P₄ Fragmentation

Selective [3+1] Fragmentations of P₄ by "P" Transfer from a Lewis Acid Stabilized [RP₄]⁻ Butterfly Anion

Jaap E. Borger, Andreas W. Ehlers, Martin Lutz, J. Chris Slootweg, and Koop Lammertsma*

Abstract: Two [3+1] fragmentations of the Lewis acid stabilized bicyclo[1.1.0]tetraphosphabutanide Li $[Mes^*P_4$ · BPh₃] (Mes^{*}=2,4,6-tBu₃C₆H₂) are reported. The reactions proceed by extrusion of a P₁ fragment, induced by either an imidazolium salt or phenylisocyanate, with release of the transient triphosphirene Mes^{*}P₃, which was isolated as a dimer and trapped by 1,3-cyclohexadiene as a Diels–Alder adduct. DFT quantum chemical computations were used to delineate the reaction mechanisms. These unprecedented pathways grant access to both P₁- and P₃-containing organophosphorus compounds in two simple steps from white phosphorus.

The conversion of white phosphorus (P₄) directly into organophosphorus compounds avoids the use of environmentally taxing phosphorus halides,^[1] but is hampered by the unpredictable reactivity of the P4 tetrahedron.^[2] Increased control is possible with a stepwise strategy, in which P_4 is converted into an "activated" product to enable subsequent selective functionalization. Exemplary are the P₄-derived $R_2P_5^+$ cages A reported by Weigand and co-workers (Scheme 1 a),^[3] the carbene-stabilized diphosphene **B** reported by Bertrand and co-workers,^[4] the transition-metal-activated $\mu,\eta^{1:1}$ -P₄-coordinated diruthenium dication C of Stoppioni and co-workers,^[5] the terminal niobium phosphide **D** reported by Figueroa and Cummins,^[6] and the bimetallic, butterflytype bicyclo[1.1.0]tetraphosphabutanes E reported by the research groups of Scheer (M = Fe),^[7] Scherer (M = Fe),^[8] and Wolf (M = Ni).^[9-11]

We discovered that the nucleophilic addition of sterically encumbered aryl lithium reagents to P_4 in the presence of triarylborane Lewis acids (LAs) grants access to stable Li⁺

[*]	J. E. Borger, Dr. A. W. Ehlers, Dr. J. C. Slootweg,
	Prof. Dr. K. Lammertsma
	Department of Chemistry and Pharmaceutical Sciences
	Vrije Universiteit Amsterdam
	De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands)
	E-mail: K.Lammertsma@vu.nl
	Dr. M. Lutz
	Crystal and Structural Chemistry
	Bijvoet Center for Biomolecular Research, Utrecht University
	Padualaan 8, 3584 CH Utrecht (The Netherlands)
	Dr. A. W. Ehlers, Prof. Dr. K. Lammertsma
	Department of Chemistry, University of Johannesburg
	Auckland Park, Johannesburg, 2006 (South Africa)
	Dr. A. W. Ehlers, Dr. J. C. Slootweg
	Current address: Van 't Hoff Institute for Molecular Sciences,
	University of Amsterdam, Science Park 904, 1098 XH Amsterdam
	(The Netherlands)

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201607234.

Scheme 1. a) Examples of P₄-activation products used for subsequent controlled functionalization. b) Lewis acid stabilized [RP₄]⁻ anions and subsequent alkylation reactions. Mes*=2,4,6+tBu₃C₆H₂, Dmp=2,6-dimesitylphenyl; HOMO of the DFT-optimized geometry of $1a^-$.

salts **1** of the elusive $[\mathbf{RP}_4]^-$ butterfly anion (Scheme 1 b).^[12] The lone pair at the B-coordinated wing-tip P atom (see HOMO in Scheme 1 b) can be alkylated to give the neutral disubstituted bicyclotetraphosphanes **F** and **H** in high yield.^[13] The Lewis acid strength plays an important role in these reactions. That is, the weak Lewis acid BPh₃ in **1a** spontaneously dissociates from the \mathbf{RP}_4 core upon endocyclic substitution (subsequent isomerization gives **F**).^[13b] whereas removal of the strong Lewis acid B(C₆F₅)₃ in **1b** requires an additional step (**G**→**H**; Scheme 1 b).^[13a] The stability of the nonsymmetrical R₂P₄ derivatives is governed by steric effects: **F** with a bulky trityl substituent is indefinitely stable, whereas methyl-substituted **H** decomposes in solution. This notion inspired us to target the controlled and selective fragmentation of even smaller tetraphosphabutanes R₂P₄.

