

Tetrahedron Letters 44 (2003) 5229-5233

TETRAHEDRON LETTERS

A concise route to the right wing of ciguatoxin

Atsushi Tatami, Masayuki Inoue,* Hisatoshi Uehara and Masahiro Hirama*

Department of Chemistry, Graduate School of Science, Tohoku University, and SORST, Japan Science and Technology Corporation (JST), Sendai 980-8578, Japan

Received 19 April 2003; revised 9 May 2003; accepted 16 May 2003

Abstract—A concise route to the HIJKLM-ring fragment 10 of ciguatoxin (CTX) and 51-hydroxyCTX3C was developed in which oxiranyl anion addition and intramolecular carbonyl olefination were utilized as key transformations. The present procedure requires only 23 steps from the I-ring 5, while 35 steps were employed in a previous synthesis of the corresponding right wing 11 of CTX3C. The high efficiency of the present synthesis ensures a supply of 10 for total synthesis and biomedical applications. © 2003 Elsevier Science Ltd. All rights reserved.

Many tropical species of fish may cause an intoxication known as ciguatera.¹ The causative toxins, ciguatoxins,² originate in epiphytic dinoflagellates Gambierdiscus toxicus, and subsequently enter the food chain.³ Dinoflagellate toxins, such as CTX3C (1, Fig. 1)^{2d} and CTX4B 3,^{2a,b} undergo oxidation in fish, yielding more toxic products, for instance, 51-hydroxyCTX3C $\mathbf{2}^{2e}$ and ciguatoxin (CTX, 4).^{2a,b} Upon ingestion, these potent neurotoxins target voltage-sensitive sodium channels, and cause persistent activation of these channels.⁴ Because the presence of these toxins in fish is unpredictable, a sensitive immunochemical method for detecting ciguatoxins has long been necessary.⁵ Very recently, we achieved the first practical total synthesis of CTX3C 1,6,7 and developed an immunoassay for 1 by utilizing synthetic haptens,8 which has paved the way for biomedical research on ciguatoxins.

The final stage of our synthesis of 1 involved coupling between the left and right wings with subsequent construction of the central FG-ring system.^{6,9} This strategy is applicable to all ciguatoxins, because they share the FG-ring structure.² To synthesize structural variants of ciguatoxins for antibody-preparations and detailed SAR, we selected oxidized ciguatoxins (2, 4) as important targets. In this paper, we describe the concise synthesis of the NAP-protected¹⁰ right wing 10 of 2 and 4 by applying a significantly improved protocol (Scheme 1).

In the previous synthesis of the right half of CTX3C (11, Scheme 1), while the IJKLM-ring segment 6 was constructed from the I-(5) and LM-ring segments in a convergent manner, the subsequent attachment of the H-ring to 6 required 20 synthetic steps.¹¹ To facilitate

Figure 1. Structures of ciguatoxins.

0040-4039/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01214-0

Keywords: convergent synthesis; intramolecular carbonyl olefination; low-valent titanium complex; polyether; ciguatoxin; 51hydroxy-CTX3C. * Corresponding authors. Fax: +81-22-217-6566; e-mail: inoue@ykbsc.chem.tohoku.ac.jp; hirama@ykbsc.chem.tohoku.ac.jp

Scheme 1. Synthesis plan of the right wing of ciguatoxin and 51-hydroxyCTX3C.

H-ring construction for 10, the four-carbon unit 7 was planned to be directly introduced via the oxiranyl anion strategy developed by Mori.¹² Additionally, the H-ring was to be built on the I-ring fragment $(5 \rightarrow 8)$ instead of the IJKLM-ring system in order to maximize the synthetic convergency and minimize the protective group manipulations.

