Thermal Isomerization and Decomposition of 2-Butyne in Shock Waves

Yoshiaki Hidaka,^{*,†} Tetsuo Higashihara,^{*,‡} Natsuhiko Ninomiya,[†] Hidekazu Oshita,[†] and Hiroyuki Kawano[†]

Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790, Japan, and Matsue College of Technology, Nishiikuma-cho, Matsue 690, Japan

Received: March 2, 1993; In Final Form: June 14, 1993®

The thermal isomerization and decomposition of $2-C_4H_6$ behind reflected shock waves with $1100 < T_5 < 1600$ K and $1.6 \times 10^{-5} < \rho_5 < 2.1 \times 10^{-5}$ mol/cm³ were studied by UV kinetic absorption spectroscopy, IR laser kinetic absorption spectroscopy, and gas-chromatographic analysis of reaction products. The major products of the pyrolysis were 1,2-butadiene, 1,3-butadiene, CH₄, C₂H₂, C₂H₄, C₂H₆, allene, propyne, C₄H₂, vinylacetylene, and benzene. 1,3-Butadiene and 1,2-butadiene were produced before the appearance of any other decomposition products. This fact means that the very fast isomerizations of 2-butyne take place before the decomposition. The present data were successfully modeled with a 80 reaction mechanism which included the isomerizations among 1- and 2-butynes and 1,2- and 1,3-butadienes and the decompositions of these C₄H₆ isomers. From the modeling, the following rate constants of the isomerizations were obtained: 2-butyne = 1,3-butadiene ($k = (3.0 \times 10^{13}) \exp(-67.0 \text{ kcal}/RT) \text{ s}^{-1}$), where the activation energies, 65 and 67 kcal/mol, were estimated from literature data. We discussed the possible route of the isomerizations of 2-butyne to 1,3- and 1,2-butadienes.

Introduction

There are many C_4H_6 isomers such as 1,3-butadiene (1,3- C_4H_6), 1,2-butadiene (1,2- C_4H_6), 1-butyne (1- C_4H_6), 2-butyne (2- C_4H_6), 1-methyl-1-cyclopropene, 3-methyl-1-cyclopropene, cyclobutene, and so on. Among these isomers, the pyrolysis of 1,3- C_4H_6 in shock waves has extensively been studied.¹⁻⁴ Kern et al.⁵ have studied the thermal decomposition of 1,2- C_4H_6 in shock waves by monitoring reaction products using time-of-flight mass spectrometry. Pyrolysis of other isomers at high temperatures, however, has scarcely been studied.

Among the C_4H_6 isomers, the pyrolytic isomerizations of cyclic compounds such as 1-methyl-1-cyclopropene,⁶ cyclobutene,⁷ and bicyclo[1.1.0]butane^{8,9} to aliphatic isomers have been studied in static reactors. In their study of 1-methyl-1-cyclopropene pyrolysis over the temperature range 483–523 K, Hopf et al.⁶ observed the parallel isomerizations of 1-methyl-1-cyclopropene to 2-C₄H₆ (91–94%), 1,3-C₄H₆ (5–8%), and 1,2-C₄H₆ (1–2%). They proposed that these isomers arose via 1,2-H shifts in a diradical-like intermediate (see Scheme I). The isomerizations of aliphatic C₄H₆ isomers, however, have not yet been observed, except for that of 1,2-C₄H₆. In their study of 1,2-C₄H₆ pyrolysis in shock waves, Kern et al.⁵ found that, in order to model successfully the C₄H₆ profiles, it was necessary to include the isomerization of 1,2-C₄H₆ to 1,3-C₄H₆.

In this study, we performed a shock tube experiment on the pyrolysis of $2-C_4H_6$ using single-pulse, time-resolved IR laser absorption and time-resolved UV absorption methods. We found that $2-C_4H_6$ rapidly isomerizes to $1,2-C_4H_6$ and $1,3-C_4H_6$ before the decomposition of $2-C_4H_6$ takes place. We will discuss the mechanism of $2-C_4H_6$ isomerization based on the previous study by Hopf et al.⁶

Experimental Section

The test gas compositions used here were 0.4% 2-C₄H₆ in Ar (UV absorption experiment) and 2.5% 2-C₄H₆ in Ar (IR laser absorption and single-pulse experiments). All experiments were done in reflected shock waves over the temperature range 1100–

1600 K. Initial sample pressure was kept at 50 Torr, giving reflected shock densities in the range of 1.6×10^{-5} to 2.1×10^{-5} mol/cm³.

Three shock tubes of 4.1-cm i.d. were used in this experiment. Details of the apparatus and procedures have been described in previous papers.¹⁰⁻¹² The first is a standard-type shock tube connected to a laser absorption apparatus. The transmitted intensities of a $3.39-\mu m$ He-Ne laser beam through a 4.1-cm path length in the shock tube and through an interference filter $(\lambda_{max} = 3.39 \ \mu m, half-width = 0.072 \ \mu m)$ were observed with a Judson J10D-M204 InSb detector. The decadic molar extinction coefficients of 2-C₄H₆ at 3.39 μ m were computed from the absorbance values at the shock front by assuming that the absorption obeys the Beer-Lambert law. Other hydrocarbons, which would be produced by the pyrolysis of $2-C_4H_6$, also absorb at 3.39 μ m. The following mixtures were shock heated (more than 20 runs for each mixture) using the same experimental setup as that used in the present study: $1\% 1-C_4H_6-99\%$ Ar, 6% 1,3-C4H6-94% Ar, 1% 1,2-C4H6-99% Ar and 6% 1,2-C4H6-94% Ar, 5% C₄H₄-95% Ar, 5% C₃H₆-95% Ar, 4% AC₃H₄-96% Ar, 4% $PC_3H_4-96\%$ Ar, 2% $C_2H_6-98\%$ Ar and 5% $C_2H_6-95\%$ Ar, 6% $C_2H_4-94\%$ Ar, 6% $C_2H_2-94\%$ Ar, and 5% $CH_4-95\%$ Ar. Initial sample pressure of these experiments was kept at 50 Torr. From the absorbance values at the shock front, the decadic molar extinction coefficients of these species were computed by assuming that the absorption of each species obeys the Beer-Lambert law. Between 1200 and 1600 K, the decadic molar extinction coefficients can be approximated as

$$\epsilon(2-C_4H_6) = (4.995 \times 10^4) - 21.5T \text{ cm}^2/\text{mol}$$

$$\epsilon(1-C_4H_6) = (4.40 \times 10^4) - 14T \text{ cm}^2/\text{mol}$$

$$\epsilon(1,3-C_4H_6) = (2.35 \times 10^3) + 4.375T \text{ cm}^2/\text{mol}$$

$$\epsilon(1,2-C_4H_6) = (2.866 \times 10^4) - 8.786T \text{ cm}^2/\text{mol}$$

$$\epsilon(C_4H_4) = (-4.924 \times 10^2) + 1.818T \text{ cm}^2/\text{mol}$$

$$\epsilon(C_3H_6) = (1.064 \times 10^5) - 36T \text{ cm}^2/\text{mol}$$

$$\epsilon(AC_3H_4) = (2.20 \times 10^3) + 0.44T \text{ cm}^2/\text{mol}$$

0022-3654/93/2097-10977\$04.00/0 © 1993 American Chemical Society

[†] Ehime University.

