tetrahedron Lett. 2014, 55, 5869-5889.

(12) (a) Tran, L. D.; Daugulis, O. Nonnatural Amino Acid Synthesis by Using Carbon-Hydrogen Bond Functionalization Methodology. Angew. Chem. Int. Ed. 2012, 51, 5188-5191. (b) Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J. Q. A Simple and Versatile Amide Directing Group for C-H Functionalizations. Angew. Chem. Int. Ed. 2016, 55, 10578-10599. (c) Zhu, Y.; Chen, X. L.; Yuan, C. C.; Li, G. B.; Zhang, J. Y.; Zhao, Y. S. Pd-Catalysed Ligand-Enabled Carboxylate-Directed Highly Regioselective Arylation of Aliphatic Acids. Nat. Commun. 2017, 8, 14904-14911. (d) Ghosh, K. K.; Gemmeren, M. V. Pd-Catalyzed β -C(sp³)-H Arylation of Propionic Acid and Related Aliphatic Acids. Chem. Eur. J. 2017, 23, 17697-17700.

(13) (a) Zhang, Q.; Chen, K.; Rao, W.; Zhang, Y.; Chen, F. J.; Shi, B. F. Stereoselective Synthesis of Chiral α -Amino- β -Lactams through Palladium(II)-Catalyzed Sequential Monoarylation/Amidation of C(sp³)-H Bonds. Angew. Chem. 2013, 125, 13833-13837. (b) Rodríguez, N.; Romero-Revilla, J. A.; FernándezIbáñez, M. Á.; Carretero, J. C. Palladium-Catalyzed N-(2-pyridyl)sulfonyl-Directed C(sp³)-H y-Arylation of Amino Acid Derivatives. Chem. Sci. 2013, 4, 175-179. (c) Gu, Q.; Al Mamari, H. H.; Graczyk, K.; Diers E.; Ackermann, L. Iron-Catalyzed C(sp²)-H and C(sp³)-H Arylation by Triazole Assistance. Angew. Chem. Int. Ed. 2014, 53, 3868-3871. (d) Chen, K.; Li, Z. W.; Shen, P. X.; Zhao, H. W.; Shi, Z. J. Development of Modifiable Bidentate Amino Oxazoline Directing Group for Pd-Catalyzed Arylation of Secondary C-H Bonds. Chem. Eur. J. 2015, 21, 7389-7393. (e) Zhang, Y. F.; Zhao, H. W.; Wang, H.; Wei, J. B.; Shi, Z. J. Readily Removable Directing Group Assisted Chemo- and Regioselective C(sp³)-H Activation by Palladium Catalysis. Angew. Chem. Int. Ed. 2015, 54, 13686-13690. (f) Luo, F. H.; Yang, J.; Li, Z. K.; Xiang, H. F.; Zhou, X. G. Design and Synthesis of 2-Methyl-7aminobenzoxazole as Auxiliary in the Palladium(II)-Catalyzed Arylation of a beta-Positioned C(sp3)-H Bond. Adv. Synth. Catal. 2016, 358, 887-893. (g) Reddy, C.; Bisht, N.; Parella, R.; Babu, S. A. 4-Amino-2,1,3-benzothiadiazole as a Removable Bidentate Directing Group for the Pd(II)-Catalyzed Arylation/Oxygenation of sp²/sp³ β-C-H Bonds of Carboxamides. J. Org. Chem. 2016, 81, 12143-12168. (h) Lou, J.; Wang, Q. N.; He, Y.; Yu, Z. K. A Simple Aliphatic Diamine Auxiliary for Palladium-Catalyzed Arylation of Unactivated β-C(sp³)–H Bonds. Adv. Synth. Catal. 2018, 360, 4571–4584.