Synthesis of the LM-ring fragment 9 began with the previously reported olefin 12 (Scheme 2).^{11,13,14} After conversion of hemiacetal 12 to methylacetal 13 (94%), the 51-OH group was installed by Sharpless asymmetric dihydroxylation using (DHQ)₂PYR,¹⁵ which led to the desired diol 14 as the major diastereomer (14:15= 4:1, 97% yield). Intramolecular trans-acetalization of the isolated 14 with CSA generated five-membered spiroacetals favoring the requisite stereoisomer 16β $(16\alpha:16\beta=1:2, 90\%$ yield). The separated epimer 16\alpha was subjected to thermodynamic equilibration to yield the same ratio of the diastereomers. The secondary alcohol of the combined spiroacetal 16β was temporarily masked with TIPS, and the benzyl group was then removed by hydrogenolysis to provide the primary alcohol 17 (96% for two steps). After oxidation of 17, addition of Roush's crotyl boronate 19^{16} to aldehyde 18 set the two stereocenters (C43, C44), giving rise to 20 with complete stereochemical control (69% for 2 steps). Removal of the TIPS group from 20 and introduction of the NAP group produced the bis-NAP ether 21 in 99% yield. Finally, oxidative cleavage of the terminal olefin of 21, followed by oxidation to the carboxylic acid, led to LM-ring fragment 9 in 82% yield for the two steps.

The coupling partner of 9, the HI-ring fragment 8, was prepared from the known I-ring 5^{11} using Mori's oxiranyl anion strategy (Scheme 3).¹² Diol 5 was converted to the protected triflate 22 by stepwise addition of Tf₂O and TESOTf in the presence of base and molecular sieves. A mixture of the resultant 22 and epoxysulfone 712d in THF-HMPA was treated with *n*-BuLi at -110°C for 30 min, leading to the formation of the desired coupling adduct 23. Then, 6-endo cyclization to construct the H-ring was realized by submitting 23 to p-TsOH in CH₂Cl₂ with p-methoxybenzylidene methylacetal¹⁷ to afford the bicyclic fused ether 24 through concomitant removal of TES (46%) from 5). Thus, obtained 24 was reduced using NaBH₄, and the newly formed alcohol was protected as its TIPS ether to give 25 as the sole product in quantitative yield (two steps). After acid-promoted removal of the MP acetal from 25, one-carbon exten-

Scheme 2. Reagents and conditions: (a) $(MeO)_3CH$, CSA, $(CH_2Cl)_2$, rt, 94%; (b) OsO₄, $(DHQ)_2PYR$, $K_3Fe(CN)_6$, K_2CO_3 , *t*-BuOH/H₂O (1:1), 0°C, 97% (14:15=4:1); (c) CSA, $(CH_2Cl)_2$, rt, 90% (16α:16β=1:2); (d) PPTS, PhH/(CH₂Cl)₂ (1:1), 60°C, 75% (16α:16β=1:2); (e) TIPSOTf, 2,6-lutidine, CH₂Cl₂, -78°C, 96%; (f) Pd(OH)₂/C, H₂, EtOAc, rt, 100%; (g) (COCl)₂, DMSO, CH₂Cl₂, -78°C, then Et₃N; (h) 19, 4 Å MS, toluene, -78°C, 69% (two steps); (i) TBAF, THF, rt; (j) NAPBr, TBAI, NaH, THF/DMF (3:1), 0°C to rt, 99% (two steps); (k) OsO₄, NMO, *t*-BuOH/H₂O (1:1), rt, then NaIO₄; (l) NaClO₂, NaPO₄·H₂O, 2-methyl-2-butene, *t*-BuOH/H₂O (4:1), 82% (two steps).

Scheme 3. Reagents and conditions: (a) Tf_2O , 2,6-lutidine, 4 Å MS, CH_2Cl_2 , then TESOTf, $-78^{\circ}C$; (b) 7, *n*-BuLi, HMPA, THF, $-110^{\circ}C$; (c) $TsOH \cdot H_2O$, CH_2Cl_2 , $(MeO)_2CH(p-MeOPh)$, $0^{\circ}C$ to rt, 46% (three steps); (d) NaBH₄, $CH_2Cl_2/MeOH$ (1:1), $-78^{\circ}C$, 100%; (e) TIPSOTf, 2,6-lutidine, $(CH_2Cl)_2$, 50°C, 100%; (f) TFA/THF/H₂O (1:10:5), rt, 87%; (g) Ph₃P, I₂, imidazole, 4 Å MS, THF, -30 to $0^{\circ}C$, 87%; (h) NaCN, DMSO, 40°C, 97%; (i) TESOTf, 2,6-lutidine, CH_2Cl_2 , $-78^{\circ}C$, 100%; (j) DIBAL, CH_2Cl_2 , $-78^{\circ}C$; (k) PhSSPh, *n*-Bu₃P, 40°C, 83% (two steps); (l) PPTS, MeOH/CH₂Cl₂ (5:1), 0°C, 84%.

