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A straightforward method for ring opening of donor-acceptor cyclopropanes with 

trimethylsilyl cyanide as a surrogate of cyanide ion in the presence of B(C6F5)3 
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or trifluoromethanesulfonic acid as a catalyst has been developed. The 

methodology provides a short route to -cyanoesters that can be useful synthetic 

intermediates for the synthesis of diverse bioactive molecules such as glutaric and 

-aminovaleric acid derivatives, 3-arylpiperidines or other substituted 

phenethylamines. Oppositely, the attempts to synthesize these -cyanoesters by 

direct reaction of cyclopropanes with sodium cyanide under typical SN2 

conditions led to the formation of 2-arylsuccinonitriles.

Introduction

Even though cyclopropanes with donor and acceptor substituents at the vicinal 

carbon atoms (DA cyclopropanes) are known more than 125 years,1 they were 

predominantly considered as exotic compounds until seminal works by Wenkert2 

and Reissig3 who laid the foundations for the explosive growth of the study of 

DA cyclopropanes as building blocks in the synthesis of a broad diversity of 

acyclic, alicyclic, and heterocyclic compounds, observed in the last two decades.4 

The presence of donor and acceptor substituents at vicinal carbon atoms provides 

excellent reactivity of three-membered rings as synthetic equivalents of all-

carbon 1,3-dipoles in diverse (3+n)-cycloadditions5 or 1,3-difunctionalizations.6 

Moreover, DA cyclopropanes usually demonstrate higher reactivity against 

nucleophiles in comparison with the corresponding electrophilic cyclopropanes 

without a donor substituent.7 Ring openings of DA cyclopropanes with diverse 

nucleophiles including anilines,8 phenols,9 indoles,10 other electron-abundant 
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(het)arenes,11 as well as various anions such as CH-acid-derived enolates,12 azide-

ion,7a,11a,13 etc. are well studied and employed in total syntheses.4b,g,7a Therefore, 

we were surprised that despite multiple investigations of electrophilic 

cyclopropanes reactivity towards cyanide ion (Scheme 1, a)14 there is only one 

reported example of DA cyclopropanes opening with this nucleophile (Scheme 

1, b).15 We decided to bridge this gap and developed the method for the synthesis 

of 2-(het)aryl-2-cyanoethyl-substituted malonates (Scheme 1, c), given that they 

contain 2-arylacetonitrile moiety which is present in diverse bioactive compounds 

including approved drugs such as antiarrhythmic and antihypertensive agent 

verapamil16 or opioid analgesic piritramide (Figure 1).17 Moreover, such products 

could be intermediates for the synthesis of a broad diversity of valuable 

compounds, being, for example, latent 2-arylethylamines and 3-arylpiperidines; 

these structural motifs are encountered in many important bioactive products and 

pharmaceuticals (anxiolytic phenibut,18  and D2 receptors antagonist 

preclamol,19 etc., see Figure 1). Herein, we report the results of our investigations.

Scheme 1. Cyclopropanes Hydrocyanation
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c) DA cyclopropanes opening (this work):

b) Single example of DA cyclopropane opening
(previous work):
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Figure 1. Selected Bioactive Arylacetonitriles and 3-Arylpiperidines

Results and Discussion

We commenced this study with the ring opening of 3,4-dimethoxyphenyl-

substituted cyclopropane 1a as a model substrate with sodium cyanide under 

typical SN2 conditions. The reaction conditions optimization was performed 

under the variation of solvents, reaction temperature and additives. We found that 

heating of 1a with NaCN in DMF or DMSO was inefficient (Table 1, entries 1–

3). One of the possible reasons can be the reversibility of the studied reaction 

similar to that found for the reaction of 1 with azide ion;7a as a result, side 
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reactions, such as oligomers formation, dominated over the target process. In the 

above study,7a the use of triethylamine hydrochloride allowed to prevent the 

reverse cyclization via protonation of the incipient malonate anion; however, this 

additive was found to be inefficient for the reaction in question (Table 1, entries 

5, 6). The use of nitromethane as a mild protonating agent allowed us to obtain a 

low-molecular-weight product, but we found that 3,4-dimethoxyphenyl-

substituted succinonitrile 2a was obtained instead of the target product 3a (Table 

1, entry 7). A further variation of reaction conditions allowed to increase the yield 

of 2a up to 43% (Table 1, entry 9) but was unsuccessful in terms of 3a 

preparation.