Matsue College of Technology.
 Abstract published in Advance ACS Abstracts, September 15, 1993.

Austract published in Aubunce ACD Austracis, September 15, 1995.

$$\epsilon(PC_{3}H_{4}) = (1.07 \times 10^{4}) - 7.75T \text{ cm}^{2}/\text{mol}$$

$$\epsilon(C_{2}H_{6}) = (5.43 \times 10^{4}) - 17.5T \text{ cm}^{2}/\text{mol}$$

$$\epsilon(C_{2}H_{4}) = 3.375T \text{ cm}^{2}/\text{mol}$$

 $\epsilon(C_2H_2) = (-1.44 \times 10^3) + 1.025T \text{ cm}^2/\text{mol}$

$$(CH_4) = (3.844 \times 10^4) - 18.7T \text{ cm}^2/\text{mol}$$
 (T < 1500 K)

 $\epsilon(CH_4) = (1.33 \times 10^4) - 2.2T \text{ cm}^2/\text{mol}$ (T > 1500 K)

The second is a standard-type shock tube connected to a UV absorption apparatus. The transmitted intensity at 230 nm of a Hamamatsu-L544 D₂ lamp through a 4.1-cm path in the shock tube and through a Rico-MC-20 grating monochromator (halfwidth = 2.5 nm) was monitored by a Hamamatsu R-306 photomultiplier. The 230-nm light is mainly absorbed by 1,3- C_4H_6 . In order to obtain the decadic molar extinction coefficients of 1,3-C4H6, 0.1% 1,3-C4H6-99.9% Ar (7 runs), and 0.2% 1,3- C_4H_6 -99.8% Ar (10 runs), mixtures were shock heated using the same experimental setup as that used in the present study. From the absorbance values at the shock front, the decadic molar extinction coefficients were computed. Other unsaturated hydrocarbons which would be produced by the pyrolysis of $2-C_4H_6$ have possibility to absorb the 230 nm light. Then, the following mixtures were shock heated using the same experimental setup as that used in the present study: 2.5% $2-C_4H_6-97.5\%$ Ar (7) runs); 0.4% 1,2-C₄H₆-99.6% Ar (10 runs) and 1% 1,2-C₄H₆-99% Ar (5 runs); 0.75% C₄H₄-99.25% Ar (11 runs); 1% C₄H₂-99% Ar (17 runs); 0.4% C₆H₆–99.6% Ar (7 runs) and 1% C₆H₆– 99% Ar (10 runs); 0.5% AC3H4-99.5% Ar (10 runs) and 1% AC3H4-99% Ar (9 runs); 2% PC3H4-98% Ar (10 runs) and 4% PC₃H₄-96% Ar (5 runs); 6% C₂H₄-94% Ar (20 runs); and 6% $C_2H_2-94\%$ Ar (9 runs). Initial sample pressure of all the runs was 50 Torr. As before, from the shock front absorbance values, the decadic molar extinction coefficients were computed by assuming that the absorption of each species obeys the Beer-Lambert law. The decadic molar extinction coefficients could be approximated between 1200 and 1600 K as

$$\begin{split} \log(\epsilon(1,3-C_4H_6)/\text{cm}^2 \text{ mol}^{-1}) &= 6.74\\ \log(\epsilon(1,2-C_4H_6)/\text{cm}^2 \text{ mol}^{-1}) &= 5.43\\ \log(\epsilon(2-C_4H_6)/\text{cm}^2 \text{ mol}^{-1}) &= 4.85\\ \log(\epsilon(C_4H_4)/\text{cm}^2 \text{ mol}^{-1}) &= 6.279\\ \log(\epsilon(C_4H_2)/\text{cm}^2 \text{ mol}^{-1}) &= 5.778\\ \log(\epsilon(C_6H_6)/\text{cm}^2 \text{ mol}^{-1}) &= (1.2 \times 10^{-3})T + 3.84\\ \log(\epsilon(AC_3H_4)/\text{cm}^2 \text{ mol}^{-1}) &= (2.83 \times 10^{-4})T + 4.93\\ \log(\epsilon(PC_3H_4)/\text{cm}^2 \text{ mol}^{-1}) &= (8.0 \times 10^{-4})T + 3.64\\ \log(\epsilon(C_2H_4)/\text{cm}^2 \text{ mol}^{-1}) &= (1.433 \times 10^{-3})T + 2.11\\ \log(\epsilon(C_2H_2)/\text{cm}^2 \text{ mol}^{-1}) &= (4.0 \times 10^{-4})T + 2.86 \end{split}$$

The third is a magic-hole-type shock tube. Within 20 s after shock heating, the reacted gas mixtures were extracted into a preevacuated vessel (50 cm³) through a valve at 1-cm upstream from the end plate and analyzed on three serially connected gas chromatographs with thermal conductivity detectors. An identification and a quantification of each product were done using the following two mixtures: one is the standard gas sample (0.482% CH₄, 0.514% C₂H₆, 0.514% C₂H₄, 0.464% C₂H₂, 0.482% C₃H₈, 0.476% C₃H₆, 0.482% PC₃H₄, 0.477% AC₃H₄, 0.471% CO, and 0.538% CO₂ diluted with Ar) prepared by Seitetsu Kagaku Co., Ltd., and the other is the mixture of 0.2% C₄H₂, 0.2% 0.2% C₄H₄, 0.2% 2-C₄H₆, 0.2% 1-C₄H₆, 0.2% 1,2-C₄H₆, 0.2% 1,3-C₄H₆, and 0.2% C₆H₆ diluted with Ar, which was prepared by us manometrically. These mixtures were repeatedly measured on the gas chromatographs, and overall accuracies in the gas chromatographic results were confirmed to be within $\pm 5\%$. Pressure signals at 1 cm upstream from the end plate were recorded to check the constancy of pressure and to determine an effective heating time. The effective heating time was defined as the time elapsed between the reflected shock front and 80% point of the shock front pressure. The validity of this assumption has already been confirmed.¹⁰ The effective heating times were 2010 μ s (1100 K), 1920 μ s (1200 K), 1820 μ s (1300 K), 1730 μ s (1400 K), and 1630 μ s (1500 K).