Having synthesized both fragments, the coupling and subsequent construction of the JK-ring were pursued (Scheme 4). Condensation of alcohol 8 and carboxylic acid 9 using the Yamaguchi protocol¹⁹ gave the corresponding ester 29 in 77% yield. Cyclization of the J-ring from 29 was then achieved by intramolecular carbonyl olefination using the low-valent titanium reagent developed by Takeda,²⁰ which successfully closed the six-membered J-ring to afford 30 in 68% yield.¹¹ Hydroboration of enol ether 30 installed an alcohol at C41 to generate a separable mixture of 31α (57%) and 31β (19%), both of which were separately oxidized with Dess-Martin periodinane into ketones 32α and 32β , respectively. The undesired isomer 32α was effectively converted to 32β by three cycles of the DBU-mediated isomerization-separation sequence in 66% yield. Combined 32β was then exposed to trifric acid and (MeO)₃CH in hexane, directly leading to seven-membered methylacetal 33 via loss of the MOM group (62% yield). Reductive etherification²¹ of acetal 33 using Et_3SiH and BF_3OEt_2 in the presence of molecular sieves constructed the last ether ring to afford the HIJKLM-ring system 34 in 78% yield, whose NOE experiment verified the selective attack of hydride from

Scheme 4. *Reagents and conditions*: (a) 2,4,6-trichlorobenzoyl chloride, Et₃N, toluene, then DMAP, 35°C, 77%; (b) $Cp_2Ti[P(OEt)_3]_2$, THF, reflux, 68%; (c) $BH_3 \cdot SMe_2$, THF, 0°C to rt then NaOH, H_2O_2 , 76% (31 α :31 β =3:1); (d) Dess-Martin periodinane, CH_2Cl_2 , rt, 90% for 32 α , 97% for 32 β ; (e) DBU, CH_2Cl_2 , rt, 66% (three cycles, 12% of 32 α was recovered); (f) TfOH, (MeO)₃CH, hexane, rt, 62%; (g) $BF_3 \cdot OEt_2$, Et₃SiH, 4 Å MS, CH_2Cl_2 , -50 to -20°C, 78%; (h) HF·Py, Py/THF (1:2), rt, 76%; (i) SO₃·Py, Et₃N, DMSO/CH₂Cl₂ (1:2), 0°C to rt; (j) allylSnBu₃, MgBr₂·OEt₂, 4 Å MS, toluene, -78°C to rt, 62%, C29-epimer 21% (two steps); (k) NAPBr, TBAI, NaH, THF/DMF (3:1), rt, 91%.

the α -face of the molecule. In this way, the JK-ring was assembled from the fragments (8, 9) through only seven synthetic operations.

To complete the synthesis of the right wing of CTX, the carbon chain corresponding to the G-ring was introduced (Scheme 4). HF pyridine effected the selective removal of TBPS to afford **35** in 76% yield. The alcohol of **35** was in turn oxidized with SO₃ pyridine to aldehyde **36**, which was subjected to MgBr₂-promoted allylation using allyltributylstannane to generate alcohol **37** (62%) and the C29-epimer (21%). Finally, NAP protection of **37** gave rise to the targeted right wing **10** in 91% yield, which can be readily coupled with the left wing after modification of the terminal olefin.^{6,9,22}

In conclusion, the right half of CTX and 51-hydroxy-CTX3C was synthesized by a highly convergent strategy using a significantly improved protocol. The present synthesis of **10** only requires 23 steps from I-ring **5**, whereas the previous procedure for **11** involved 35 steps.¹¹ Of note in the present synthesis is the successful application of the oxiranyl anion strategy for the H-ring and the intramolecular carbonylation protocol for the J-ring, both of which substantially contributed to the conciseness of the synthesis. The total syntheses of ciguatoxin and 51-hydroxyCTX3C have become our next focus, and will be reported in due course.