Table 1. Optimization of the Reaction Conditionsa

MeO

MeO

CN

CO2Me

CO2Me

2a

1a
conditions

MeO

MeO

NaCN

MeO

MeO

CN
CN

3a, not obtained

CO2Me

CO2Me

entry additive Solvent T, C t, h Yield, %

1 DMSO 80 3 -b

2 DMSO 140 3 -b

3 DMF 100 3 -b

4 [BMIM]PF6
c 100 5 -

5 Et3N·HCl DMF 100 3 -b

6 Et3N·HCl DMSO 100 3 -b
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7 CH3NO2 DMSO 100 8 31

8 CH3NO2 DMSO 100 3d 41

9 CH3NO2 DMSO 120 1d 43

10 CH3NO2 DMSO 140 0.25 37

11 CH3NO2 NMP 100 3 39

12 HFIPe DMSO 120 1 31
a Concentration of 1a was 0.1 M. b Oligomers of starting cyclopropane and product of 
hydrolysis were detected in the reaction mixture. c 1-Butyl-3-methylimidazolium 
hexafluorophosphate. d Under microwave irradiation. e 1,1,1,3,3,3-Hexafluoroisopropanol.

Under the same conditions, cyclopropanes 1b-d were transformed into 2-

arylsuccinonitriles 2b-d, but products were obtained in low yields in comparison 

with those in reported methods20 making this approach inappropriate for further 

development.

The possible mechanism of products 2 formation is shown in Scheme 2. 

The attack of cyanide ion on DA cyclopropane affords the desired product 3, 

which decomposes to dimethyl malonate and -cyanostyrene 4. The Michael 

addition of the second cyanide ion to this acceptor alkene accomplishes the 

formation of succinonitrile 2.21 The intermediacy of styrene 4 and, therefore, the 

disclosed chemoselectivity can result from the conjugation of the formed C=C 

bond with both nitrile group and aromatic moiety. The last conjugation seems to 

be crucial as cyclopropanes without an aromatic group afforded “normal” 

products of cyanide ion addition.14

Scheme 2. 2-Arylsuccinonitriles Obtained and Possible Mechanism of Their 

Formationa
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MeO

NC CN
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30%
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NC CN
2c

26%

DMSO, W
120 °C, 1 h

NaCN

Cl

NC CN
2d

33%

3 4

– CH2(CO2Me)2

NaCN

a For reaction conditions, see Table 1, entry 9.

Our attempts to use sodium cyanide in combination with Lewis acids as 

well as acetone cyanohydrin as a surrogate of cyanide ion were unsuccessful, and 

thus we switched our attention to trimethylsilyl cyanide. This reagent was 

previously used for the formal addition of hydrogen cyanide to Michael 

acceptors.20b,22 Moreover, DA cyclopropane opening with TMSN3 in the presence 

of TfOH (10 mol %) in HFIP at room temperature was recently demonstrated to 

be a good alternative to the direct reaction with sodium azide.11b

Indeed, under disclosed conditions, TMSCN afforded the desired 

cyanoethyl-substituted malonate 3a in 25% yield (Table 2, entry 1). The variation 

of reaction temperature, catalyst loading, etc. did not increase the target product 

yield. We studied other catalysts and found that under similar conditions B(C6F5)3 

induced the formation of 3a in comparable yield; products of cyclopropane 1a 

dimerizations (5a,23 6a24) and isomerization (7a)24,25 were also formed (Table 2, 
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entry 2). Under microwave irradiation, the yield of 3a did not change, but only 

one side product (dimer 5a) was formed (entry 3). When the reaction was 

performed in the presence of Sc(OTf)3, product 3a was not obtained at all; the 

product of cyclopropane 1a opening with HFIP (compound 8a) was 

predominantly formed (Table 2, entry 4). It is the first example of DA 

cyclopropane ring opening with this low-nucleophilic alcohol.26 The increase of 

temperature, reaction time and TMSCN loading did not increase the yield of 3a 

(entries 5-9). Oppositely, the highest yield was obtained under stirring at 0 C 

(entry 10). This temperature dependence comports with the decomposition of 

cyanomalonates 3, yielding succinonitriles 2 under heating with NaCN at 100 C 

and higher temperatures.