Results

The products of the pyrolysis of $2-C_4H_6$ were $1,3-C_4H_6$, $1,2-C_4H_6$, $1-C_4H_6$, CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , allene (AC₃H₄), propyne (PC₃H₄), vinylacetylene (C₄H₄), C₄H₂, and benzene (C₆H₆). The yields of these products and remaining reactant were plotted against temperature in Figure 1. From this figure, it is apparent that at low temperatures (up to 1200 K) $1,3-C_4H_6$ and $1,2-C_4H_6$ are the only products. At around 1200 K, CH₄, propyne, C₄H₄, and $1-C_4H_6$ begin to appear. C_2H_4 and C_2H_2 are not formed until 1250 K. These results suggest that 2-C₄H₆ rapidly isomerizes before the decomposition takes place.

Figure 2 shows a typical absorption profile at 230 nm. In Figure 3 are shown $\log(I_t/I_t)$ values at 230 nm against reaction time for three runs, where I_t is the transmitted intensity with no absorption and I_t is the transmitted intensity at time t from the shock front. Slight absorption observed just behind the shock front is due to 2-C₄H₆. The extinction coefficient of 1,3-C₄H₆ is largest. Below 1400 K, almost all absorption at 230 nm is due to 1,3-C₄H₆. It can be seen in Figure 3 that 1,3-C₄H₆ is rapidly produced from the beginning of the reaction.

In order to parametrize the progress of early stage reaction from the IR absorption profiles at 3.39 μ m, we measured A_{50} , A_{100} , and A_{200} according to the equation $A_t = \log(I_f/I_t)/\log(I_f/I_0)$, where I_f is the transmitted intensity with no absorption, and I_0 and I_t are the transmitted intensities at the shock front and time t, respectively. These data are plotted against temperature in Figure 4.

Modeling Calculations

We observed a mixture of C_4H_6 isomers in the product mixture as is seen in Figure 1. This fact means that the isomerizations of 2-C₄H₆ occur simultaneously with the decomposition. Four isomerization reactions

$2 - C_4 H_6 = 1, 3 - C_4 H_6$	$\Delta H^{\circ}_{298} = -8.5 \text{ kcal/mol}$	(1)
$2 - C_4 H_6 = 1, 2 - C_4 H_6$	$\Delta H^{\circ}_{298} = 4.0 \text{ kcal/mol}$	(2)
$1,2-C_4H_6 = 1,3-C_4H_6$	$\Delta H^{\circ}_{298} = -12.5 \text{ kcal/mol}$	(3)
$1 - C_4 H_6 = 1, 2 - C_4 H_6$	$\Delta H^{\circ}_{298} = -0.7 \text{ kcal/mol}$	(4)

were necessary in order to interpret the experimental yields of the C_4H_6 isomers. The possibility of reaction 3 has been suggested by Kern et al.⁵ Other isomerization reactions have not yet been reported. Rate constants for reactions 1 and 2 were optimized in this study to be

$$k_1 = (3.0 \times 10^{13}) \exp(-65000 \text{ cal}/RT) \text{ s}^{-1}$$

 $k_2 = (3.0 \times 10^{13}) \exp(-67000 \text{ cal}/RT) \text{ s}^{-1}$

The k_3 and k_4 values were optimized in separate experimental and modeling studies of 1,2-C₄H₆¹³ and 1-C₄H₆¹⁴ pyrolysis to be

$$k_3 = (2.5 \times 10^{13}) \exp(-63000 \text{ cal}/RT) \text{ s}^{-1}$$

 $k_4 = (2.5 \times 10^{13}) \exp(-65000 \text{ cal}/RT) \text{ s}^{-1}$

The activation energies of reactions 1-3, 65, 67, and 63 kcal/

Figure 1. Comparison of experimental (symbols) with computed (lines) product distribution for the 2.5% 2-C₄H₆-97.5% Ar mixture: —, computed with the Table I mechanism; --, computer using only reactions 1-4.

Figure 2. Typical absorption profile at 230 nm: full intensity $I_f = 2.99$ V, signal voltage = 0.5 V/div, sweep time = 100 μ s/div. Conditions: 0.4% 2-C₄H₆-99.6% Ar; $P_1 = 50$ Torr; $T_5 = 1352$ K.

mol, were assumed to be nearly equal to the highest barriers of the reactions (see Figure 5). Reaction 4 would proceed in the same manner as the isomerization of propyne to allene proposed by Honjyou et al.¹⁵ An activation energy of 65 kcal/mol was assumed.

Because the decomposition of $2-C_4H_6$ is accompanied by the isomerizations, we have to take the decomposition reactions of the four C_4H_6 isomers into account. Initially, C-C single bond fissions and C-H bond fissions were considered for all the isomers. From modeling calculations, however, the following two C-C single bond fissions were found to be dominant:

 $1,2-C_4H_6 = C_3H_3 + CH_3 \qquad \Delta H^{\circ}_{298} = 77.8 \text{ kcal/mol}$ (6)

$$1-C_4H_6 = C_3H_3 + CH_3$$
 $\Delta H^{\circ}_{298} = 77.1 \text{ kcal/mol} (7)$

Rate constants for reactions 6 and 7 were optimized in separate experiments^{13,14} as

$$k_6 = (2.0 \times 10^{15}) \exp(-75000 \text{ cal}/RT) \text{ s}^{-1}$$

 $k_7 = (3.0 \times 10^{15}) \exp(-75800 \text{ cal}/RT) \text{ s}^{-1}$

The activation energy of reaction 6, 75 kcal/mol, was assumed to be slightly lower than the heat of reaction. The activation energy of reaction 7, 75.8 kcal/mol, was adopted from the highpressure-limit rate constant expression proposed by Dean,¹⁶ $k_{7,\infty}$ = (5.0 × 10¹⁵) exp(-75800 cal/*RT*) s⁻¹. Other C-C single bond fissions and C-H bond fissions

 $2-C_{4}H_{6} = 2-C_{4}H_{5} + H \qquad \Delta H^{\circ}_{298} = 89.6 \text{ kcal/mol} \quad (5)$ $k_{5} = (5.0 \times 10^{14}) \exp(-87300 \text{ cal/}RT) \text{ s}^{-1} \quad (\text{ref 16})$ $2-C_{4}H_{6} = CH_{3}C = C^{*} + CH_{3} \qquad \Delta H^{\circ}_{298} = 123.0 \text{ kcal/mol}$

(a1)

