Downloaded by: University of Queensland. Copyrighted material.

Synthesis of JKLM Ring Fragment of Ciguatoxin via Acetylene-Cobalt Strategy

Takayuki Baba, Minoru Isobe*

Laboratory of Organic Chemistry, School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601, Japan Fax +81(52)7894111; E-mail: isobem@agr.nagoya-u.ac.jp Received 25 December 2003

Abstract: A stereoselective synthesis of the JKLM ring fragment has been achieved through a coupling between two segments via heteroconjugate addition, seven-membered ether ring formation mediated by an acetylene cobalt complex and spiroketalization reaction.

Key words: acetylene cobalt complex, reductive decomplexation, heteroconjugate addition, medium sized ring, ciguatoxin

Ciguatoxin (CTX) is known as a principal toxin of ciguatera food poisoning caused by carnivorous fishes in the tropical and subtropical sea areas.¹ Several synthetic groups have been studying the total synthesis of CTX (Figure 1).^{2,3} We also have endeavored to develop effective methodologies toward the synthesis of ciguatoxin. We have already achieved the syntheses of ABC rings with the side chain,⁴ BCDE rings⁵ and E'FGH' rings⁶ using acetylene cobalt complex strategy. With regard to right part of ciguatoxin, previously we reported a model study of stereoselective synthesis of the H'IJK ring fragment.⁷ In this communication, we report the synthesis of the JKLM ring fragment as the right end of ciguatoxin.

The JKLM-ring fragment **A**, representing C39–C55 portion of ciguatoxin, consists of *trans*-fused tricyclic 6/7/6membered ether ring and 6/5 spiroketal system. The retrosynthetic analysis for compound **A** is illustrated in Scheme 1. Opening of the terminal spiroketal in compound **A** provides **B** as a synthetic equivalent. The sevenmembered ring in **B** would be prepared via acetylene cobalt complex **C**. Opening of the seven-membered ring K in **C** gives compound **D**, which further leads us to the 2 segments **E** and **F** to be coupled between the C46 and C47 bond on the basis of a heteroconjugate addition.⁷

Synthesis of the vinyl sulfone **E** began with methyl- α -Dglucopyranoside derivative (Scheme 2). Thus, hydroxyl group at the C2 position in the acetonide 1 was selectively protected by pivaloyl group.⁸ Remaining free hydroxyl group was removed under modified Barton conditions⁹ to afford compound 2. The protective groups in 2 were manipulated to provide 3, which was transformed to lacton 4 via acetolysis, hydrolysis and oxidation of the anomeric position. Addition of allylmagnesium bromide to lactone 4, followed by Kishi's silane reduction,¹⁰ provided hydropyran system 5 as an exclusive diastereomer. Removal of the pivaloyl group from 5 led to a diol which was converted to 6 through disilylation and selective removal of the silyl group attached to the primary hydroxyl group.¹¹ Oxidation of the primary alcohol followed by dibromo-olefination of the resulting aldehyde gave the vinyl dibromide¹² which was converted to the thiophenylacetylene 7 by further treatment with *n*-BuLi and PhSSO₂Ph. Hydrosilvlation of thiophenylacetylene of 7 in the presence of catalytic amount of cobalt complex¹³ afforded corresponding vinylsilane with extremely high regioselectivity. Finally, removal of the acetyl group, followed

Figure 1

Synlett 2003, No. 4, Print: 12 03 2003. Art Id.1437-2096,E;2003,0,04,0547,0551,ftx,en;U14802ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

Scheme 1 Retrosynthetic Analysis of JKLM Segment of CTX

by treatment with *m*-CPBA in the presence of sodium hydrogen phosphate provided the vinyl sulfone $\mathbf{8}$.¹⁴