(14) (a) Wang, X.; Zhu, L. Z.; Chen, S. H.; Xu, X. H.; Au, C. T.; Qiu, R. H. Nickel-Catalyzed Direct C(sp3)-H Arylation of Aliphatic Amides with Thiophenes. Org. Lett. 2015, 17, 5228-5231. (b) Pasunooti, K. K.; Banerjee, B.; Yap, T.; Jiang, Y. J.; Liu, C. F. Auxiliary-Directed Pd-Catalyzed y-C(sp3)-H Bond Activation of a-Aminobutanoic Acid Derivatives. Org. Lett. 2015, 17, 6094-6097. (c) Wang, X.; Xie, P. P.; Qiu, R. H.; Zhu, L. Z.; Liu, T.; Li,Y. Nickel-Catalysed Direct Alkylation of Thiophenes via Double C(sp³)-H/C(sp²)-H Bond Cleavage: the Importance of KH₂PO₄. Chem. Commun. 2017, 53, 8316-8319.

(15) Sarkar, S. D.; Liu, W. P.; Kozhushkov, S. I.; Ackermann, L. Weakly Coordinating Directing Groups for Ruthenium(II)-Catalyzed C-H Activation. Adv. Synth. Catal. 2014, 356, 1461-1479.

(16) (a) Cindy Lee, W. C.; Shen, Y. N.; Gutierrez, D. A.; Li, J. J. 2-Aminophenyl-1H-pyrazole as a Removable Directing Group for Copper-Mediated C-H Amidation and Sulfonamidation. Org. Lett.

2016, 18, 2660-2663. (b) Selvakumar, J.; Grandhi, G. S.; Sahoo, H.; Baidya, M. Copper-Mediated Etherification of Arenes with Alkoxysilanes Directed by an (2-Aminophenyl)pyrazole Group. RSC Adv. 2016, 6, 79361-79365. (c) Cindy Lee, W. C.; Tehrani, A.; Li, J. J. Copper-Mediated sp² C-H Chlorination with Trichloroacetamide Using a Removable Directing Group. Synthesis 2017, 49, 2865–2872. (d) Shen, Y. N.; Cindy Lee, W. C.; Gutierrez, D. A.; Li, J. J. Palladium-Catalyzed Direct C(sp2)-H ortho-Arylation of Anilides Using 2-Aminophenylpyrazole as the Directing Group. J. Org. Chem. 2017, 82, 11620-11625. (e) Cindy Lee, W. C.; Wang W.; Li, J. J. Copper(II)-Mediated ortho-Selective $C(sp^2)-H$ Tandem Alkynylation/Annulation and ortho-Hydroxylation of Anilides with 2-Aminophenyl-1H-pyrazole as a Directing Group. J. Org. Chem. 2018, 83, 2382–2388. (f) Mandal, A.; Selvakumar, J.; Dana, S.; Mukherjee, U.; Baidya, M. A Cross-Dehydrogenative Annulation Strategy towards Synthesis of Polyfluorinated Phenanthridinones with Copper. Chem. Eur. J. 2018, 24, 3448-3454.

1

2

3

4

5

6

7

8

9

10

11

12

13

60

(17) Hu, Y. H.; Xu, Z.; Shao, L. Y.; Ji, Y. F. Palladium-Catalyzed
Arylation of Aromatic Amides Directed by a [4-Chloro-2-(1*H*-pyrazol-1-yl)phenyl]amine Auxiliary. *Synlett* 2018, 29, 1875–1880.
(19) Or and Catalyzed D. P. Formula K. The October Construction of Complex and Comp

(18) (a) Stuart, D. R.; Fagnou, K. The Catalytic Cross-Coupling of
Unactivated Arenes. *Science* 2007, *316*, 1172–1176. (b) Stuart, D. R.;
Villemure, E.; Fagnou, K. Elements of Regiocontrol in PalladiumCatalyzed Oxidative Arene Cross-Coupling. *J. Am. Chem. Soc.* 2007, *129*, 12072–12073. (c) Ying, C. H.; Yan, S. B.; Duan, W. L. 2Hydroxy-1,10-phenanthroline vs 1,10-Phenanthroline: Significant
Ligand Acceleration Effects in the Palladium-Catalyzed Oxidative
Heck Reaction of Arenes. *Org. Lett.* 2014, *16*, 500–503.