 $k_{a1} = (1.00 \times 10^{17}) \exp(-120000 \text{ cal}/RT) \text{ s}^{-1} \text{ (assumed)}$ 1,3-C₄H₆ = C₂H₃ + C₂H₃ $\Delta H^{\circ}_{298} = 117.1 \text{ kcal/mol}$ (a2)

 $k_{-a2} = 7.22 \times 10^{13} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ (ref 17) 1-C₄H₆ = 1-IC₄H₅ + H $\Delta H^{\circ}_{298} = 86.6 \text{ kcal/mol}$ (a3)

 $k_{a3} = (7.0 \times 10^{14}) \exp(-86000 \text{ cal}/RT) \text{ s}^{-1} \text{ (assumed)}$ 1,2-C₄H₆ = 1,2-C₄H₅ + H $\Delta H^{\circ}_{298} = 85.5 \text{ kcal/mol}$ (a4)

$$k_{a4} = (6.3 \times 10^{14}) \exp(-85900 \text{ cal}/RT) \text{ s}^{-1}$$
 (ref 16)
1,3-C₄H₆ = 1,3-IC₄H₅ + H $\Delta H^{\circ}_{298} = 98.0 \text{ kcal/mol}$ (a5)

$$k_{a5} = (7.0 \times 10^{14}) \exp(-95000 \text{ cal}/RT) \text{ s}^{-1} \text{ (assumed)}$$

had negligible effect on the computed results, as long as we used the rate constants given above. For the decomposition of 1,3- C_4H_6 , the possibility of a molecular elimination reaction

$$1,3-C_4H_6 \rightarrow H_2C_2: + C_2H_4 \rightarrow C_2H_2 + C_2H_4$$
 (8)

has been suggested.^{3,4} We included this reaction in our mechanism. The rate constant used for this reaction was that optimized in our experimental and modeling study¹⁸ of $1,3-C_4H_6$ pyrolysis,

Figure 3. Comparison of experimental (O) with computed (lines) UV absorption profiles at 230 nm for the 0.4% 2-C₄H₆ mixture: (A) P₁ = 50 Torr, T₅ = 1280 K; (B) P₁ = 50 Torr, T₅ = 1352 K; (C) P₂ = 50 Torr, T₅ = 1378 K; (---) computed with the Table I mecahnism, (---) computed using only reactions 1-4, (---) absorption due to 2-C₄H₆, 1,3-C₄H₆, and C₄H₄.

Figure 4. Comparison of experimental (O) with computed (—) laser absorption data, A_i , for the 2.5% 2-C₄H₆-97.5% Ar mixture at 50, 100, and 200 μ s. Initial sample pressure, P_1 , is 50 Torr. Broken lines represent absorption due to 2-C₄H₆ and 1,3-C₄H₆.

 $k_8 = (1.0 \times 10^{14}) \exp(-75000 \text{ cal}/RT) \text{ s}^{-1}$. This value is about half of that derived by Kiefer et al.;⁴ $k_8 = (2.6 \times 10^{15}) \exp(-82500 \text{ cal}/RT) \text{ s}^{-1}$.

As secondary reactions, the following reactions were found to be important: H atom addition to C_4H_6 isomers and subsequent decomposition of the adducts (reactions 10–14), H atom abstraction from C_4H_6 isomers by H, CH₃, and C_2H_3 (reactions 15–30), and subsequent decomposition of the C_4H_5 isomers (reactions 35–42). Rate constants for these secondary reactions were assumed, when rate constant expressions were not available. We also added reactions which describe the formation and consumption of the products such as CH₄, C_2H_2 , C_2H_4 , C_2H_6 , allene, propyne, C_4H_2 , C_4H_4 , and benzene.

Figure 5. Energy diagram for the isomerizations of $2-C_4H_6$ (1) to 1,3- C_4H_6 (2) and 1,2- C_4H_6 (3). Energies in parentheses are the activation energies proposed by Hopf et al.⁶ for the isomerizations of 1-methyl-1-cyclopropene (4) to $2-C_4H_6$, 1,3- C_4H_6 , and 1,2- C_4H_6 .

In Table I are shown the final mechanism and the rate constants used to interpret the present data. Reverse reactions were automatically included in a computer program through equilibrium constants computed from polynomial fits to standard thermochemical data. Thermochemical data of C₄H₆ isomers and C_4H_5 isomers used in this study are presented in Table II. The thermochemical data of C₄H₅ isomers were estimated by using group additivity methods.²⁸ For other species we used the same thermochemical data as those used in previous papers.¹⁰⁻¹² The heat of formation of C_2H_3 reported so far ranges from 63 to 77 kcal/mol. We used the value of $\Delta H^{\circ}_{f,298} = 71.7$ kcal/mol, which is determined experimentally by Ervin et al.³⁰ and theoretically by Wu and Carter.³¹ Solid lines in Figures 1, 3, and 4 are the results computed using the rate constant set listed in Table I. As are seen in these figures, the present experimental data are satisfactorily modeled by the mechanism and the rate constant set listed in Table I. In Figures 1 and 3 are also shown by broken lines the results computed using only reactions 1-4. Under 1250 K, the yields of $1,3-C_4H_6$ and $1,2-C_4H_6$ and remaining $2-C_4H_6$ can well be explained by reactions 1-4. The UV absorption profiles are also reproduced by reactions 1-4. These facts imply that $2-C_4H_6$ is mainly consumed by the isomerizations.

Discussion

Mechanism of 2-C₄H₆ Isomerization. It is apparent, from both the experimental results and the modeling calculations, that 2-C₄H₆ rapidly isomerizes to 1,2-C₄H₆ and 1,3-C₄H₆. These isomerizations can well be explained by the mechanism proposed by Hopf et al.⁶ for the isomerizations of 1-methyl-1-cyclopropene to $2-C_4H_6$, $1,3-C_4H_6$, and $1,2-C_4H_6$ (Scheme I). Their mechanism of 1-methyl-1-cyclopropene isomerization is as follows: the first step is the ring opening to produce diradical (INT in Scheme I), and the second step is 1,2-H shifts (TS-1, TS-2, and TS-3 in Scheme I) to produce stable C_4H_6 isomers. According to their mechanism, the isomerization of 2-C₄H₆ would proceed as follows: the first step is 1,2-H shift to produce diradical intermediate (INT) via TS-1, and the second step is another 1,2-H shift to produce 1,3-C₄H₆ and 1,2-C₄H₆ via TS-2 and TS-3. Figure 5 shows an energy diagram for the isomerizations of $2-C_4H_6$. The energies given in parentheses, 38.7, 42.2, and 43.8 kcal/mol, are the activation energies proposed by Hopf et al. for the isomerizations of 1-methyl-1-cyclopropene to $2-C_4H_{f_1}$, 1,3- C_4H_6 , and 1,2- C_4H_6 . Because their experiments were performed in the high-pressure limit (at least within 2%), these activation energies will be close to the energy barriers of these isomerizations. From these energy barriers and the differences of the standard