The construction of the other requisite subsegment **F** (in Scheme 1) is shown in Scheme 3. Thus, tri-*O*-acetyl-D-gulcal was converted to the enone **9** by 4-step sequence (O-glycosidation, deacetylation, silylation and oxidation), which could be used in a large scale operation. 1,4-Addition of lithiumdimethyl cuprate to α , β -unsaturated carbonyl of **9**, followed by treatment with MeI in the presence of *N*,*N*-dimethylacetamide as a co-solvent provided **10** as an exclusive diastereomer. The carbonyl group was stereoselectively reduced to the alcohol by NaBH(OAc)₃

after the removal of TBS group of **10** to afford the diol **11**. Opening of the pyranose ring of **11** with 1,3-propanedithiol under strongly acidic condition provided open-chain triol compound, which was subsequently protected with TBS and isopropylidene group to give **12**. Coupling reaction of the lithio derivative of dithiane **12** with glycidyl-methoxybenzyl ether uneventfully proceeded under mild condition¹⁵ and afforded an alcohol that was protected with benzyl group together with the primary alcohol after desilylation. Subsequent acidic hydrolysis of the acetonide group afforded **13**. Oxidative cleavage of the 1,2-diol of **13** by Pb(OAc)₄ provided corresponding aldehyde. The aldehyde was treated with lithium TMS acetylide and

Scheme 2 Reagents and conditions: a) i) Piv-Cl, Py, CH_2Cl_2 , 68%; ii) thiophosgene, imidazole, $CHCl_3$, toluene, 90 °C; iii) AIBN, NaH_2PO_2 , 2-methoxy-ethanol, reflux, 87% in 2 steps. b) i) NaOMe, MeOH, 80%; ii) KOH, BnCl; iii) Amberlyst 15E[®], MeOH, 86% in 2 steps; iv) Piv-Cl, Py, CH_2Cl_2 . c) i) H_2SO_4 , Ac_2O , 96% in 2 steps; ii) HCl, DME, H_2O , 63%; iii) Ac_2O , DMSO, 98%. d) i) $CH_2=CHCH_2MgBr$, THF, -78 °C; ii) Et₃SiH, BF₃-OEt₂, CH₃CN, -10 °C, 66% in 2 steps. e) i) NaOMe, MeOH, 93%; ii) TBS-Cl, imidazole, DMF; iii) CSA, MeOH, 88% in 2 steps. f) i) (ClCO)₂, DMSO, CH₂Cl₂; ii) CBr₄, PPh₃, CH₂Cl₂, 91% in 2 steps; iii) n-BuLi, THF, -78 °C to 0 °C, then PhSSO₂Ph; iv) TBAF, THF; v) Ac₂O, Py, 77% in 3 steps. g) i) Et₃SiH, biscobalthexacarbonyl-2-methyl-but-3-yn-2-ol (cat.), ClCH₂CH₂Cl; ii) K₂CO₃, MeOH; iii) *m*-CPBA, Na₂HPO₄, CH₂Cl₂, 85% in 3 steps.

Synlett 2003, No. 4, 547-551 ISSN 0936-5214 © Thieme Stuttgart · New York

Scheme 3 *Reagents and conditions*: a) i) *i*-PrOH, BF₃·OEt₂, CH₂Cl₂; ii) Et₃N, MeOH, H₂O, 84% in 2 steps; iii) TBS-Cl, imidazole, DMF; iv) Ac₂O, DMSO, 97% in 2 steps. b) CuI, MeLi, Et₂O, 0 °C, then MeI, DMA, 92%. c) i) TBAF, THF, 82%; ii) NaBH(OAc)₃, CH₃CN, AcOH, 93%. d) i) 1,3-propanedithiol, HCl, CHCl₃; ii) TBS-Cl, Et₃N, DMAP, CH₂Cl₂, 89% in 2 steps; iii) 2,2-dimethoxypropane, PPTS, CH₂Cl₂, quant. e) i) (2*S*)-glycidylmethoxybenzyl ether, THF, HMPA, 96%; ii) TBAF, THF; iii) NaH, BnBr, DMF; iv) 80% AcOH, 70% in 3 steps. f) i) Pb(OAc)₄, CH₂Cl₂, 99%; ii) *n*-BuLi, TMS-acetylene, THF, then MeI; iii) TBAF, THF, 86% in 2 steps. g) i) NCS, AgNO₃, 2,4,6-collidine, CH₃CN, H₂O; ii) NaBH₄, MeOH; iii) TBSOTf, Py, CH₃CN, 54% in 3 steps.