Table 2. Optimization of Conditions for the Reaction between DA 

Cyclopropane 1a and TMSCNa

1a

CO2Me

CO2Me
catalyst

(10 mol%)
HFIP

MeO

MeO

TMSCN
(2 equiv)

MeO

CN

CO2Me

CO2Me
3a

MeO

MeO

CO2Me

MeO2C

5a

OMe

OMe

CO2Me

CO2Me

MeO

MeO

CO2Me

MeO2C

OMe

OMe

CO2Me

CO2Me

6a
MeO

CO2Me

CO2Me

MeO

7a
(CF3)2CHO CO2Me

CO2Me

MeO

8a

MeO

MeO
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entry catalyst T, C t, h Yield, %b

1 TfOH 20 3 (25)

2 B(C6F5)3 20 17 40c

3 B(C6F5)3 20d 2 41e

4 B(C6F5)3 20f 3 -g

5 B(C6F5)3 58h 4 25i

6 B(C6F5)3 60d,h 14 30

7 B(C6F5)3 80d 7 58 (50)

8 B(C6F5)3 80d,h 24 36j

9 B(C6F5)3 0k 1 60 (55)i

a Concentration of 1a was 2 M. b NMR yields (hexamethyldisiloxane was used as internal 
standard); in parentheses – yields after chromatography. c 5a (10%), 6a (15%), 7a (5%) were 
also formed. d Under microwave irradiation. e 5a (25%) was also obtained. f Concentration of 
1a was 0.06 M; in the presence of Sc(OTf)3 (10 mol %). g 7a (15%) and 8a (55%) were formed. 
h 3 equiv of TMSCN. i 5a (15%) was also formed. j 5a (17%) was also formed. k Concentration 
of 1a was 1.3 M.

Next, we studied the scope of the disclosed reaction employing a series of 

DA cyclopropanes wherein a donor substituent is either a phenyl group 

containing diverse substituents or five-membered heterocycles. Three procedures 

were applied: B(C6F5)3-induced reaction under microwave irradiation at 80 C 

(method A), reaction in a sealed vial in the presence of the same Lewis acid at 

0 C, rt or moderate heating (method B), as well as TfOH-catalyzed process at 

room temperature (method C) (Scheme 3).

The obtained results demonstrated that yields of products 3 were 

consistently higher when method B was used; for compounds 3i,k bearing 

electron-rich aromatic groups high yields were achieved even with method A. 
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Oppositely, for substrates 1 with electron-neutral aryl substituents all methods 

furnished the desired products 3p,q in trace amounts only. Other cyclopropanes 

with electron-abundant (hetero)aromatic groups afforded 3 with yields varying 

from 37 to 86%. In reactions with moderate yields of products, dimerization 

and/or oligomerization of starting cyclopropanes were predominant side 

processes. It is worth noting that a three-membered ring opening with TMSCN 

proceeds exclusively via attack of the carbon atom of cyanide moiety on the 

benzylic atom of cyclopropane, providing no isomeric products.