Acknowledgements

This work was supported in part by a grant from the Takeda Science Foundation (M.I.).

References

- For recent reviews, see: (a) Scheuer, P. J. *Tetrahedron* 1994, 50, 3–18; (b) Lewis, R. J. *Toxicon* 2001, 39, 97–106; (c) Yasumoto, T.; Murata, M. *Chem. Rev.* 1993, 93, 1897– 1909; (d) Yasumoto, T. *Chem. Rec.* 2001, 1, 228–242.
- (a) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Yasumoto, T. J. Am. Chem. Soc. 1989, 111, 8929–8931; (b) Murata, M.; Legrand, A.-M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380–4386; (c) Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325– 11326; (d) Satake, M.; Murata, M.; Yasumoto, T. Tetrahedron Lett. 1993, 34, 1975–1978; (e) Satake, M.; Fukui, M.; Legrand, A.-M.; Cruchet, P.; Yasumoto, T. Tetrahedron Lett. 1998, 39, 1197–1198; (f) Lewis, R. J.; Vernoux, J.-P.; Brereton, I. M. J. Am. Chem. Soc. 1998, 120, 5914–5920; (g) Yasumoto, T.; Igarashi, T.; Legrand, A.-M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. 2000, 122, 4988–4989.
- Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J. M.; Yasumoto, T.; Inoue, A. *Toxicon* 1980, *18*, 199–208.
- (a) Lombet, A.; Bidard, J.-N.; Lazdunski, M. FEBS Lett.
 1987, 219, 355–359; (b) Dechraoui, M.-Y.; Naar, J.; Pauillac, S.; Legrand, A.-M. Toxicon 1999, 37, 125–143.