Scheme 4 Reagents and conditions: a) i) 15, n-BuLi, THF; ii) TBAF, THF, 87% in 2 steps. b) i) ethylvinylether, PPTS, CH_2Cl_2 , quant.; ii) TBAF, THF, 88%; iii) Ac_2O , DMAP, Py; iv) CSA, MeOH, quant. in 2 steps; v) $Co_2(CO)_8$, CH_2Cl_2 . c) BF_3 ·OEt₂, CH_2Cl_2 , 93% in 2 steps. d) *bis*-trimethylsilylacetylene, Bu₃SnH, toluene, 87% (19: 68%, 20: 19%).

MeI, and then desilylated with TBAF to give the acetylene **14**. Finally, removal of the dithiane group was performed by brief treatment of **14** with *N*-chlorosuccinimide and AgNO₃ in wet acetonitrile containing 2,4,6-trimethylpyridine. The unmasked ketone was reduced to an alcohol, which was protected by TBS group to afford the targeted compound **15**.¹⁶

The coupling between 8 and 15 and subsequent K ring cyclization are depicted in Scheme 4. Thus, generation of the lithium acetylide of 15 with *n*-BuLi, followed by addition of 8, gave a mixture of diastereomeric isomers of 16 (3.6:1 ratio with regard to newly formed C46 asymmetric center). Our previous report of the studies on controlling the stereochemistry of the methyl group in ring K^{7a} has shown that the heteroconjugate addition reaction of lithium acetylides and vinyl sulfone with non-protected β -hyproceed group with extremely high droxyl stereoselectivity. The heteroconjugate addition in the present study, however, keeps agreeable stereoselectivity (3.6:1), so we decided to push forward the work of synthesis. TBS group of 16 was exchanged to acetyl group under usual conditions, and then treatment with $Co_2(CO)_8$ in dichloromethane provided the acetylene cobalt complex 17. Upon treatment of 17 with boron trifluoride etherate, the K ring cyclization took place to afford the bicyclic compound 18 having syn stereochemistry. Reductive decomplexation of 18 was conducted with 10 equivalents of Bu₃SnH under heating for 1 hour at 60 $^{\circ}$ C in toluene¹⁷ in the presence of bis-trimethylsilylacetylene¹⁸ to afford the desired endocyclic olefin **19** and C46-epimer **20** as chromatographically separable products.

Figure 2

The final stage of the synthesis of the JKLM ring fragment is illustrated in Scheme 5. Removal of the acetyl group in **19**, followed by selective protection of the primary alcohol by TBS group and oxidation with IBX,¹⁹ furnished ketone **21**. The terminal olefin in **21** was oxidized to give the methyl ketone **22**. The stereoselective dihydroxylation of the endocyclic olefin in **22** was achieved by Sharpless reagent²⁰ to afford **23** and **24** as an equilibrium mixture. Desilylation and spiroketalization were conducted with

Scheme 5 *Reagents and conditions*: a) i) NaOMe, MeOH; ii) TBSCl, Et₃N, DMAP, CH₂CH₂, 95% in 2 steps; iii) IBX, DMSO, 97%. b) PdCl₂, CuCl, DMF, H₂O, O₂, 85%. c) AD-mix- β , CH₃SO₂NH₂, *t*-BuOH, H₂O. d) HF·Py, CH₃CN, 72% in 2 steps. e) Na·Hg, Na₂HPO₄, MeOH, 82%.

Synlett 2003, No. 4, 547-551 ISSN 0936-5214 © Thieme Stuttgart · New York

HF·pyridine in acetonitrile to afford the tetracyclic compound **25** as a major product. Finally, reduction with sodium-amalgam in methanol gave desulfonylation product **26**.²¹ The stereochemistry of **26** was confirmed from the NOESY experiments and the couplong constants ($J_{44,45} =$ 9.0Hz, $J_{48,49} = 9.5$ Hz) as shown in Figure 2.

We have achieved an efficient synthesis of the JKLM ring fragment based on the convergent strategy. Further studies toward the synthesis of the right part of CTX along this line are now in progress.

Acknowledgment

This work was supported by a grant-in-aid from the Ministry of Education, Science and Technology. Dr. B. Kirshbaum and Dr. G.-B. Huang contributed to this study in earlier stages.