(19) (a) Han, J.; Zheng, Y. X.; Wang, C.; Zhu, Y.; Shi, D. Q.; Zeng,
R. S.; Huang, Z, B.; Zhao, Y. S. Palladium-Catalyzed Oxalyl Amide-Directed *y*-Arylation of Aliphatic Amines. *J. Org. Chem.* 2015, *80*,
9297–9306. (b) Das, S.; Bairy, G.; Jana, R. Ligand-Promoted *y*-C(sp³)–H Arylation and Unsymmetrical Diarylation to Access
Unnatural Amino Acid Derivatives. *Org. Lett.* 2018, *20*, 2667–2671.
(20) CCDC 1906016 (4k) contains the supplementary

crystallographic data for this paper.

(21) (a) Aihara, Y.; Chatani, N. Ruthenium-Catalyzed Direct Arylation of C-H Bonds in Aromatic Amides Containing a Bidentate Directing Group: Significant Electronic Effects on Arylation. *Chem. Sci.* **2013**, *4*, 664–670. (b) Yokota, A.; Aihara, Y.; Chatani, N. Nickel(II)-Catalyzed Direct Arylation of C-H Bonds in Aromatic Amides Containing an 8-Aminoquinoline Moiety as a Directing Group. *J. Org. Chem.* **2014**, *79*, 11922–11932. (c) Iyanaga, M.; Aihara, Y.; Chatani, N. Direct Arylation of C(sp³)-H Bonds in Aliphatic Amides with Diaryliodonium Salts in the Presence of a Nickel Catalyst. *J. Org. Chem.* **2014**, *79*, 11933–11939. (d) Shao, L. Y.; Xing, L. H.; Guo, Y.; Yu, K. K.; Wang, W.; Liu, H. W.; Liao, D. H.; Ji, Y. F. Catalytic Cascade Access to Biaryl-2-Methyl Acetates from Pyruvate O-Arylmethyl Ketoximes *via* the Palladium-Catalyzed C(sp²)H Bond Arylation and C–O Bond Solvolysis. *Adv. Synth. Catal.* **2018**, *360*, 2925–2937.

(22) Li, Y.; Liu, X. Y.; Xu, Y. J.; Dong, L. Rhodium(III)-Catalyzed Tandem Annulation Reaction To Build Polycyclic Benzothiazine Derivatives. *Org. Chem. Front.* DOI: 10.1039/c9q000579j.

(23) (a) Toba, T.; Hu, Y. Tran, A. T.; Yu, J. Q. β -C(sp³)-H Arylation of α -Hydroxy Acid Derivatives Utilizing Amino Acid as a Directing Group. *Org. Lett.* **2015**, *17*, 5966–5969. (b) Ye, S. Q.; Yang, W. B.; Coon, T.; Fanning, D.; Neubert, T.; Stamos, D.; Yu, J. Q. N-Heterocyclic Carbene Ligand-Enabled C(sp³)-H Arylation of Piperidine and Tetrahydropyran Derivatives. *Chem. Eur. J.* **2016**, *22*, 4748–4752. (c) Coomber, C. E.; Benhamou, L.; Bučar, D. K.; Smith, P. D.; Porter, M. J.; Sheppard, T. D. Silver-Free Palladium-Catalyzed C(sp³)-H Arylation of Saturated Bicyclic Amine Scaffolds. *J. Org. Chem.* **2018**, *83*, 2495–2503.

(24) Zhang, Z. Y.; Xie, C. X.; Tan, X. C.; Song, G. L.; Wen, L. L.; Gao, H.; Ma, C. I₂-Catalyzed One-pot Synthesis of Pyrrolo[1,2-a]-quinoxaline and Imidazo[1,5-a]quinoxaline Derivatives *via* sp³ and sp² C–H Cross-Dehydrogenative Coupling. *Org. Chem. Front.* **2015**, *2*, 942–946.

(25) Liang, D. W.; Li, S.; Zhang, M. H.; Dong, J. H. Synthesis of a diastereomeric mixture of deuterium-labeled lovastatin and its acid ammonium salt. *J Radioanal Nucl Chem* **2014**, *300*, 891–894.