As a starting point, we focused on protonating BPh₃stabilized $\mathbf{1a}^{[13b]}$ and found that the Mes*P₄H formed in situ could be trapped by an N-heterocyclic carbene (NHC) to affect an unprecedented [3+1] fragmentation. After screening various organic carbonyl compounds, we further found that the anionic precursor $\mathbf{1a}$ itself also undergoes [3+1] fragmentation with phenylisocyanate.^[14]

The protonation of 1a proceeded readily upon addition of the mild proton donor [Me₃NH][BPh₄] (1.0 equiv) in

Angew. Chem. Int. Ed. 2016, 55, 1-7

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

Figure 1. ³¹P{¹H} NMR spectrum (162.0 MHz, [D₈]THF, 291 K) recorded directly after mixing **1a** and [Me₃NH][BPh₄]. Inset shows expanded experimental and simulated (inverted) regions. *exo,endo*-**2**: (δ_{PA} =-82.5, δ_{PM} =-175.3, δ_{PX} =-316.5 ppm; ¹J_{PA,PX}=-202.7, ¹J_{PM,PX}=-198.5, ²J_{PA,PM}=19.1, ¹J_{P,H}=147.8, ²J_{PA,PM} not resolved, ³J_{P,H}=17.2 Hz); *exo,exo*-**2** (δ_{PA} =-116.9, δ_{PM} =-252.9, δ_{PX} =-323.5 ppm; ¹J_{PA,PX}=-165.5, ¹J_{PM,PX}=-137.0, ²J_{PA,PM}=303.9, ¹J_{P,H}=133.9, ²J_{P,H}=111.7, ³J_{P,H}=111.1 Hz). The signal marked with an asterisk (*) was assigned to Mes*PH₂.

[D₈]THF at room temperature, thus giving full conversion into two isomers of the novel H-substituted bicyclo-[1.1.0]tetraphosphabutane 2 (Figure 1). Simulation of the ³¹P{¹H} NMR resonances^[15] revealed AMX₂ spin systems (inset; inverted) consistent with neutral exo,endo-2 and *exo,exo-2* in a 1:0.7 ratio $({}^{2}J_{PA,PM} = 19.1 \text{ and } 303.9 \text{ Hz}$, respectively). Also, the ¹H NMR spectrum confirmed the protonation of anion **1a** $(\delta({}^{1}\text{H}) = -1.34 \ ({}^{1}J_{\text{H,P}} = 147.5 \text{ Hz}, 1 \text{ H};$ $exo, endo-Mes^*P_4H$) and 0.65 (${}^{1}J_{H,P} = 133.2$ Hz, 1H; exo, exo-Mes* P_4H) ppm), which occurred with concurrent P-BPh₃ bond cleavage, as confirmed by the presence of only free BPh₃ and Li[BPh₄] in the ${}^{11}B{}^{1}H$ NMR spectrum (see the Supporting Information). Thus, the protonation of 1a provides a unique and facile route to a highly unshielded LA-free R_2P_4 derivative to enable the study of its controlled fragmentation.

As expected, **2** decomposed slowly at room temperature; after 2 h only Mes*PH₂ could be detected by ³¹P NMR spectroscopy. We envisioned a more controlled fragmentation by the formation of **2** in the presence of strong donors, for example, by the use of Brønsted acidic imidazolium chlorides, which produce an NHC in situ.^[3c,16] Indeed, the addition of [IDippH][Cl] (1.1 equiv; IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to a solution of **1a** in THF (Scheme 2) resulted in its instant and complete consumption.

