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Abstract: An efficient strategy for the synthesis of trans-fused oxabicyclic systems 
involving thioannulation followed by a Ramberg-B~cklund olefination as the key step is 
described. Copyright © 1996 Elsevier Science Ltd 

As a part of  a program I aimed at the total synthesis of ciguatoxin, 2 and in an attempt to develop a 

general synthetic strategy for the synthesis of trans-fused unsaturated oxacycles, we focused on an approach in 

which unsaturated rings are introduced via thioannulation followed by a Ramberg-Backlund olefination. 3 

Figure 1: Ciguatoxin (partial stnwture) 

According to this strategy, cycloalkenes would be generated from the O-linked acyclic precursor via 

sulfur connection to form the 1,n-oxathiane and successive ot-halogenation and oxidation at sulfur, followed by 

SO2-extrusion reactions. 4 To assess the general applicability and scope of this method in terms of ring size, a 

number of ortho-condensed oxane:oxathiacycles were synthesized starting from the common tri-O-acetyI-D- 

glucal (Schemes 1-3). 5 

Compounds 10 and 18 (Scheme 1) were synthesized in 60% and 70% yield, respectively, by treatment 

of 9 and 17 with Na2S/AI203, HMPA, at 100 °C.6 

An alternative thioannulation pathway is shown in Scheme 2. The whole process involves treatment of 

the tosyl derivative 6 with NaH/AcSH to give 19, which was further iodinated using (Sia)2BH followed by 

I2/NaOH oxidation to yield iodide 20. 7 Thioannulation to 21 proceeded smoothly by treatment of 20 with 

MeONa in MeOH at -25 °C under H2 atmosphere (87% yield). 
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= Reagents and  Conditions: (a) 1.2 equiv of Et3SiH, 1.0 equiv of BFs.OEt2, CH2C12, 0 °C, 2 h, 99%; (b) 1.0 
equiv ofNaOMe, MeOH, 30 min, 100%; (c) H2, Pd/C 10% cat, MeOH, 8 h, 99%; (d) 1.0 equiv of TsCI, 1.5 
equiv ofNEt3, DMAP cat, CH2C12, 0 °C, 8 h, 77%; (e) 1.5 equiv of Nail, 1.5 equiv of allyl bromide, n-Bu4NI 
cat, DMF, 0 °C, 10 h, 93%; (f) cat OsO4, 1.1 equiv ofNMO, THF:H20 (1:1), 25 °C, 4 h, 99%; (g) 1.5 equiv 
ofNalO4, MeOH:H20 (7:1), 0 °C, 30 min, then 2.0 equiv ofNaBH4, MeOH, 0 °C, 15 min, 95%; (h) 3.0 equiv 
of PPh3, 3.0 equiv ofimidazole, 2.0 equiv of I2, benzene, 0 °C, 1 h, 75%; (i) 1.1 equiv ofNa2S-Al203, HMPA 
(0.01 M), 100 °C, 12 h, 60%; (j) 2.4 equiv of TBSCI, 5.0 equiv of imidazole, CH2CI:, 25 °C, 6 h, 100%; (k) 
7.0 equiv of TFA, THF:H20 (1:1), 0 °C, 30 rain, 81%; (1) 3.0 equiv of SOs.Py complex, 5.0 equiv of NEt3, 
DMSO:CH2CI2 (1:1), 0 °C, 2 h, 85%; (m) 1.3 equiv of Ph3PCH2Br, 1.2 equiv of n-BuLi, toluene, 0 °C, 12 h, 
54%; (n) 2.0 equiv of n-Bu4NF, THF, 0 °C, 12 h, 100%; (o) 1.5 equiv of Nail, 1.3 equiv of allyl bromide, 
DMF, 0 °C, 2 h, 83%; (p) 3.0 equiv of (Sia)2BH, TlffF, 0 °C, 12 h; then 2.2 equiv ofI2, MeOH, 3.0 equiv of 
NaOH, 25 °C, 2 h, 48%; (q) 1.1 equiv ofNa2S-Al203, HMPA (0.01 M), 100 °C, 24 h, 70%. 