Scheme 3. Scope of DA Cyclopropanes Ring Opening with TMSCNa

CO2Me

CO2Me

Ar

TMSCN (2 equiv) Ar CO2Me

CO2MeCNcatalyst (10 mol %)
HFIP, 20 or 80 °C, W

MeO

MeO

O

O

O

O

MeO

MeO

OMe
OMe

OMe

SR

3l, R = H
traces

3m, R = Me
B: 60%

Me2N

MeO

OMe

MeO OMe

1 3

3f
B: 70%

3e
A: 20%; B: 52%b

N
O

3i
A: 72%

3k
A: 88%

3g
B: 86%; C: 37%c,d

3a
A: 50%; B: 55%

3b
A: 48%

3c
A: 18%; B: 42%

C: 28%

3d
A: 52%

OR

3n, R = H
traces

3o, R = Me
A: 38%; B: 62%

R

3p, R = H
traces

3q, R = Me
traces

MeS

3h
C: 51%c

MeO

N

3j
B: 78%

a Reaction conditions: 2 M solution of 1 in HFIP, TMSCN (2 equiv). Method A: microwave 
irradiation, B(C6F5)3 (10 mol %), 80 C, 7 h; Method B: closed vial, B(C6F5)3 (10 mol %), 
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0 C, rt or 50 C; Method C: closed vial, TfOH (10 mol %), rt. b At 70 C. c 20 mol % TfOH. 
d Cyclopropane 1i dimer 9 with tetralin framework was also obtained in 33% yield; see 
Experimental part.

A series of further transformations of nitriles 3 was performed to 

demonstrate the synthetic utility of these compounds (Scheme 4). In particular, 

we converted nitrile moieties in 3 into the corresponding ester 10, amide 11 and 

Boc-protected amines 12a,b. Moreover, we synthesized arylpiperidone 13 by 

HCl-induced cyclization of 12a, demonstrating that the developed method can be 

used as a short route to 3-arylpiperidines (preclamol,19 OSU-6162,27 etc.) which 

have important bioactivities.

Scheme 4. Post-modifications of Compounds 3

3

CO2Me

CO2Me

O

H2N O

NiCl2
NaBH4

CO2Me

CO2Me

12a: Ar = 3,4-(MeO)2C6H3
47%

12b: Ar = 2,4,5-(MeO)3C6H2
68%

BocHN

MeO

OMe

MeO

CO2Me

O
NH

13
65%, dr 55:45

1) NiCl2
NaBH4
Boc2O
MeOH

2) HCl
EtOAc

Boc2O
MeOH

Ar

Ar

CO2Me

CO2MeMeO2C

MeO

10
81%

TMSCl
H2O

11
78%

TMSCl
MeOH 



CO2Me

CO2MeCN

O

Encouraged by the obtained results, we investigated the efficiency of the 

TMS-Nu/catalyst/HFIP combination for the ring opening of DA cyclopropanes 1 
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with other N-containing nucleophiles. Indeed, under catalysis with triflic acid, the 

reaction of phenyl-substituted cyclopropane 1r with trimethylsilyl isocyanate 

produced carbamate 14 via a three-membered ring opening followed by the 

interception of the intermediate isocyanate with HFIP (Scheme 5). It is worth 

noting that the secondary reaction with alcohol allowed to suppress side-

processes and isolate the ring opening product in reasonable yield even for 

cyclopropane, which was inefficient in the reaction with TMSCN.

Moreover, N-silylated morpholine and pyrrolidine reacted with DA 

cyclopropanes 1 affording the corresponding amines 15 and 16. After a short 

screening of the reaction conditions, we found that the best yields were obtained 

under heating of HFIP solution of 1 with N-trimethylsilylamine (2 equiv) and 

TfOH (10 mol %) at 80 C under microwave irradiation for 10 h (Scheme 5). 

Again, a reverse reaction was impossible for three-membered ring opening with 

amines that allowed moderately active substrates to react efficiently.

Scheme 5. DA Cyclopropanes Ring Opening with Various TMSNu Reagents
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CO2Me

CO2Me

1

14
61%

Ph

CO2Me

CO2Me

NH

N

CO2Me

O

CO2Me

15a, Ar = 4-FC6H4
81%

15b, Ar = 2-MeC6H4
83%

NTMS

N

CO2Me

CO2Me

16
64%

TfOH (20 mol%)
HFIP, 20 °C

TMSNCO
(2 equiv)

ONTMS

TfOH (10 mol%)
HFIP, 80 °C, W

(F3C)2HCO

O

Br

TfOH (10 mol%)
HFIP, 80 °C, W

Ar

Ar

Conclusions

In conclusion, we have developed a method for the ring opening of DA 

cyclopropanes with trimethylsilyl cyanide, providing direct access to the 

synthetically important -cyanoesters, which are valuable building blocks toward 

a variety of bioactive molecules. On the contrary, heating of DA cyclopropanes 

with sodium cyanide in dipolar solvents produced 2-arylsuccinonitriles. The 

developed approach was successfully applied for DA cyclopropanes ring opening 

with trimethylsilyl isocyanate and N-silylated secondary amines (morpholine, 

pyrrolidine) providing -aminobutyric acid derivatives. Moreover, post-

modifications of the obtained -cyanoesters allowed to synthesize 2-arylglutaric 

acid and 5-amino-4-arylvaleric acid derivatives, including 5-arylpiperidin-2-

ones, scaffolds presenting in various bioactive compounds.