The ³¹P NMR spectrum of the reaction mixture showed the formation of the phosphinidene adduct **3** (IDipp=PH, 13% by ³¹P NMR; $\delta(^{31}P) = -137.4$ ppm, ¹J_{PH} = 163.6 Hz), thus suggesting that the fragmentation of **2** had occurred by transfer of the wing-tip PH to the carbene. Recently, the

Scheme 2. Fragmentation of 1 a with [IDippH][Cl].

research groups of Driess,^[17] Grützmacher,^[18] and Tamm^[19] synthesized **3** by using instead a phosphasilene, Na[OCP], or P(SiMe₃)₃, respectively. Mes*PH₂ was the other observable P-containing product (8% by ³¹P NMR; δ (³¹P) = -132.1 ppm), whereas the ¹¹B NMR spectrum revealed a weak resonance signal at 2.6 and a larger signal at -7.4 ppm originating from [IDippH][BPh₃Cl] and IDipp-BPh₃, respectively (see the Supporting Information). The formation of the latter adduct frustrates the conversion into **3** and results in the decomposition of remaining labile **2** (see above).^[20,21]

DFT calculations carried out at the ω B97X-D/6-311 + G(2d,p)//6-31G(d) level by using the phenyl analogue of both *exo,endo-2* (2'; Ph instead of Mes*) and the NHC (Ph instead of Dipp) provided insight into the remarkable

Scheme 3. Relative ω B97X-D/6-311 + G(2d,p)//6-31G(d) energies (in kcal mol⁻¹) for the computed fragmentation pathway leading from *exo,endo*-2' to 3' and 8'.

formation of **3** (Scheme 3; comparable energies were obtained for *exo,exo-2'*, see the Supporting Information). Nucleophilic attack of the NHC at the most accessible wingtip P atom was computed to first give van der Waals complex **4'** ($\Delta E = -10.3 \text{ kcal mol}^{-1}$), which undergoes cleavage of an edge P–P bond with a modest barrier (8.4 kcal mol⁻¹) to afford zwitterionic **5'** ($\Delta E = -6.6 \text{ kcal mol}^{-1}$). Extrusion of the NHC–phosphinidene adduct **3'** with the concomitant formation of triphosphirene **6'** is endothermic ($\Delta E = 8.2 \text{ kcal mol}^{-1}$). It is likely that **6'** dimerizes ($\Delta \Delta E = -46.1 \text{ kcal mol}^{-1}$) to afford the intriguing hexaphosphane **8'**, which was recently synthesized by Schulz and co-workers (Ph = Mes*) from P₁ building blocks.^[22] We did not observe **8** in the ³¹P NMR spectrum, probably owing to its complex high-order splitting pattern.

Next, we wondered whether [3+1] fragmentation of the anionic precursor **1a** would also be feasible and whether P₃ compounds would be isolable. Neutral heteroallenes, such as isocyanates, emerged from substrate screening as suitable reagents. In fact, the treatment of **1a** in THF with excess phenylisocyanate (PhNCO; 20 equiv) afforded directly spirophosphoranide Li[**7**] (100% by ³¹P NMR; δ (³¹P{¹H}) = -62.6 ppm) as well as the tricyclic hexaphosphane Mes*₂P₆ (**8**; 19% by ³¹P NMR; δ (³¹P{¹H}) = -96.1 (m, P2/P3), -107.2 ppm (m, P1); Scheme 4).^[22] The two compounds

Scheme 4. Fragmentation of 1 a with PhNCO.

were isolated as analytically pure white powders in 80 (Li[7]) and 18% yield (8); they were fully characterized by multinuclear NMR spectroscopy, HRMS, and X-ray crystal-structure determination (see the Supporting Information for 8).

The molecular structure of Li[7] revealed a distorted trigonal-bipyramidal geometry around the central phospho-

Figure 2. Polymeric coordination chain of Li[7] in the crystal (ellipsoids at 30% probability; hydrogen atoms are omitted for clarity; only the major disorder component is shown).^[23] Selected bond lengths [Å] and angles [°]: P1–C2/C16 1.768(8)/1.855(6), P1–N1/N3 1.979(5)/1.911(5), Li1–O1 1.866(10), Li1–O3ⁱ 1.870(9); C2-P1-N1 85.3(3), N3-P1-C16 85.5(3), C16-P1-C2 96.8(3), N1-P1-N3 168.3(3). Symmetry codes i: x + 0.5, 0.5 - y, 1 - z; ii: x - 0.5, 0.5 - y, 1 - z.

