

TETRAHEDRON LETTERS

Synthesis of the FGH Ring Fragment of Ciguatoxin

Makoto Sasaki,* Tetsuji Noguchi, and Kazuo Tachibana*

Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received 18 November 1998; accepted 4 December 1998

Abstract:

Stereoselective synthesis of the FGH ring fragment of ciguatoxin is described. The key steps in the present synthesis are an intramolecular radical cyclization to construct oxepane ring G and ring-closing metathesis reaction to construct hexahydrooxonin ring F. @ 1999 Elsevier Science Ltd. All rights reserved.

Key words: metathesis; oxepanes; polyethers; radicals and radical reactions

Ciguatoxin (CTX1B, 1) and its congeners, naturally occurring polycyclic ethers originated in marine unicellular algae, are the principle toxins associated with ciguatera fish poisoning [1-3]. These potent neurotoxins reportedly bind to the same site of voltage-sensitive sodium channels as brevetoxins, another class of structurally related marine toxins [4]. The structural complexity and exceptionally potent neurotoxity of the ciguatoxins together with their scarcity from natural sources make them the prime target for a total synthesis [5-14]. In the course of our synthetic efforts toward ciguatoxin and its simplified analogues [15,16], we recently reported a new efficient method for the construction of O-linked oxepane ring system by an intramolecular radical cyclization [17]. In this letter, we report a successful application of this strategy to a more highly functionalized system leading to a convergent synthesis of the FGH ring fragment 2 of ciguatoxin by its combination with a ring-closing metathesis reaction [18].

Retrosynthetically, we planned to construct the hexahydrooxonin ring F in 2 from the precursor diene 3 by ring-closing metathesis reaction, which has been successfully applied to the synthesis of medium-sized ether ring system [10,13,14,19-22] (Scheme 1). The O-linked oxepane ring G in 3 could in turn be accessible from β -alkoxyacrylate 4 with the aid of our previously developed radical cyclization strategy [17].

Scheme 1

The synthesis of β -alkoxyacrylate 4 was started with a three-step routine conversion of the known alcohol 5 [23] into triisopropylsilyl (TIPS) ether 6 in 84% overall yield (Scheme 2). Oxidative cleavage of the double bond followed by chelation-controlled addition of allyltri-nbutyltin [24] and benzylation provided olefin 7 as a single diastereomer in 81% overall yield. Another oxidative cleavage of the double bond and subsequent addition of diol 8 to the resulting β -benzyloxyaldehyde in the presence of Sc(OTf)₃ [25,26] afforded acetal 9 as a single isomer in 80% overall yield. Treatment of 9 with Et2AlSPh [27] effected selective cleavage of the acetal C-O bond and monothioacetal 10 was obtained as a single diastereomer in 79% yield.¹ Use of Et₂AlSPh in this reaction instead of the previously used *i*-Bu₂AlSePh [17] resulted in a higher yield and better reproducibility. Protection of the primary alcohol as its MOM ether followed by removal of the silvl group and treatment with methyl propiolate and N-methylmorpholine provided β -alkoxyacrylate 4 (87% overall yield), which was subjected to an intramolecular radical cyclization reaction. Namely, treatment of a 10 mM solution of 4 in toluene with a catalytic amount of AIBN and 10 equiv of n-Bu₃SnH at 80 °C gave the O-linked oxepane 11 in 85% yield. The desired stereochemistry of 11 was confirmed on the basis of ${}^{3}J_{H,H}$ and NOE data as shown in Figure 1.

Elaboration of 11 to the ciguatoxin FGH ring fragment 2 is outlined in Scheme 3. DIBAL reduction of 11 to the aldehyde and Wittig methylenation gave olefin 12 in 77% yield. Selective removal of the MOM group (83%) followed by triflate formation and subsequent treatment with lithium trimethylsilylacetylide [28] provided silylacetylene 13 (61% yield for the two steps), which upon desilylation and partial hydrogenation afforded diene 3. Ring-closing metathesis reaction of 3 (4 mM in CH₂Cl₂) using Grubbs catalyst 14

¹The configuration of the sulfide of 10 was assumed on the basis of the reaction mechanism, see: reference 17.

Scheme 2

Reagents and conditions: (a) TIPSOTf, 2,6-lutidine, CH₂Cl₂, r.t.; (b) CSA, CH₂Cl₂-MeOH, r.t.; (c) NaH, BnBr, DMF, r.t., 84% (3 steps); (d) OsO₄, NMO, acetone-H₂O (5:1), r.t.; (e) NaIO₄, THF-H₂O (5:1), r.t.; (f) allyltri-*n*butyttin, MgBr₂·OEt₂, CH₂Cl₂, -78 to 0 °C; (g) NaH, BnBr, DMF, r.t., 81% (4 steps); (h) OsO₄, NMO, acetone-H₂O (4:1), r.t.; (i) NaIO₄, THF-H₂O (2:1), r.t.; (j) 8, Sc(OTf)₃, PhH, r.t., 80% (3 steps); (k) Et₂AISPh, CH₂Cl₂-hexane (1:2), r.t., 79%; (i) MOMCI, *i*-Pr₂NEt, CH₂Cl₂, r.t.; (m) *n*-Bu₄NF, THF, r.t., 99% (2 steps); (n) *N*-methylmorpholine, methyl propiolate, CH₂Cl₂, r.t., 88%; (o) *n*-Bu₃SnH, AIBN (cat.), PhCH₃ (10 mM), 80 °C, 85%.