Experimental Section
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General Information

NMR spectra were recorded on Agilent-400MR (400 MHz for 1H and 100 MHz 

for 13C), Bruker Avance 500 (500 MHz for 1H and 125 MHz for 13C), and Bruker 

Avance 600 (600 MHz for 1H and 150 MHz for 13C) spectrometers at room 

temperature if not specified other; the chemical shifts δ were measured in ppm 

with respect to solvent (CDCl3: 1Н: δ = 7.26 ppm, 13C: δ = 77.0 ppm; DMSO-d6: 

1Н: δ = 2.50 ppm, 13C: δ = 39.5 ppm). 19F NMR spectra were recorded at 470 

MHz with fluorobenzene as an internal reference (δ = –112.96 ppm in CDCl3). 

Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet; dd, doublet of doublets and br (broad). Coupling constants (J) are given 

in Hz. The structures of synthesized compounds were elucidated with the aid of 

1D NMR (1H, 13C, 19F) and 2D NMR (COSY 1H-1H, HSQC and HMBC 1H-13C, 

HMBC 1H-15N, NOESY 1H-1H) spectroscopies. IR spectra were recorded on 

Thermo Nicolet IR 200 FT-IR spectrometer. Registration of spectra was carried 

out at a resolution of 4 cm-1, the number of scans 20. Samples were placed on the 

working surface of the internal reflection (ATR) element from ZnSe with the 

angle of incidence of 45°. High resolution mass spectra were recorded on a 

Bruker microTOF-QTM spectrometer with electrospray ionization (ESI). 

Analytical thin-layer chromatography (TLC) was carried out using precoated 

aluminum sheets of silica gel 60 (F254). The visualization of the TLC plates was 

done by UV lamp (365 nm). Column chromatography was performed on silica 

gel 60 (230-400 mesh). Melting points (mp) were determined using 
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Electrothermal 9100 and SMP-20 capillary melting point apparatus. Column 

chromatography was performed on silica gel 60 (230-400 mesh). All the reactions 

were carried out using freshly distilled and dry solvents from solvent stills. 

Experiments under microwave irradiation were performed in sealed tubes using 

Anton Paar Monowave 200 equipment with an external surface sensor. 

Cyclopropanes 1 were prepared by Knoevenagel/Corey-Chaykovsky reactions 

sequence from the corresponding aldehydes.28 Compounds 6a, 7a were described 

previously.24

Dimethyl 2-(2,4,5-trimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1i). To a 

stirred suspension of NaH (60% suspension in oil, 329 mg, 8.2 mmol) in dry DMF 

(14 mL) trimethylsulfoxonium iodide (1.81 g, 8.2 mmol) was added in a single 

portion under argon atmosphere at room temperature. Vigorous evolution of 

hydrogen lasted ca. 10 min, after which the reaction mixture was stirred for 

additional 30 min. Dimethyl 2-(2,4,5-trimethoxybenzylidene)malonate (2.22 g, 

6.9 mmol) in dry DMF (2 mL) was added in portions. The resulted mixture was 

stirred for 2 h, poured into ice-cooled aq. solution NH4Cl (25 mL) and extracted 

with ethyl acetate (510 mL). The combined organic fractions were washed with 

water (510 mL), dried with Na2SO4 and concentrated in vacuo. The resulting 

residue was purified by recrystallization from Et2O yielding cyclopropane 1i. 