References

- (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967, 155, 1267. (b) Murata, M.; Legurand, A. M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380. (c) Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325. (d) Yasumoto, T. Chem. Rec. 2001, 1, 228.
- (2) The first total synthesis was reported: (a) Hirama, M.;
 Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.;
 Satake, M. *Science* 2001, *294*, 1904. (b) Inoue, M.; Uehara,
 H.; Maruyama, M.; Hirama, M. *Org. Lett.* 2002, *4*, 4551.
- (3) For synthetic studies of the right part of ciguatoxin from other groups, see: (a) Uehara, H.; Oishi, T.; Inoue, M.; Shoji, M.; Nagumo, Y.; Kosaka, M.; Brazidec, J.-Y. L.; Hirama, M. *Tetrahedron* 2002, *58*, 6493. (b) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. *Org. Lett.* 2002, *4*, 2771. (c) Fujiwara, K.; Takaoka, D.; Kusumi, K.; Kawai, K.; Murai, A. *Synlett* 2001, 691. (d) Oka, T.; Murai, A. *Tetrahedron* 1998, *54*, 1; and references therein.
- (4) (a) Hosokawa, S.; Isobe, M. J. Org. Chem. 1999, 64, 37.
 (b) Saeeng, R.; Isobe, M. Heterocycles 2001, 54, 789.
- (5) (a) Kira, K.; Isobe, M. *Tetrahedron Lett.* 2001, *42*, 2821.
 (b) Kira, K.; Isobe, M. *Tetrahedron Lett.* 2000, *41*, 5951.
 (c) Kira, K.; Hamajima, A.; Isobe, M. *Tetrahedron* 2002, *58*, 1875.
- (6) Takai, S.; Isobe, M. Org. Lett. 2002, 4, 1183.
- (7) (a) Liu, T.-Z.; Isobe, M. Synlett 2000, 266. (b) Liu, T.-Z.; Isobe, M. Synlett 2000, 587. (c) Liu, T.-Z.; Li, J.-M.; Isobe, M. Tetrahedron 2000, 56, 5391.
- (8) Tomic-Kulenovic, S.; Keglevic, D. *Carbohydr. Res.* **1980**, 85, 302.
- (9) (a) Graham, A. E.; Thomas, A. V.; Yang, R. J. Org. Chem.
 2000, 65, 2583. (b) Barton, D. H. R.; McCombie, J. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
- (10) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
- (11) Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang, C.-K. *Tetrahedron* **1990**, *46*, 4517.
- (12) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.