rus atom (A-isomer; Figure 2), with the most apicophilic nitrogen atoms in the axial positions and the carbonyl groups and the P lone pair in the equatorial plane. Ion pairing through complexation of the Li⁺ cation to the oxygen atoms of the anion (Li1···O1 = 1.866(10) Å) creates along the crystallographic *a*-axis a stable (m.p.: 149 °C) one-dimensional coordination polymer, which was found to be insoluble in THF. The formation of Li[7] from **1a** is fully reminiscent of the reaction of Na[OCP] with RNCO (R = Ph, Cy, *n*Bu),^[24] in which the 2-phosphaethynolate anion acts as a formal "P⁻" source, with CO as the leaving group, akin to Mes*P₃ in our case. Note that Na[OCP] provides the living isocyanate trimerization catalyst [**7**]⁻ as the unstable Na⁺ salt, whereas Li[**7**] showed only slight decomposition in [D₆]DMSO over a 24 h period.

We resorted again to DFT calculations to provide detailed insight into the fragmentation of $Li[PhP_4 \cdot BPh_3]$ (1a'; Scheme 5: Li⁺ countercations are included, but not shown). Our proposed mechanism starts with the coordination of PhNCO to 1a' to give complex 9' ($\Delta E = -21.2 \text{ kcal mol}^{-1}$),^[25] which affords 10' after P–C bond formation ($\Delta E = 0.0$ kcal mol⁻¹; $\Delta E_a = 15.9 \text{ kcal mol}^{-1}$) at the BPh₃-coordinated wingtip phosphorus atom. The anionic carboxamide group of 10' then attacks the electrophilic C atom of a second phenylisocyanate molecule to give 12' ($\Delta E_{\text{total}} = -36.4 \text{ kcal mol}^{-1}$) via coordination complex 11'.^[25,26] In 12', the nucleophilic N2 atom and the wing-tip P4 atom are in close proximity (2.08 Å), which enables P–N bond formation with concurrent P–P bond cleavage (**TS**_{12'-13'}; $\Delta E_a = 12.0 \text{ kcal mol}^{-1}$). Fragmentation of the resulting compound 13' generates the BPh₃ adduct of heterocycle 14' and triphosphirene 6'. Whereas this step is energetically uphill ($\Delta E = 21.2 \text{ kcal mol}^{-1}$), it is significantly moderated by the dimerization of 6' ($\Delta E =$ $-46.1 \text{ kcalmol}^{-1}$) as well as by the nucleophilic addition of 14' to two additional PhNCO molecules to afford the spiro compound Li[7'] with the liberation of BPh₃ ($\Delta E =$ $-29.1 \text{ kcal mol}^{-1}; \Delta E_{\text{overall}} = -90.4 \text{ kcal mol}^{-1}).$

These are not the final page numbers!

www.angewandte.org

Scheme 5. Relative ω B97X-D/6-311 + G(2d,p)//6-31G(d) energies (in kcalmol⁻¹) for the computed fragmentation pathway leading from 1a' to 7', 8', and BPh₃. A Li⁺ countercation was included in all anionic species, but is not shown.

Scheme 6. Fragmentation reactions in the presence of 1,3-CHD. Dipp=2,6-*i*Pr₂C₆H₃, Mes*=2,4,6-*t*Bu₃C₆H₂. I) [IDippH][Cl] (1.1 equiv), THF, room temperature; II) PhNCO (4 equiv), THF, room temperature.

To confirm the intermediacy of triphosphirene Mes*P₃ in the reactions,^[27,28] we sought to trap this important P₃ building block by a Diels–Alder reaction with 1,3-cyclohexadiene (1,3-CHD). Satisfyingly, the addition of an excess amount of 1,3-CHD (50 equiv) to the reaction mixture of **1a** and either [IDippH][Cl] or PhNCO (Scheme 6) afforded the desired cycloaddition product **15** in 27 (³¹P NMR) and 69% yield (isolated), respectively, in addition to the "P"-transfer products **3** (30% by ³¹P NMR) and Li[**7**] (>99% isolated).

The two ³¹P{¹H} NMR resonances of **15** at -160.9 (P1) and -195.2 ppm (P2/P3) show a second-order AB₂ spin system with ¹J_{PA,PB} coupling constants of 192.0 Hz.^[15] The molecular structure (Figure 3) reveals a 1-aryl-2,3-dialkyl-substituted organotriphosphirane with a shorter P1–C1 bond (1.8766-

Figure 3. Molecular structure of **15** in the crystal (ellipsoids at 50% probability; hydrogen atoms are omitted for clarity).^[23] Only the major form of the disordered *tert*-butyl group is shown. Selected bond lengths [Å] and torsion angles [°]: P1–P2/P3 2.2096(5)/2.2139(5), P2–P3 2.1755(6), P1–C1 1.8766(14), P2–C22 1.9210(16), P3–C19 1.9149-(16), C23–C24 1.332(2), C21–C20 1.538(2); P1-P2-P3-C19 101.35(6).