- For attempts toward the preparation of anti-CTX antibodies, see: (a) Oguri, H.; Tanaka, S.-I.; Hishiyama, S.; Oishi, T.; Hirama, M.; Tsumuraya, T.; Tomioka, Y.; Mizugaki, M. Synthesis 1999, 1431–1436; (b) Nagumo, Y.; Oguri, H.; Shindo, Y.; Sasaki, S.-y.; Oishi, T.; Hirama, M.; Tomioka, Y.; Mizugaki, M.; Tsumuraya, T. Bioorg. Med. Chem. Lett. 2001, 11, 2037–2040; (c) Hokama, Y.; Takenaka, W. E.; Nishimura, K. L.; Ebesu, J. S. M.; Bourke, R.; Sullivan, P. K. J. AOAC Int. 1998, 81, 727–735; (d) Pauillac, S.; Sasaki, M.; Inoue, M.; Naar, J.; Branaa, P.; Chinain, M.; Tachibana, K.; Legrand, A.-M. Toxicon 2000, 38, 669– 685.
- (a) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. *Science* 2001, 294, 1904–1907; (b) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551–4554.
- 7. For recent synthetic studies of ciguatoxins from other groups, see: (a) Takakura, H.; Noguchi, K.; Sasaki, M.; Tachibana, K. Angew. Chem., Int. Ed. 2001, 40, 1090-1093; (b) Sasaki, M.; Ishikawa, M.; Fuwa, H.; Tachibana, K. Tetrahedron 2002, 58, 1889-1911; (c) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. Org. Lett. 2002, 4, 2771-2774; (d) Sasaki, M.; Noguchi, T.; Tachibana, K. J. Org. Chem. 2002, 67, 3301-3310; (e) Fujiwara, K.; Takaoka, D.; Kusumi, K.; Kawai, K.; Murai, A. Synlett 2001, 691-693; (f) Fujiwara, K.; Koyama, Y.; Doi, E.; Shimawaki, K.; Ohtaniuchi, Y.; Takemura, A.; Souma, S.-i. Murai, A. Synlett 2002, 1496-1499; (g) Fujiwara, K.; Koyama, Y.; Kawai, K.; Tanaka, H.; Murai, A. Synlett 2002, 1835–1838; (h) Tanaka, H.; Kawai, K.; Fujiwara, K.; Murai, A. Tetrahedron 2002, 58, 10017-10031; (i) Kira, K.; Isobe, M. Tetrahedron Lett. 2001, 42, 2821-2824; (j) Kira, K.; Hamajima, A.; Isobe, M. Tetrahedron 2002, 58, 1875-1888; (k) Baba, T.; Isobe, M. Synlett 2003, 547-551; (l) Takai, S.; Sawada, N.; Isobe, M. J. Org. Chem. 2003, 68, 3225-3231; (m) Eriksson, L.; Guy, S.; Perlmutter, P.; Lewis, R. J. Org. Chem. 1999, 64, 8396-8398; (n) Bond, S.; Perlmutter, P. Tetrahedron 2002, 58, 1779-1787; (o) Leeuwenburgh, M. A.; Kulker, C.; Overkleeft, H. S.; van der Marel, G. A.; van Boom, J. H. Synlett 1999, 1945-1947; (p) Clark, J. S.; Hamelin, O. Angew. Chem., Int. Ed. 2000, 39, 372-374 and references cited therein.
- 8. Oguri, H.; Hirama, M.; Tsumuraya, T.; Fujii, I.; Maruyama, M.; Uehara, H.; Nagumo, Y. J. Am. Chem. Soc., in press.
- (a) Imai, H.; Uehara, H.; Inoue, M.; Oguri, H.; Oishi, T.; Hirama, M. *Tetrahedron Lett.* **2001**, *42*, 6219–6222; (b) Inoue, M.; Wang, G. X.; Wang, J.; Hirama, M. Org. Lett. **2002**, *4*, 3439–3442.
- Application of NAP (2-naphthylmethyl) group was demonstrated in the practical total synthesis of CTX3C (Ref. 6b). For NAP ether references, see: (a) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172–4173; (b) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033–4036; (c) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169–173.
- (a) Oishi, T.; Uehara, H.; Nagumo, Y.; Shoji, M.; Le Brazidec, J.-Y.; Kosaka, M.; Hirama, M. *Chem. Commun.* **2001**, 381–382; (b) Uehara, H.; Oishi, T.; Inoue, M.; Shoji, M.; Nagumo, Y.; Kosaka, M.; Le Brazidec, J.-Y.; Hirama, M. *Tetrahedron* **2002**, *58*, 6493–6512.

- (a) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996, 118, 8158–8159; (b) Mori, Y.; Furuta, H.; Takase, T.; Mitsuoka, S.; Furukawa, H. Tetrahedron Lett.
 1999, 40, 8019–8022. For their recent applications to polyether syntheses, see: (c) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1997, 119, 4557–4558; (d) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Org. Chem.
 1998, 63, 6200–6209; (e) Mori, Y.; Takase, T.; Noyori, R. Tetrahedron Lett. 2003, 44, 2319–2322. For a review, see: (f) Mori, Y. Chem. Eur. J. 1997, 3, 849–852.
- Oishi, T.; Shoji, M.; Kumahara, N.; Hirama, M. Chem. Lett. 1997, 845–846.
- 14. The numbering of carbon atoms in all compounds in this paper corresponds to that of 51-hydroxyCTX3C.
- (a) Crispino, G. A.; Jeong, K.-S.; Kolb, H. C.; Wang, Z.-M.; Xu, D.; Sharpless, K. B. *J. Org. Chem.* **1993**, *58*, 3785–3786. For a review, see: (b) Kolb, H. C.; Van-Nieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483–2547.
- Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339– 6348.
- 17. p-Methoxybenzylidene methylacetal was added to reattach the MP acetal to partially deprotected 23 and/or 24.
 19. Table M. Table M. Charles M. (2010) 2027 2027 2020.
- 18. Tazaki, M.; Takagi, M. Chem. Lett. 1979, 767-770.
- Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989– 1993.
- (a) Horikawa, Y.; Watanabe, M.; Fujiwara, T.; Takeda, T. J. Am. Chem. Soc. 1997, 119, 1127–1128; (b) Rahim, M. A.; Fujiwara, T.; Takeda, T. Tetrahedron 2000, 56, 763– 770; (c) Rahim, M. A.; Sasaki, H.; Saito, J.; Fujiwara, T.; Takeda, T. Chem. Commun. 2001, 625–626; (d) Takeda, T.; Fujiwara, T. J. Syn. Org. Chem. Jpn. 1998, 56, 1048–1057.
- (a) Oishi, T.; Nagumo, Y.; Shoji, M.; Le Brazidec, J.-Y.; Uehara, H.; Hirama, M. Chem. Commun. 1999, 2035–