Yield 1.38 g (60%); colorless solid; mp 109–110 ºC. 1H NMR (CDCl3, 400 MHz): 

 = 1.71 (dd, 2J = 5.2 Hz, 3J = 9.4 Hz, 1H, CH2), 2.13 (dd, 2J = 5.2 Hz, 3J = 8.4 

Page 15 of 55

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Hz, 1H, CH2), 3.26 (dd, 3J = 9.4 Hz, 3J = 8.4 Hz, 1H, CH), 3.37 (s, 3H, CH3O), 

3.76 (s, 3H, CH3O), 3.77 (s, 6H, 2×CH3O), 3.84 (s, 3H, CH3O), 6.45 (s, 1H, Ar), 

6.50 (s, 1H, Ar). 13С{1H} NMR (CDCl3, 100 MHz):  = 19.0 (CH2), 28.3 (CH), 

36.2 (C), 52.0 (CH3O), 52.5 (CH3O), 55.8 (CH3O), 56.40 (CH3O), 56.44 (CH3O), 

97.1 (CH, Ar), 111.9 (CH, Ar), 114.1 (C, Ar), 142.2 (C, Ar), 148.8 (C, Ar), 153.5 

(C, Ar), 167.2 (CO2Me), 170.3 (CO2Me). IR (KBr):  = 2926, 2950, 2841, 1721, 

1515, 1471, 1440, 1431, 1401, 1318, 1294, 1276, 1211, 1123, 1030 сm-1. HRMS 

ESI-TOF m/z: [M+Na]+ Calcd for C16H20NaO7 347.1101; Found 347.1098. Anal. 

Calcd for C16H20O7: C, 59.25; H, 6.22. Found: С, 59.16; H, 6.05.

Dimethyl 2-[4-(methylsulfanyl)phenyl]cyclopropane-1,1-dicarboxylate (1j). To a 

stirred suspension of NaH (60% suspension in oil, 271 mg, 6.8 mmol) in dry DMF 

(30 mL) trimethylsulfoxonium iodide (1.49 g, 6.8 mmol) was added in a single 

portion under argon atmosphere at room temperature. Vigorous evolution of 

hydrogen lasted ca. 10 min, after which the reaction mixture was stirred for 

additional 30 min. Then dimethyl 2-[4-(methylsulfanyl)benzylidene]malonate 

(1.5 g, 5.6 mmol) in dry DMF (2 mL) was added in a single portion. The resulted 

mixture was stirred for 3 h, poured into ice-cooled aq. solution of NH4Cl (25 mL) 

and extracted with ethyl acetate (510 mL). The combined organic fractions were 

washed with water (510 mL), dried with Na2SO4 and concentrated in vacuo. The 

resulting residue was purified by column chromatography on silica gel yielding 

cyclopropane 1j. Yield 1.12 g (71%); colorless solid; Rf = 0.70 (petroleum ether 
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: ethyl acetate; 4:1); mp 58–59 ºC. 1H NMR (CDCl3, 400 MHz):  = 1.69 (dd, 2J 

= 5.2 Hz, 3J = 9.2 Hz, 1H, CH2), 2.12 (dd, 2J = 5.2 Hz, 3J = 8.1 Hz, 1H, CH2), 

2.41 (s, 3H, CH3S), 3.15 (dd, 3J = 9.2 Hz, 3J = 8.1 Hz, 1H, CH), 3.36 (s, 3H, 

CH3O), 3.74 (s, 3H, CH3O), 7.06–7.12 (m, 4H, Ar). 13С{1H} NMR (CDCl3, 100 

MHz):  = 15.6 (CH3S), 19.1 (CH2), 32.1 (CH), 37.1 (C), 52.2 (CH3O), 52.7 

(CH3O), 126.0 (2×CH, Ar), 128.8 (2×CH, Ar), 131.2 (C, Ar), 137.6 (C), 166.9 

(CO2Me), 170.1 (CO2Me). IR (KBr):  = 3022, 2944, 2951, 2921, 2846, 1729, 

1599, 1497, 1436, 1332, 1284, 1217, 1131, 1092, 1017, 967 сm-1. HRMS ESI-

TOF m/z: [M+H]+ Calcd for C14H17O4S 281.0842; Found 281.0835. Anal. Calcd 

for C14H16O4S: C, 59.98; H, 5.75. Found: С, 60.29; H, 5.78.