TABLE I. Reaction Mechanism and Rate Constant Expression^a

eq	,					eq					
no.	reaction	A	n	Ea	ref	no.	reaction	A	n	E,	ref
1	$2 - C_4 H_6 = 1, 3 - C_4 H_6$	3.00E+13	0.0	65.0	this work	37	$1,3-NC_4H_5 = C_2H_3 + C_2H_2$	5.00E+13	0.0	43.9	1/2 of ref 16
2	$2 - C_4 H_6 = 1, 2 - C_4 H_6$	3.00E+13	0.0	67.0	this work	38	$H + C_4 H_4 = 1.3 - NC_4 H_5$	4.00E+13	0.0	3.0	12
3	$1,2-C_4H_6 = 1,3-C_4H_6$	2.50E+13	0.0	63.0	13	39	$1.2 - C_4 H_5 = C_4 H_4 + H$	3.00E+13	0.0	45.0	assumed
4	$1 - C_4 H_6 = 1.2 - C_4 H_6$	2.50E+13	0.0	65.0	14	40	$1 - IC_4H_4 = C_4H_4 + H_1$	3.00E+13	0.0	45.0	assumed
5	$2 - C_4 H_4 = 2 - C_4 H_4 + H_1$	5.00E+14	0.0	84.0	16	41	$1 - NC_1 H_2 = C_1 H_2 + H_1$	3.00E+13	0.0	45.0	assumed
6	$1.2 \cdot C_4 H_4 = C_3 H_3 + C H_3$	2.00E+15	0.0	75.0	13	42	$1 - NC_1 H_2 = C_2 H_2 + C_2 H_2$	2.00E+14	0.0	57.0	assumed
7	$1-C_1H_2 = C_2H_2 + CH_2$	3.00E+15	0.0	75.8	14	43	$C_{H_1} = C_{H_2} + C_{H_3}$	3 40E+13	0.0	77 1	12
8	$1.3 \cdot C_1 H_2 = C_2 H_2 + C_2 H_3$	1.00E+14	0.0	75.0	18	44	$C_{1}H_{1} + H = IC_{1}H_{2} + H_{2}$	1 00E+07	20	60	12
ŏ	$1.3-C_1H_2 = C_1H_2 + H_2$	2 00E+13	0.0	75.0	18	45	$C_{H_1} + H = NC_{H_2} + H_2$	5.00E+06	2.0	6.0	12
10	$2 \cdot C_1 H_2 + H = C H_2 + P C_2 H_2$	2 60E+05	25	10	=2km(assumed)	46	$C_{H_1} + H = C_{H_2} + C_{H_3}$	1 00E+13	ñ.o	3.6	12
11	$13-C_{1}H_{2} + H = C_{2}H_{2} + C_{2}H_{2}$	2.00E+13	ñ. ñ	5.0	18	47	$1C_1H_1 + M = C_2H_1 + H + M$	3 20E+15	0.0	45.0	12
12	$1.2 - C_1 H_2 + H = C H_2 + A C_2 H_2$	6.00E+12	0.0	2 1	$=(3/4)k_{\rm escaped}$	49	$NC.H. \pm M = C.H. \pm H \pm M$	5.20E+15	0.0	45.0	12
13	1 - C + H = C + A - H	1 30E+05	25	10	$=(3/4)$ \approx (assumed)	40	$NC_{4}H_{3} + M = C_{4}H_{2} + H + M$	3 20E+14	0.0	57.0	16
14	$1 - C_{4}H_{6} + H = C_{1}H_{1} + C_{2}H_{1}$	6 50E+03	2.5	1.0	$=(1/2)k_{\rm exc}$ (assumed)	50	$C_1U_1 + C_2U_2 + C_2U_1$	3.20E+14	0.0	57.2	10
15	2.0.41.44 = 2.0.44 + 4.	1 205-14	2.5	1.0	$=(1/2)$ \times second $=$ k (assumed)	\$1	$C_{2112} + C_{211} = C_{4112} + H$	2.03E+13	0.0	0.0	19
16	$2 - C_4 H_6 + H = 2 - C_4 H_5 + H_2$ 1 2 C U + U = 1 2 NC U + U	5.00E±15	0.0	2.4	$-k_{64}(assumed)$	51	$C_4 \Pi + \Pi_2 = C_4 \Pi_2 + \Pi_2$	2.000 - 13	0.0	0.0	12
17	$1,3 - C_4 - C_6 + C_7 - 1,3 - C_4 - C_7 + C_7 - C_7 $	3.00E+13	0.0	22.0	$-\kappa_{67}(assumed)$	52	$C_{3}H_{6} = C_{2}H_{3} + C_{1}H_{3}$	0.00ET14	0.0	30.0	20
10	$1, 3 - C_4 n_6 + n = 1, 3 - C_4 n_5 + n_2$	2.30ET13	0.0	22.0	$-(1/2)k_{67}(assumed)$	55	$C_{3}\Pi_{6} = C\Pi_{4} + C_{2}\Pi_{2}$	3.30ET12	0.0	/0.0	20
10	$1,2-C_4 + H = 1,2-C_4 + H_2$	0.30E+13	0.0	9.4	$=(1/2)k_{64}(assumed)$	54	$C_{3}\Pi_{6} + \Pi = C_{3}\Pi_{5} + \Pi_{2}$	1.60E+13	0.0	1.5	20
20	$1 - C_4 - C_6 + C_1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	0.30ET13	0.0	9.4	$=(1/2)k_{64}(assumed)$ =(1/2)k_(assumed)	55	$AC_{3}H_{4} + H = C_{3}H_{5}$	8.00E+12	0.0	2.1	20