[29] at 35 °C for 4 days resulted in the formation of the hexahydrooxonin ring to provide the targeted FGH ring fragment 2 in 61% yield.

The ¹H and ¹³C NMR signals due to the hexahydrooxonin ring of 2 were severely broadened at room temperature, as previously reported for ciguatoxin [1] and our model compounds furnished with its F ring [15,16].

The synthetic strategy described herein provides a possible solution to a convergent construction of ciguatoxin framework at this position. Further synthetic studies toward ciguatoxin and their designed analogs are currently underway.

Acknowledgment: This work was financially supported by the Grant-in-Aid for Scientific Research on Priority Area No. 08245103 from the Ministry of Education, Science, Sports and Culture, of Japanese Government.

Scheme 3

Reagents and conditions: (a) DIBAL, CH_2CI_2 , -78 °C; (b) $Ph_3PCH_3^+Br'$, NaHMDS, THF, 0 °C, 77% (2 steps); (c) BF_3 ·OEt, Me_2S, CH_2CI_2 , 0 °C, 83%; (d) Tf_2O , 2,6-lutidine, CH_2CI_2 , -78 °C; (e) (trimethylsilyl)acetylene, *n*-BuLi, HMPA, THF, -78 °C, 61% (2 steps); (f) K_2CO_3 , MeOH-THF (3:2), r.t., 90%; (g) H_2 , Lindlar cat., EtOAc, r.t., 86%; (h) 14, CH_2CI_2 (4 mM), 35 °C, 4 days, 61%.

REFERENCES

- [1] Murata M, Legrand A.-M, Ishibashi Y, Fukui M, Yasumoto T. J. Am. Chem. Soc. 1990; 112: 4380-4386.
- [2] Satake M, Morohashi A, Oguri H, Oishi T, Hirama M, Harada N, Yasumoto T. J. Am. Chem. Soc. 1997; 119: 1135-1136.
- [3] For a review of marine toxins, see: Yasumoto T, Murata M. Chem. Rev. 1993; 93: 1897-1909.
- [4] Lambet A, Bidard JN, Lazdunski M. FEBS Lett. 1987; 219: 355-359.
- [5] Oka T, Fujiwara K, Murai A. Tetrahedron 1996; 52: 12091-12110.
- [6] Oishi T, Shoji M, Maeda K, Kumahara N, Hirama M. Synlett 1996; 1165-1167.
- [7] Alvarez E, Delgado M, Díaz MT, Hanxing L, Pérez R, Martín JD. Tetrahedron Lett. 1996; 37: 2865-2868.
- [8] Isobe M, Hosokawa S, Kira K. Chem. Lett. 1996; 473-474.
- [9] Atsuta H, Fujiwara K., Murai A. Synlett 1997; 307-309.
- [10] Oishi T, Nagumo Y, Hirama M. Synlett 1997; 980-982.
- [11] Oishi T, Maeda K, Hirama M. Chem. Commun. 1997; 1289-1290.
- [12] Oishi T, Shoji M, Kumahara N, Hirama M. Chem. Lett. 1997; 845-846.
- [13] Oishi T, Nagumo Y, Hirama M. Chem. Commun. 1998; 1041-1042.
- [14] Clark JS, Hamelin O, Hufton R. Tetrahedron Lett. 1998; 39: 8321-8324.
- [15] Inoue M, Sasaki M, Tachibana K. Tetrahedron Lett. 1997; 38; 1611-1614.
- [16] Inoue M, Sasaki M, Tachibana K. Angew. Chem. Int. Ed. Engl. 1998; 37: 965-969.
- [17] Sasaki M, Inoue M, Noguchi T, Takeichi A, Tachibana K. Tetrahedron Lett. 1998; 39: 2783-2786.
- [18] For a review, see: Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413-4450.
- [19] Clark JS, Kettle JG. Tetrahedron Lett. 1997; 38: 123-126.
- [20] Clark JS, Kettle JG. Tetrahedron Lett. 1997; 38: 127-130.
- [21] Delgado M, Martín JD. Tetrahedron Lett. 1997; 38: 6299-6302.
- [22] Crimmins MT, Choy AL. J. Org. Chem. 1997; 62: 7548-7549.
- [23] Nicolaou KC, Nugiel DA, Couladouros E, Hwang C-K. Tetrahedron 1990; 46: 4517-4552.
- [24] Charette AB, Mellon C, Pouillard L, Malenfant E. Synlett 1993; 81-82.
- [25] Fukuzawa S, Tsuchimoto T, Hotaka T, Hiyama T. Synlett 1995; 1077-1078.
- [26] Ishihara K, Karumi Y, Kubota M, Yamamoto H. Synlett 1996; 839-841.
- [27] Maruoka K, Miyazaki T, Ando M, Matsumura Y, Sakane S, Hattori K, Yamamoto H. J. Am. Chem Soc. 1983; 105: 2831-2843.
- [28] Kotsuki H, Kadota I, Ochi M. Tetrahedron Lett. 1990; 31: 4609-4612.
- [29] Schwab RR, Grubbs RH, Ziller JW. J. Am. Chem. Soc. 1996; 118: 100-110.