Synthesis of 2-arylsuccinonitriles 2а-d (General procedure). A dry reaction 

microwave tube was charged with 0.5 M solution of cyclopropane 1 (1 equiv) in 

DMSO under Ar atmosphere, MeNO2 (5 equiv) and NaCN (4 equiv) were added. 

The reaction mixture was heated in a microwave reactor at 120 °C for 1 h, 

quenched with conc. aqueous NaHCO3 and extracted with ethyl acetate (3×10 

mL). The combined organic extracts were washed with NaHCO3 and brine, dried 

with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by 

column chromatography on a silica gel to afford the desired product.

2-(3,4-Dimethoxyphenyl)succinonitrile (2a) was obtained according to the 

General procedure from cyclopropane 1a23b (300 mg, 1.01 mmol), NaCN (200 

mg, 4.08 mmol), MeNO2 (310 mg, 5.09 mmol) in DMSO (2.0 mL). Yield 90 mg 
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(41%); beige solid; Rf = 0.58 (petroleum ether : ethyl acetate; 1:1). Spectral data 

are consistent with previously reported ones.29

2-(4-Methoxyphenyl)succinonitrile (2b) was obtained according to the General 

procedure from cyclopropane 1b23b (270 mg, 1.02 mmol), NaCN (200 mg, 4.08 

mmol), MeNO2 (310 mg, 5.09 mmol) in DMSO (2.0 mL). Yield 58 mg (30%); 

pale-yellow oil; Rf = 0.80 (petroleum ether : ethyl acetate; 1:1). Spectral data are 

consistent with previously reported ones.30

2-(4-Methylphenyl)succinonitrile (2c) was obtained according to the General 

procedure from cyclopropane 1c31 (255 mg, 1.03 mmol), NaCN (200 mg, 4.08 

mmol), MeNO2 (305 mg, 5.00 mmol) in DMSO (2.0 mL). Yield 56 mg (33%); 

yellow oil; Rf = 0.73 (petroleum ether : ethyl acetate; 2:1). Spectral data are 

consistent with previously reported ones.30

2-(4-Chlorophenyl)succinonitrile (2d) was obtained according to the General 

procedure from cyclopropane 1d12c (300 mg, 1.12 mmol), NaCN (220 mg, 4.50 

mmol), MeNO2 (340 mg, 5.60 mmol) in DMSO (2.3 mL). Yield 70 mg (33%); 

yellow oil; Rf = 0.69 (petroleum ether : ethyl acetate; 1:1). Spectral data are 

consistent with previously reported ones.30

Synthesis of dimethyl 2-cyano-2-(het)arylethylmalonates 3. Method A. A dry 

reaction microwave tube was charged with 2 M solution of cyclopropane 1 in 

HFIP, TMSCN (2 equiv) and B(C6F5)3 (10 mol %) were added under N2 

atmosphere. The reaction mixture was heated in a microwave reactor at 80 °C for 

7 h, quenched with conc. aqueous NaHCO3 and extracted with ethyl acetate (3×10 
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mL). The combined organic extracts were washed with NaHCO3 and brine, dried 

with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by 

column chromatography on a silica gel to afford the desired product.

Method B. A dry reaction vial was charged with 2 M solution of cyclopropane 1 

in HFIP, TMSCN (2 equiv) and B(C6F5)3 (10 mol %) were added under N2 

atmosphere. The reaction mixture was stirred at the specified temperature for the 

specified time, quenched with conc. aqueous NaHCO3 and extracted with ethyl 

acetate (3×10 mL). The combined organic extracts were washed with NaHCO3 

and brine, dried with anhydrous Na2SO4 and concentrated in vacuo. The residue 

was purified by column chromatography on a silica gel to afford the desired 

product.

Method C. A flame dried flask, equipped with a reflux condenser, was charged 

with cyclopropane 1 (1 equiv), TMSCN (2 equiv) and molecular sieves (4 Å) 

under N2 atmosphere, then TfOH (10 mol %) in HFIP (2 M) was added. The 

reaction mixture was stirred at room temperature for 3 h, quenched with conc. 

aqueous NaHCO3 and extracted with ethyl acetate (3×10 mL). The combined 

organic extracts were washed with brine, dried with anhydrous Na2SO4 and 

concentrated in vacuo. The residue was purified by column chromatography on a 

silica gel to afford the desired product.