(14) Å) than the P2-C22 and P3-C19 bonds (1.9210(16) and 1.9149(16) Å, respectively) owing to the different hybridization of their carbon substituents (sp² versus sp³). The product was formed as a single (endo) stereoisomer with the C=C double bond (C23-C24 1.332(2) Å; C20-C21 1.538-(2) Å) positioned opposite to the P1 lone pair. Also, DFT calculations, again at the ω B97X-D/6-311 + G(2d,p)//6-31G-(d) level, revealed *endo*-15' (Mes^{*} = Ph) to be thermodynamically and kinetically favored over *exo*-15' ($\Delta E = -34.2$ versus $-30.4 \text{ kcal mol}^{-1}$; $\Delta E_a = 3.5 \text{ versus } 6.3 \text{ kcal mol}^{-1}$, respectively), which may be attributed to secondary orbital interactions in the transition state leading to the endo adduct (see the Supporting Information).^[29] Diels-Alder adduct 15 is a unique example of a nonsymmetrically substituted tris-(organyl) P_3 species derived directly from P_4 ; as well as the obtained P₁ products, the formation of adduct 15 illustrates the versatility of 1a as a platform for the stepwise preparation of organophosphorus compounds from white phosphorus.

In conclusion, we have shown that the P_4 -derived Lewis acid stabilized bicyclo[1.1.0]tetraphosphabutanide compound **1a** can be utilized as a source of P_1 - and P_3 -containing organophosphorus compounds through unprecedented [3+1] fragmentation reactions. Their formation proceeds by the extrusion of a P_1 fragment, as induced by either an imidazolium salt or isocyanate, with concurrent release of the transient triphosphirene Mes* P_3 , which can be isolated as a dimer or trapped with 1,3-cyclohexadiene. The latter approach afforded the unique tris(organyl) triphosphirane **15**. We anticipate the presented chemistry of **1a** to be a versatile entry point for the design of selective strategies for the fragmentation and functionalization of P_4 .

Acknowledgements

This research was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO/CW).

Keywords: anions \cdot fragmentation \cdot Lewis acids \cdot organophosphorus compounds \cdot phosphorus