20	$1 - C_4 n_6 + n = 1 - N - C_4 n_5 + n_2$	0.30E+13	0.0	9.4	$=(1/2)\kappa_{64}(assumed)$	20	$PC_3H_4 + M = C_3H_3 + H + M$	4.70E+18	0.0	80.0	10
21	$2 - C_4 \Pi_6 + C \Pi_3 = 2 - C_4 \Pi_5 + C \Pi_4$	2.00E+14	0.0	19.3	$=4K_{63}(ad)usted)$	5/	$PC_{3}H_{4} + CH_{3} = C_{3}H_{3} + CH_{4}$	2.00E+12	0.0	1.1	10
22	$1,3-C_4H_6 + CH_3 =$	4.00E+14	0.0	22.8	$=(1/12.5)\kappa_{67}$	28	$PC_{3}H_{4} + H = C_{2}H_{2} + CH_{3}$	1.30E+05	2.5	1.0	10
~~	$1,3-NC_4H_5 + CH_4$	2.005.114	~ ~		(assumed)	39	$AC_{3}H_{4} = PC_{3}H_{4}$	2.50E+12	0.0	59.0	10
23	$1,3-C_4H_6 + CH_3 =$	2.00E+14	0.0	22.8	$=(1/25)\kappa_{67}$	60	$AC_{3}H_{4} + M = C_{3}H_{3} + H + M$	2.00E+18	0.0	80.0	10
~ 4	$1,3-1C_4H_5 + CH_4$	1 005 1 1 4	~ ~	10.0	(assumed)	01	$C_2H_6 = CH_3 + CH_3$	7.00E+14	0.0	80.0	21
24	$1,2-C_4H_6 + CH_3 =$	1.00E+14	0.0	19.5	$=2k_{63}(assumed)$	62	$C_2H_6 + C_2H_3 = C_2H_5 + C_2H_4$	1.50E+13	0.0	10.0	21
~ E	$1,2-C_4H_5 + CH_4$	1.005.114	~ ~	10.6		63	$C_2H_6 + CH_3 = C_2H_5 + CH_4$	5.00E+13	0.0	19.5	21
23	$1 - C_4 H_6 + C H_3 = 1 - 1 C_4 H_5 + C H_4$	1.00E+14	0.0	19.5	$=2\kappa_{63}(assumed)$	64	$C_2H_6 + H = C_2H_5 + H_2$	1.30E+14	0.0	9.4	21
26	$1 - C_4 H_6 + C H_3 = 1 - N C_4 H_5 + C H_4$	1.00E+14	0.0	19.5	$=2k_{63}(assumed)$	65	$CH_3 + CH_3 = C_2H_5 + H$	2.80E+13	0.0	13.6	22
27	$2 - C_4 H_6 + C_2 H_3 = 2 - C_4 H_5 + C_2 H_4$	1.50E+13	0.0	10.0	$=k_{62}(assumed)$	66	$C_2H_5 = C_2H_4 + H$	1.20E+12	0.0	35.0	21
28	$1,3-C_4H_6+C_2H_3=$	5.00E+14	0.0	22.8	$=(1/10)k_{67}$	67	$C_2H_4 + H = C_2H_3 + H_2$	5.00E+15	0.0	22.8	23
•••	$1,3-NC_4H_5+C_2H_4$		~ ~		(assumed)	68	$C_2H_3 + M = C_2H_2 + H + M$	7.90E+14	0.0	31.5	24
29	$1,2-C_4H_6 + C_2H_3 =$	7.50E+12	0.0	10.0	$=(1/2)k_{62}(assumed)$	69	$C_2H + H_2 = C_2H_2 + H$	1.08E+13	0.0	2.2	19
••	$1,2-C_4H_5+C_2H_4$		~ ~			70	$CH_4 + H = CH_3 + H_2$	7.20E+14	0.0	15.1	21
30	$1 - C_4 H_6 + C_2 H_3 =$	1.50E+13	0.0	10.0	$=k_{62}(assumed)$	71	$1,3-NC_4H_5+C_2H_2 =$	1.00E+13	0.0	0.0	12
	$1 - NC_4H_5 + C_2H_4$						$C_6H_6 + H$				
31	$2 - C_4 H_6 + C_3 H_3 = 2 - C_4 H_5 + A C_3 H_4$	1.00E+13	0.0	19.5	$=(1/5)k_{63}(assumed)$	72	$NC_4H_3 + C_2H_2 = C_6H_5$	1.00E+13	0.0	0.0	12
32	$1,3-C_4H_6 + C_3H_3 =$	1.00E+13	0.0	22.5	5	73	$C_2H + C_4H_2 = C_6H_2 + H$	4.00E+13	0.0	0.0	12
	$1,3-NC_4H_5 + AC_3H_4$					74	$C_4H + C_2H_2 = C_6H_2 + H$	4.00E+13	0.0	0.0	12
33	$1,2-C_4H_6 + C_3H_3 =$	5.00E+12	0.0	19.5	$=(1/10)k_{63}$	75	$C_3H_3 + C_3H_3 = C_6H_6$	3.00E+12	0.0	0.0	13, 14
	$1,2-C_4H_5 + AC_3H_4$				(assumed)	76	$C_3H_3 + C_3H_3 = C_6H_5 + H$	6.00E+13	0.0	10.0	assumed
34	$1 - C_4 H_6 + C_3 H_3 =$	1.00E+13	0.0	19.5	$=(1/5)k_{63}(assumed)$	77	$C_6H_6 = C_6H_5 + H$	5.00E+15	0.0	107.9	25
	$1-NC_4H_5 + AC_3H_4$					78	$C_6H_6 + H = C_6H_5 + H_2$	2.51E+14	0.0	16.0	26
35	$2 - C_4 H_5 = C_4 H_4 + H_1$	3.00E+13	0.0	45.0	assumed	79	$C_6H_5 + C_2H_2 = C_8H_6 + H$	1.00E+13	0.0	0.0	12
36	$1,3-IC_4H_5 = C_4H_4 + H$	5.00E+13	0.0	44.0	assumed	80	$C_6H_5 + C_6H_5 = C_{12}H_{10}$	3.00E+12	0.0	0.0	27