- (13) (a) Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K. Tetrahedron Lett. **1999**, 40, 6927. (b) Jiang, Y.; Isobe, M. Tetrahedron **1996**, 52, 2877.
- (14) Physical data for **8**. ¹H NMR (CDCl₃, 300 MHz) δ 0.58–0.88 [15 H, m, -Si(*CH*₂*CH*₃)₃], 1.47 (1 H, q, *J* = 11.5 Hz, H-43a), 2.16 (1 H, m, allylic), 2.55 (1 H, m, allylic), 2.73 (1 H, dt, *J* = 12.0 Hz, 4.5 Hz, H-43b), 3.01 (1 H, d, *J* = 9.0 Hz, -OH), 3.11–3.27 (2 H, m, H-41, 42), 3.34 (1 H, m, H-44), 4.45 (1 H, d, *J* = 11.5 Hz, -OC*H*₂Ph), 4.63 (1 H, d, *J* = 11.5 Hz, -OC*H*₂Ph), 4.68 (1 H, ddd, *J* = 11.5 Hz, 9.5 Hz, 4.5 Hz, H-44), 4.76 (1 H, t, *J* = 9.0 Hz, H-45), 4.97–5.05 (2 H, m, olefinic), 5.68–5.83 (1 H, m, olefinic), 6.40 (1 H, d, *J* = 9.0 Hz, H-46), 7.26–7.40 (5 H, m, aromatic), 7.48–7.63 (3 H, m, aromatic), 7.83–7.90 (2 H, m, aromatic).
- (15) Smith, A. B.; Condon, S. M.; McCauley, J. A.; Leazer, J. L. Jr.; Leahy, J. W.; Maleczka, R. E. Jr. J. Am. Chem. Soc. 1997, 119, 947.
- (16) Physical data for **15**. ¹H NMR (CDCl₃, 300M Hz) δ 0.00– 0.08 [6 H, m, -Si(CH₃)₂t-Bu], 0.86–1.03 [15 H, m, -Si(CH₃)₂t-Bu, CH₃-59, CH₃-60], 1.62–1.99 (4 H, m, H-50, 51, 53a, 53b), 2.36–2.45 (1 H, m, H-47), 3.32–3.40 (3 H, m, -OCH₃), 3.48–4.06 (5 H, m, H-49, 52, 54, 55a, 55b), 3.83 (3 H, s, -OC₆H₄OCH₃), 4.49–4.76 (4 H, m, -OCH₂Ar), 6.90 (2 H, br d, J = 8.0 Hz, aromatic), 7.27–7.39 (7 H, m, aromatic).
- (17) Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 2609.
- (18) Bis(trimethylsilyl)acetylene was added to prevent isomerization of the terminal olefin to the inner olefin. For the detail of bis(trimethylsilyl)-acetylene effect in the reductive decomplexation, see: Kira, K.; Tanda, H.; Hamajima, A.; Baba, T.; Takai, S.; Isobe, M. *Tetrahedron* **2002**, *58*, 6485.
- (19) (a) Hartman, C.; Meyer, V. *Chem. Ber.* **1983**, *26*, 1727.
 (b) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. **1999**, *64*, 4537.
- (20) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morioka, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. *J. Am. Chem. Soc.* **1992**, *57*, 2768.
- (21) Physical data for 26. IR (KBr) 3447, 2926, 1717, 1636, 1456, 1355, 1077, 1025, 938, 739, 698, 419 cm⁻¹. ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 1.01 (3 \text{ H}, \delta, J = 6.5 \text{ Hz}, CH_3-60), 1.06$ (3 H, d, J = 6.5 Hz, CH₃-59), 1.12 (3 H, d, J = 7.5 Hz, CH₃-58), 1.40 (1 H, q, J = 11.5 Hz, H-43a), 1.48 (1 H, dq, J = 11.0 Hz, 6.5 Hz, H-51), 1.61 (1 H, ddq, J = 11.0 Hz, 10.0 Hz, 6.5 Hz, H-50), 2.00 (1 H, qdd, J = 7.5 Hz, 5.0 Hz, 3.5 Hz, H-46), 2.08 (1 H, dd, J = 14.0 Hz, 4.0 Hz, H-53a), 2.13 (1 H, dd, J = 14.0 Hz, 6.5 Hz, H-53b), 2.45 (1 H, dd, J = 15.5 Hz, 9.0 Hz, H-40a), 2.54 (1 H, dt, J = 12.0 Hz, 4.5 Hz, H-43), 2.79 (1 H, dd, J = 15.5 Hz, 3.5 Hz, H-40b), 1.61 (1 H, ddg, J =11.0 Hz, 10.0 Hz, 6.5 Hz, H-50), 2.95 (1 H, dd, J = 9.5 Hz, 5.0 Hz, H-45), 3.15 (1 H, ddd, *J* = 11.5 Hz, 9.0 Hz, 4.5 Hz, H-42), 3.26 (1 H, t, J = 9.5 Hz, H-49), 3.59 (1 H, td, J = 9.0 Hz, 3.5 Hz, H-41), 3.62 (1 H, dd, J = 9.5 Hz, 2.0 Hz, H-48), 3.65 (1 H, dd, J = 3.5 Hz, 2.0 Hz, H-47), 3.69 (1 H, ddd, J = 11.5 Hz, 9.5 Hz, 4.5 Hz, H-44), 3.85 (1 H, dd, J = 9.5 Hz, 5.0 Hz, H-55a), 3.96 (1 H, dd, J = 9.5 Hz, 2.0 Hz, H-55b), 4.26 (1 H, dddd, J = 6.5 Hz, 5.0 Hz, 4.0 Hz, 2.0 Hz, H-54), 4.39 (2 H, d, J = 11.5 Hz, -OCH₂Ph), 4.45 (2 H, d, J = 12.0 Hz, -OCH₂Ph), 4.47 (2 H, d, J = 12.0 Hz, -OCH₂Ph), 4.63 (2 H, d, J = 11.5 Hz, -OCH₂Ph), 7.20–7,37 (10 H, m, aromatic). ESI Q-TOF MS calcd for $C_{35}H_{47}O_8$ 595.327 [M + H]⁺, found 595.336.