- [1] D. E. C. Corbridge, *Phosphorus 2000*, Elsevier, Amsterdam, **2000**.
- [2] For reviews, see: a) M. Peruzzini, L. Gonsalvi, A. Romerosa, *Chem. Soc. Rev.* 2005, *34*, 1038–1047; b) B. M. Cossairt, N. A. Piro, C. C. Cummins, *Chem. Rev.* 2010, *110*, 4164–4177; c) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, *Chem. Rev.* 2010, *110*, 4178–4235; d) M. Scheer, G. Balázs, A. Seitz, *Chem. Rev.* 2010, *110*, 4236–4256; e) N. A. Giffin, J. D. Masuda, *Coord. Chem. Rev.* 2011, *255*, 1342–1359.
- [3] a) M. H. Holthausen, J. J. Weigand, J. Am. Chem. Soc. 2009, 131, 14210-14211; b) J. J. Weigand, M. Holthausen, R. Fröhlich, Angew. Chem. Int. Ed. 2009, 48, 295-298; Angew. Chem. 2009, 121, 301-304; c) M. H. Holthausen, S. K. Surmiak, P. Jerabek, G. Frenking, J. J. Weigand, Angew. Chem. Int. Ed. 2013, 52, 11078-11082; Angew. Chem. 2013, 125, 11284-11288; d) M. H. Holthausen, J. J. Weigand, Chem. Soc. Rev. 2014, 43, 6639-6657.
- [4] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2007, 46, 7052-7055; Angew. Chem. 2007, 119, 7182-7185; for other examples of carbene activation by the group of Bertrand, see: a) O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2009, 48, 5530-5533; Angew. Chem. 2009, 121, 5638-5641; b) C. D. Martin, C. M. Weinstein, C. E. Moore, A. L. Rheingold, G. Bertrand, Chem. Commun. 2013, 49, 4486-4488.
- [5] P. Barbaro, C. Bazzicalupi, M. Peruzzini, S. S. Costantini, P. Stoppioni, Angew. Chem. Int. Ed. 2012, 51, 8628-8631; Angew. Chem. 2012, 124, 8756-8759.
- [6] a) J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2003, 125, 4020-4021; b) J. S. Figueroa, C. C. Cummins, Angew. Chem. Int. Ed. 2004, 43, 984-988; Angew. Chem. 2004, 116, 1002-1006; c) J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2004, 126, 13916-13917; d) N. A. Piro, J. S. Figueroa, J. T. McKellar, C. C. Cummins, Science 2006, 313, 1276-1279.
- [7] a) M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755-3758; Angew. Chem. 2005, 117, 3821-3825; b) S. Deng, C. Schwarzmaier, C. Eichhorn, O. Scherer, G. Wolmershäuser, M. Zabel, M. Scheer, Chem. Commun. 2008, 4064-4066; c) C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13116-13121; Angew. Chem. 2015, 127, 13309-13314.
- [8] a) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics
 1998, 17, 4110-4112; b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. 2000, 39, 1425-1427; Angew. Chem. 2000, 112, 1483-1485.
- [9] a) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, *Chem. Commun.* 2014, *50*, 7014–7016; b) S. Pelties, A. W. Ehlers, R. Wolf, *Chem. Commun.* 2016, *52*, 6601–6604.
- [10] For other examples of P₄-derived bicvclo-[1.1.0]tetraphosphabutane derivatives, see: a) R. Riedel, H.-D. Hausen, E. Fluck, Angew. Chem. Int. Ed. Engl. 1985, 24, 1056-1057; Angew. Chem. 1985, 97, 1050; b) M. B. Power, A. R. Barron, Angew. Chem. Int. Ed. Engl. 1991, 30, 1353-1354; Angew. Chem. 1991, 103, 1403-1404; c) J.-P. Bezombes, P. B. Hitchcock, M. F. Lappert, J. E. Nycz, Dalton Trans. 2004, 499-501; d) A. R. Fox, R. J. Wright, E. Rivard, P. P. Power, Angew. Chem. Int. Ed. 2005, 44, 7729-7733; Angew. Chem. 2005, 117, 7907-7911; e) B. M. Cossairt, C. C. Cummins, New J. Chem. **2010**, 34, 1533–1536; f) D. Holschumacher, T. Bannenberg, K. Ibrom, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2010, 39, 10590-10592; g) S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky, J.-P. Demers, A. Lange, D. Stalke, J. Am.

Chem. Soc. **2011**, *133*, 17889–17894; h) N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye, J. D. Masuda, *Inorg. Chem.* **2012**, *51*, 11837–11850; i) S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, *Angew. Chem. Int. Ed.* **2014**, *53*, 7639–7642; *Angew. Chem.* **2014**, *126*, 7769–7773; j) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, *Angew. Chem. Int. Ed.* **2014**, *53*, 9077–9081; *Angew. Chem.* **2014**, *126*, 9223–9227; k) S. Heinl, M. Scheer, *Chem. Sci.* **2014**, *5*, 3221–3225.