^a Rate constants are given in the form, $k = AT^{n} \exp(-E_{n}/RT)$. The units are cm, mol, kcal, s, and K. Species identification: IC₄H₃, CH=C-C=CH₂ radical; NC₄H₃, CH=C-CH=CH radical; C₆H₅, phenyl radical; C₈H₆, phenyl acetylene; C₁₂H₁₀, biphenyl; structures of C₄H₅ isomers are shown in Table II.

						Сp		
name	structure	$\Delta H^{o}_{f,298}$	S° 298	298 K	500 K	800 K	1000 K	1500 K
2-C4H6 ^a 1-C4H6 ^a 1,2-C4H6 ^a 1,3-C4H6 ^a 2-C4H6 ^b	$\begin{array}{c} CH_{3}-C=C-CH_{3}\\ CH=C-CH_{2}-CH_{3}\\ CH_{2}=C=CH-CH_{3}\\ CH_{2}=CH-CH=CH_{3}\\ CH_{2}=CH-CH=CH_{2}\\ \left(\begin{array}{c} \dot{C}H_{2}-C\equiv C-CH_{3}\\ \downarrow \uparrow\\ CH_{2}=C=\dot{C}-CH_{3} \end{array} \right) \end{array}$	34.75 39.48 38.79 26.27 72.3 (74.3)	67.66 69.50 69.98 66.62 71.2	18.63 19.46 19.15 19.11 18.7	26.36 27.63 27.39 28.51 25.8	35.13 35.95 36.02 36.83 33.0	39.20 39.82 40.01 40.51 36.4	45.77 46.22 46.20 46.34 41.6
1-IC₄H₃ ^b	(ch≡c-ċh-ch₃ ↓↑ ċh=c=ch-ch₃	74.0 (75.9)	71.2	18.9	26 .1	33.3	36.6	41.7
1-NC4H5 ^b 1,3-NC4H5 ^c	CH=C-CH2-CH2 CH=CH-CH=CH2	85.6 82.6 (86.5)	72.8 69.1	18.1 18.6	25.6 23.8	32.8 31.6	36.2 36.7	41.6 41.8
1,3-IC₄H5 ^b 1,2-C₄H5 ^b	$\begin{pmatrix} CH_2 = \dot{C} - CH = CH_2 \\ \downarrow \uparrow \\ CH_2 = C = CH - \dot{C}H_2 \end{pmatrix}$	72.2 (74.1)	69.9	18.5	26.5	34.3	37.8	42.9

TABLE II: Thermochemical Parameters of C₄H₆ Isomers and C₄H₅ Isomers

^a Handbook of Chemistry, 3rd ed.; Ed. by the Chemical Society of Japan: Maruzen: Tokyo, 1984; Chapter 9. ^b Estimated using group additivity methods.²⁸ We used the values of $\Delta H^{\circ}_{1,298}[C-(H)_2(C_t)] = 27.3 \text{ kcal/mol and } \Delta H^{\circ}_{1,298}[\cdotC-(H)(C)(C_t)] = 29.6 \text{ kcal/mol, which were derived from the propargyl resonance energy of 8.6 kcal/mol.²⁹ ^c Weissman, M.; Benson, S. W. Int. J. Chem. Kinet.$ **1984**, 16, 307. Units are kcal/mol for the heats of formation and cal K⁻¹ mol⁻¹ for the entropies and heat capacities. The heats of formation given in parentheses are the BAC-MP4 results by Miller and Melius (Miller, J. A.; Melius, C. F. Combust. Flame**1992**, 91, 21).

heats of formation of the C₄H₆ isomers, we estimated the barriers of 2-C₄H₆ isomerizations to 1,3-C₄H₆ and 1,2-C₄H₆ to be 65.7 kcal/mol (TS-2) and 67.3 kcal/mol (TS-3), respectively. We tentatively adopted 65 and 67 kcal/mol as the activation energies $(E_{a_1} \text{ and } E_{a_2})$ of reactions 1 and 2. Although these activation energies can well explain our experimental results, computed results are not so sensitive to the choice of E_{a_1} and E_{a_2} . Variations of E_{a_1} and E_{a_2} by 5 kcal/mol impair the fits only slightly, as long as the absolute values of k_1 and k_2 remain the same at 1300 K. However, variations of E_{a_1} and E_{a_2} by 10 kcal/mol make the fits worse, especially when E_{a_1} and E_{a_2} were enlarged.

Figure 6 shows the sensitivity for the UV absorption profile at 1378 K. The UV absorption profile is very sensitive to the k_1 value. The change of k_1 value by a factor of 2 causes serious disagreement between the experimental and the modeling profiles. The proposed k_1 value is reliable within a factor of 2 at least below 1400 K.

We did not include the following isomerizations

$$2 - C_4 H_6 = 1 - C_4 H_6 \tag{a6}$$

$$1 - C_4 H_6 = 1, 3 - C_4 H_6$$
 (a7)

in our mechanism. The inclusion of reaction a6 with the rate constant $k_{a6} = k_2$ predicts much more formation of $1-C_4H_6$ (3.0% at 1200 K and 4.5% at 1300 K) than that observed. The inclusion of reaction a7 with the rate constant $k_{a7} = k_4$ predicted much more formation of $1,3-C_4H_6$ in the pyrolysis of $1-C_4H_6$ than that observed.¹⁴ These isomerizations require more complicated H shifts (for example, simultaneous 1,3-H shifts of two H atoms) than those of reactions 1-4 and would be hard to occur. The experimental results can well be explained without reactions a6 and a7. However, if any, the maximum values which could account for the experimental data were $k_{a6} = (1/10)k_2$ and $k_{a7} = (1/10)k_4$.

There are other possible routes of the isomerizations of $2-C_4H_6$ to $1,3-C_4H_6$ and $1,2-C_4H_6$. They are the following reactions:

$$k_{a8} = (2.6 \times 10^5) T^{2.5} \exp(-1000 \text{ cal}/RT) \text{ s}^{-1}$$

(= k_{10} , assumed)

$$H H H H$$

$$H - C = C - C = C - H + H \Rightarrow$$

$$H H H H H H$$

$$H - C - C - C = C - H \Rightarrow H - C - C = C = C - H + H$$

$$H - C - C - C = C - H \Rightarrow H - C - C = C = C - H + H$$

$$H H$$

$$H$$

$$(a10)$$

$$k_{a10} = (2.0 \times 10^{13}) \exp(-5000 \text{ cal}/RT) \text{ s}^{-1}$$

(= k_{11} , assumed)

When these reactions were added to the Table I mechanism, the computed yields of $1,3-C_4H_6$ and $1,2-C_4H_6$ and the remaining $2-C_4H_6$ were slightly affected. The computed UV absorption profiles were also affected slightly by these reactions. When we eliminated reactions 1-4 and added reactions a8-a10, experimental data could not be reproduced at all. These facts mean that $2-C_4H_6$ mainly isomerizes through reactions 1-4 and the isomerizations through reactions a8-a10 are not so important, at least at the initial stage of the reaction. In order to avoid complexity, we did not include reactions a8-a10 in our mechanism. The proposed rate constants k_1 and k_2 would, therefore, contain some contributions of reactions a8-a10.

General Features of the Reaction. In Figure 7 are shown the pR values³² (logarithms of absolute values of net reaction rates in molecules cm⁻³s⁻¹ units) for the formation and the consumption of the C₄H₆ isomers. As is seen in this figure, most of the C₄H₆ isomers are consumed through three channels: (i) direct unimolecular decomposition of the C₄H₆ isomers and subsequent decomposition of the adducts (reactions 10 and 11); (iii) abstraction of H atom from the C₄H₆ isomers by H, CH₃, and C₂H₃ and subsequent decomposition of the C₄H₆ isomers. Thus, the decomposition follows mainly a free-radical mechanism with the major chain carriers of CH₃ and H. The major initiation is reaction 6. The CH₃ radical is produced by reactions 6 and 10. The other major chain carrier, H atom, is mainly produced by reactions 35 and 68.