2036; (b) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. **1982**, 104, 4976–4978; (c) Nicolaou, K. C.; Hwang, C.-K.; Nugiel, D. A. J. Am. Chem. Soc. **1989**, 111, 4136–4137.

22. Physical data for 10: $[\alpha]_{D}^{22}$ 2.30 (c 0.39, CHCl₃); IR (film) 2943, 2866, 1459, 1090, 1031, 815, 736 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.01-1.11 (33H, m, TIPS, Me54, Me55, Me56, Me57), 1.14 (3H, s, Me53), 1.37 (1H, q, J=11.5 Hz, H40), 1.50–1.63 (3H, m, H35, 37, 47), 1.72 (1H, q, J=11.5 Hz, H32), 1.80–1.89 (4H, m, H35, H36, H37, H48), 2.10 (1H, dt, J=11.5, 5.5 Hz, H40), 2.13-2.22 (4H, m, H32, H43, H50×2), 2.49-2.58 (2H, m, H28×2), 2.85 (1H, dd, J=9.5, 4.5 Hz, H42), 2.99 (1H, ddd, J=11.5, 9.5, 2.0 Hz, H38), 3.04–3.12 (2H, m, H33, H39), 3.30 (1H, dt, J=9.5, 3.5 Hz, H34), 3.42 (1H, t, J=9.5 Hz, H46), 3.43 (1H, d, J=3.5 Hz, H44), 3.62 (1H, d, J=9.5 Hz, H45), 3.66 (1H, dd, J = 8.0, 4.5 Hz, H29), 3.82 (1H, dd, J=9.5, 5.0 Hz, H52), 3.85 (1H, ddd, J=11.5, 9.5, 5.5 Hz, H41), 3.98 (1H, dd, J=9.5, 1.5 Hz, H52), 4.26 (1H, dd, J=11.5, 5.0 Hz, H31), 4.27 (1H, br, H51), 4.59 (1H, d, J=12.0 Hz, NAP), 4.62 (1H, d, J=12.0 Hz, NAP), 4.74 (1H, d, J=12.5 Hz, NAP), 4.75 (1H, d, J=12.5 Hz, NAP), 4.81 (1H, d, J=11.0 Hz, NAP), 4.84 (1H, d, J=11.0 Hz, NAP), 5.01 (1H, dd, J=10.5, 2.0 Hz, H26), 5.12 (1H, dd, J=17.0, 1.5 Hz, H26), 5.99 (1H, ddt, J = 17.0, 10.5, 6.5 Hz, H27), 7.41–7.83 (21H, m, NAP×3); ¹³C NMR (125 MHz, CDCl₃) δ ; 13.3, 13.8, 14.2, 14.3, 16.2, 18.57, 18.59, 20.1, 27.8, 28.3, 29.6, 29.9, 31.8, 32.1, 33.5, 38.6, 38.7, 40.4, 40.8, 41.8, 42.7, 45.7, 46.2, 68.6, 71.4, 71.70, 71.77, 72.1, 72.4, 73.7, 74.4, 78.0, 78.8, 80.2, 81.1, 82.2, 83.2, 83.3, 84.8, 86.9, 109.2, 116.1, 125.6, 125.90, 125.93, 126.01, 126.03, 126.05, 126.1, 126.2, 126.32, 126.38, 126.39, 126.5, 127.8, 127.94, 127.97, 128.00, 128.07, 128.09, 128.42, 132.9, 133.1, 133.2, 133.4, 133.5, 135.9, 137.0, 137.3, 137.5; MALDI-TOF MS calcd for C₇₄H₉₆NaO₁₀Si (M+Na⁺) 1195.67 found 1195.66.