- [11] For two cationic examples prepared from P₁ building blocks, see:
 a) M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford, J. J. Weigand, *Angew. Chem. Int. Ed.* 2012, *51*, 2964–2967; *Angew. Chem.* 2012, *124*, 3018–3021; b) J. Bresien, K. Faust, A. Schulz, A. Villinger, *Angew. Chem. Int. Ed.* 2015, *54*, 6926–6930; *Angew. Chem.* 2015, *127*, 7030–7034.
- [12] The anion has never been isolated, but was detected by ³¹P NMR spectroscopy by Baudler et al., who after the reduction of P₄ with Na/K naphthalenide observed [HP₄]⁻ at low temperature; [HP₄]⁻ was also recently detected by Mézailles and co-workers by the use of borohydrides: a) M. Baudler, C. Adamek, S. Opiela, H. Budzikiewicz, D. Ouzounis, *Angew. Chem. Int. Ed. Engl.* 1988, *27*, 1059–1061; *Angew. Chem.* 1988, *100*, 1110–1111; b) K. X. Bhattacharyya, S. Dreyfuss, N. Saffon-Merceron, N. Mézailles, *Chem. Commun.* 2016, *52*, 5179–5182.
- [13] a) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2014, 53, 12836-12839; Angew. Chem. 2014, 126, 13050-13053; b) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2016, 55, 613-617; Angew. Chem. 2016, 128, 623-627.
- [14] Note that the reaction of **1a** with the metal carbonyl complex $[(MeCN)W(CO)_5]$ affords anionic Li[Mes*P₄·(W(CO)₅)₂] (see Ref. [13b]).
- [15] Spectral parameters were determined by iterative full line-shape analysis by using the gNMR simulation program: P. H. M. Budzelaar, gNMR, version 5.0.6.0, **2006**.
- [16] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2007, 129, 14180–14181.
- [17] K. Hansen, T. Szilvási, B. Blom, S. Inoue, J. Epping, M. Driess, J. Am. Chem. Soc. 2013, 135, 11795–11798.
- [18] A. M. Tondreau, Z. Benkő, J. R. Harmer, H. Grützmacher, *Chem. Sci.* 2014, *5*, 1545–1554; P₄ has also been directly converted into 3: M. Cicač-Hudi, J. Bender, S. H. Schlindwein, M. Bispinghoff, M. Nieger, H. Grützmacher, D. Gudat, *Eur. J. Inorg. Chem.* 2016, 649–658.
- [19] A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2014, 53, 13568–13572; Angew. Chem. 2014, 126, 13786–13790.
- [20] IDipp–BPh₃ can be considered as a quenched frustrated Lewis pair (FLP) in equilibrium with its constituents.
- [21] For a related FLP system in which the Lewis acid B(C₆F₅)₃ was used to activate dihydrogen, see: D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, *Angew. Chem. Int. Ed.* **2008**, *47*, 7428–7432; *Angew. Chem.* **2008**, *120*, 7538–7542.
- [22] J. Bresien, A. Schulz, A. Villinger, Chem. Eur. J. 2015, 21, 18543– 18546.
- [23] CCDC 1491988, 1491989, and 1491990 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [24] D. Heift, Z. Benkő, H. Grützmacher, A. R. Jupp, J. M. Goicoechea, *Chem. Sci.* 2015, 6, 4017–4024.
- [25] Complexes 9' and 11' feature a PhNCO···Li⁺ interaction, the energy of which is overestimated and is moderated in solution by the coordination of THF solvent molecules to the Li⁺ cation.
- [26] The addition reactions are templated by the $\mathrm{Li^{+}}$ cation.
- [27] A similar diphosphene intermediate was proposed by Weigand for the NHC-induced [3+2] fragmentation of an [RP₅Cl]⁺ cage

Angew. Chem. Int. Ed. 2016, 55, 1-7

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

cation (see Ref. [3c]) and by Bertrand for the reaction of P_4 with cyclic (alkyl)(amino)carbenes (CAACs; see Ref. [4]).

- [28] The triphenyltin analogue was isolated previously through liberation of the corresponding phosphene from a niobium precursor: B. M. Cossairt, C. C. Cummins, *Angew. Chem. Int. Ed.* **2010**, *49*, 1595–1598; *Angew. Chem.* **2010**, *122*, 1639–1642.
- [29] This selectivity was also observed by Cossairt and Cummins: a) B. M. Cossairt, C. C. Cummins, Angew. Chem. Int. Ed. 2008,

47, 8863-8866; Angew. Chem. **2008**, 120, 8995-8998; b) Ref. [28].

Manuscript received: July 26, 2016 Final Article published: ■■ ■■, ■■■■

Communications

Communications

P₄ Fragmentation

J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma* _____

Selective [3+1] Fragmentations of P_4 by "P" Transfer from a Lewis Acid Stabilized [RP₄]⁻ Butterfly Anion

Cracking P₄: Two [3+1] fragmentations of the Lewis acid stabilized bicyclo[1.1.0]tetraphosphabutanide Li[Mes*P₄·BPh₃] (Mes*=2,4,6-tBu₃C₆H₂) were induced by an imidazolium salt or phenylisocyanate (see scheme). These unprecedented pathways provided access to P_1 - and P_3 - containing organophosphorus compounds in two straightforward steps from white phosphorus.