We can find out the route of the formation of major products from the pR values such as shown in Figure 7: CH₄ is mainly produced by reactions 21 and 22; C₂H₂ by reactions 8, 37, and 68; C₂H₄ by reactions 8, 11, and 27; propyne by reaction 10; vinylacetylene (C₄H₄) by reaction 35. Reaction 35 is not a single reaction, because H atom elimination from 2-C₄H₅ is expected to produce 1,2,3-butatriene (•CH₂C=CCH₃ \Rightarrow CH₂=C=C⁻CCH₂ + H). We were, however, unable to find 1,2,3-butatriene. 1,2,3-Butatriene would rapidly isomerize to vinylacetylene. The other possible route of vinylacetylene formation from 2-C₄H₅ is the isomerization of 2-C₄H₅ to other C₄H₅ isomers and subsequent H atom elimination from the isomers.

Figure 6. Sensitivity for the UV absorption profile at 230 nm. Conditions are the same as those of C in Figure 3. Broken line is computed with the Table I mechanism and rate constants. Solid lines are computed by multiplying the rate constants of Table I by 2 and 0.5 for k_1 and by 5 for others.

Figure 7. Reaction rate (pR) profiles at 1300 K for the 2.5% $2-C_4H_6-$ 97.5% Ar mixture. Reactions which produce or consume C₄H₆ isomers are shown.

Conclusions

We found that 2-C₄H₆ rapidly isomerizes to 1,3-C₄H₆ and 1,2-C₄H₆ above 1100 K. We proposed the rate constants of these isomerizations and discussed the mechanism of the isomerizations. The proposed rate constants, k_1 and k_2 , are applicable only at the total density of around $1.8 \times 10^{-5} \text{ mol/cm}^3$, because our experiments are limited in the density range of 1.6×10^{-5} to 2.1 \times 10⁻⁵ mol/cm³. Theoretical studies will be needed to confirm the isomerization mechanism presented here.

The decomposition of $2-C_4H_6$ is very complex, because of its very fast isomerization to 1,3-C₄H₆ and 1,2-C₄H₆. In order to understand the mechanism of 2-C₄H₆ decomposition, more experimental data for the decomposition of all the C4H6 isomers are needed.

References and Notes

(1) Skinner, G. B.; Sokoloski, E. M. J. Phys. Chem. 1960, 64, 1028. (2) Kiefer, J. H.; Wei, H. C.; Kern, R. D.; Wu, C. H. Int. J. Chem. Kinet.

1985, 17, 225.

(3) Rao, V. S.; Takeda, K.; Skinner, G. B. Int. J. Chem. Kinet. 1988, 20, 153.

(4) Kiefer, J. H.; Mitchell, K. I.; Wei, H. C. Int. J. Chem. Kinet. 1988, 20. 787

(5) Kern, R. D.; Singh, H. J.; Wu, C. H. Int. J. Chem. Kinet. 1988, 20, 731.

(6) Hopf, H.; Wachholz, G.; Walsh, R. Chem. Ber. 1985, 118, 3579.
(7) Cooper, W.; Walters, W. D. J. Am. Chem. Soc. 1958, 80, 4220.

(8) Frey, H. M.; Stevens, I. D. R. Trans. Faraday Soc. 1965, 61, 90. (9) Srinivasan, R.; Levi, A. A.; Haller, I. J. Phys. Chem. 1965, 69, 1775.

(10) Hidaka, Y.; Nakamura, T.; Miyauchi, A.; Shiraishi, T.; Kawano, H.

Int. J. Chem. Kinet. 1989, 21, 643.

(11) Hidaka, Y.; Oki, T.; Kawano, H. Int. J. Chem. Kinet. 1989, 21, 689. (12) Hidaka, Y.; Masaoka, H.; Oshita, H.; Nakamura, T.; Tanaka, K.;

Kawano, H. Int. J. Chem. Kinet. 1992, 24, 871, and references cited therein. (13) Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Oki, T.; Kawano, H.

Manuscript in preparation. (14) Hidaka, Y.; Higashihara, T.; Oki, T.; Kawano, H. Manuscript in preparation.

(15) Honjyou, N.; Pacansky, J.; Yoshimine, M. J. Am. Chem. Soc. 1984, 106, 5361. Honjyou, N.; Pacansky, J.; Yoshimine, M. J. Am. Chem. Soc. 1985, 107, 5332.

(16) Dean, A. M. J. Phys. Chem. 1985, 89, 4600.

(17) Fahr, A.; Laufer, A.; Klein, R.; Braun, W. J. Phys. Chem. 1991, 95, 3218

(18) Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Manuscript in preparation.

(19) Koshi, M.; Fukuda, K.; Kamiya, K.; Matsui, H. J. Phys. Chem. 1992, 96, 9839.

(20) Hidaka, H.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H.; Higashihara, T. Int. J. Chem. Kinet. 1992, 24, 761.

(21) Hidaka, Y.; Shiba, S.; Takuma, H.; Suga, M. Int. J. Chem. Kinet. 1985, 17, 441, and references cited therein.

(22) Frank, P.; Braun-Unkhof, M. 16th Symp. (Int.) on Shock Tubes and Waves, Aachen 1987, 379

(23) Just, Th.; Roth, P.; Damm, R. Symp. (Int.) Combust. [Proc.] 16th 1976, 961.

(24) Benson, S. W.; Haugen, G. R. J. Phys. Chem. 1967, 71, 1735.

(25) Hsu, D. S. Y.; Lin, C. Y.; Lin, M. C. Symp. (Int.) Combust. [Proc.] 20th 1984, 623.

(26) Kiefer, J. H.; Mizerka, L. J.; Patel, M. R.; Wei, H.-C. J. Phys. Chem. 1985, 89, 2013

(27) Tsang, W. In Shock Waves in Chemistry; Lifshitz, A., Ed.; Marcel Dekker: New York, 1981; p 60.

(28) Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.;

O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69,

279. O'Neal, H. E.; Benson, S. W. Int. J. Chem. Kinet. 1969, 1, 221.

(29) Tsang, W. Int. J. Chem. Kinet. 1978, 10, 687.

(30) Ervin, K. M.; Gronert, S.; Barlow, S. E.; Gilles, M. K.; Harrison, A. G.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C.; Ellison, G. B. J. Am. Chem. Soc. 1990, 112, 5750.

(31) Wu, C. J.; Carter, E. A. J. Am. Chem. Soc. 1990, 112, 5893.

(32) Gardiner, W. C., Jr. J. Phys. Chem. 1977, 81, 2367.