Scheme 2" 
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= Reagents and  Conditions: (a) 2.5 equiv of AcSH, Z0 equiv of Nail, DMF, 0 °C, 10 h, 81%; (b) 1.5 equiv of 
(Sia)2BH, THF, 0 °C, 8 h, then 1.1 equiv of I/, MeOH, 1.5 equiv of NaOH, 25 °C, 40 min, 58%; (c) 2.0 equiv 
ofNaOMe, MeOH, 0-25 °C, 12 h, 87%. 

Cyclization of 30, under similar conditions, gave in modest yield (40%) the oxathiacycle 31, due to the 

formation of dimer 32 (40%) s and trimer 33 (12%) 8 (Scheme 3). However, thioannulation of the one-carbon 

higher homologous 34 was successful and provided 36 as a single isomer in high yield (89*/0). These results, 
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clearly reveal that the intramolecular transition state arrangement is affected not only by ring size but also by 

the conformation of the bicyclic skeleton. 
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a Reagents and Conditions: (a) 50.0 equiv of DMSO, 25.0 equiv of Ac20, 12.5 equiv of AcOH, 25 °C, 2 days, 
80%; (b) RuCI3 cat, 4.0 equiv ofNalO4, H20:CH3CN:CCI4 (3:2:2), 25 °C, 15 min, 100%; (c) 2.0 equiv of 
CH2=CHCH2SiMe3, 2.0 equiv of AICl3, CH2C12, -78 °C ~ 20 °C, 6 h, 80%; (d) 3.0 equiv of NaCN, DMSO, 
50 °C, 8 h, 95%; (e) 1.5 equiv ofDIBAL, Et20, 0 °C, 6 h, then HCI (1.0 N), then 2.0 equiv ofNaBH4, MeOH, 
0 °C, 30 min, 55%; (f) 1.1 equiv of TsC1, 1.5 equiv of NEt3, DMPA cat, CH2C12, 8 h, 90%; (g) 2.5 equiv of 
AcSH, 2.0 equiv of Nail, DMF, 0 °C, 95%; (h) 3.0 equiv of (Sia)2BH, THF, 0 °C, 12 h, then H20:NaOH 
(15%):H202 (30%) (2:5:5), 70%; (i) 2.0 equiv of I2, 3.0 equiv of PPh3, 3.0 equiv ofimidazol, benzene, 0 °C, 
95%; (j) 2.0 equiv ofNaOMe, MeOH, 0-25 °C, 12 h, gave 31 (40%), 32 (40%) and 33 (12%). 
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Unsaturated oxabicycles 36-39 were formed from their respective oxathiacyclic precursors via the 

Ramberg-Backlund olefination process 3 (Table 1). Fortunately, SO2-extrusion precludes undesired 13- 

eliminations in entries 1 and 2. In entry 4, where the size of the unsaturated ring allows the possibility of cis- 

and trans-geometry of the double bond, a cis:trans mixture was obtained. 
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Entry 

Table 1. Synthesis o f  Unsaturated Polyethers by SOz-extrusion Reactions~ 

Oxathiane" Product  Yield (%) 

H 

10 ~ .  40 

N 36 

H 

21 O . ~  41 

H 37 

H 

18 ~ 37 

38 

H 

4 31 48 

39 

"Reagents and Conditions: (i) 1.5 equiv ot 
NCS,  CC14, 0 °C, 4-5 h; (ii) 1.5 equiv of 
MCPBA,  CH2C12, 0-25 °C, 8-10 h; (iii) 1.2 
equiv o f  tBuOK, THF, 0 °C, 4-5 h. Since 

the intermediate ot-chloro sulfides and ot- 
chloro sulfones are formed as mixtures of 
regio- and stereoisomers,  it is convenient  
to use them in a crude form, and to 
withhold purification until the Ramberg-  
B~icklund reaction i tself  has been 
completed.  
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