Dimethyl 2-[2-cyano-2-(3,4-dimethoxyphenyl)ethyl]malonate (3a) was obtained 

according to the Method A from cyclopropane 1a23b (200 mg, 0.68 mmol) and 

TMSCN (135 mg, 0.17 mL, 1.36 mmol) using B(C6F5)3 (36 mg, 0.07 mmol) in 
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HFIP (0.35 mL). Yield 109 mg (50%); yellow oil; Rf = 0.57 (petroleum ether : 

ethyl acetate; 4:1).

The compound 3a was also obtained according to the Method B at 0 ºC for 

1 h from cyclopropane 1a (200 mg, 0.68 mmol), TMSCN (135 mg, 0.17 mL, 1.36 

mmol) using B(C6F5)3 (36 mg, 0.07 mmol) in HFIP (0.35 mL). Yield 120 mg 

(55%). 1H NMR (CDCl3, 500 MHz):  = 2.44–2.54 (m, 2H, CH2), 3.55 (dd, 3J = 

7.9 Hz, 3J = 6.9 Hz, 1H, CH), 3.76 (s, 3H, CH3O), 3.79 (s, 3H, CH3O), 3.89 (s, 

3H, CH3O), 3.85 (dd, 3J = 8.1 Hz, 3J = 7.4 Hz, 1H, CH), 3.92 (s, 3H, CH3O), 6.84 

(d, 4J = 2.0 Hz, 1H, Ar), 6.87 (d, 3J = 8.3 Hz, 1H, Ar), 6.89 (dd, 3J = 8.3 Hz, 4J = 

2.0 Hz, 1H, Ar). 13С{1H} NMR (CDCl3, 125 MHz):  = 34.7 (CH2), 34.9 (CH), 

49.1 (CH), 53.08 (CH3O), 53.10 (CH3O), 56.17 (CH3O), 56.20 (CH3O), 110.5 

(CH, Ar), 111.8 (CH, Ar), 120.0 (CH, Ar), 120.1 (CN), 126.9 (С, Ar), 149.4 (С, 

Ar), 149.8 (С, Ar), 168.7 (CO2Me), 168.8 (CO2Me). IR (KBr):  = 3095, 2956, 

2841, 2241, 1751, 1736, 1595, 1518, 1440, 1344, 1259, 1242, 1146, 1026 сm-1. 

HRMS ESI-TOF m/z: [M+H]+ Calcd for C16H20NO6 322.1285; Found 322.1284. 

Anal. Calcd for C16H19NO6: C, 59.81; H, 5.96; N, 4.36. Found: С, 60.08; H, 5.86; 

N, 4.32.

Dimethyl 2-[2-cyano-2-(2,3-dihydro[1,4]benzodioxin-6-yl)ethyl}malonate (3b) 

was obtained according to the Method A from cyclopropane 1e23b (200 mg, 0.68 

mmol) and TMSCN (136 mg, 0.17 mL, 1.37 mmol) using B(C6F5)3 (40 mg, 0.078 

mmol) in HFIP (0.35 mL). Yield 105 mg (48%); yellow oil; Rf = 0.73 (petroleum 
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ether : ethyl acetate; 2:1). 1H NMR (CDCl3, 400 MHz):  = 2.33–2.45 (m, 2H, 

CH2), 3.47 (3J = 7.7 Hz, 3J = 6.7 Hz, 1H, CH), 3.80 (d, 3J = 7.7 Hz, 3J = 6.7 Hz, 

1H, CH), 3.70 (s, 3H, CH3O), 3.71 (s, 3H, CH3O), 4.20 (s, 4H, CH2O), 6.73 (dd, 

3J = 8.1 Hz, 4J = 2.2 Hz, 1H, CH, Ar), 6.79 (br. d, 4J = 2.2 Hz, 1H, CH, Ar), 6.80 

(br. d, 3J = 8.1 Hz, 1H, CH, Ar). 13С{1H} NMR (CDCl3, 100 MHz):  = 34.4 

(CH), 34.5 (CH2), 48.9 (CH), 52.98 (CH3O), 53.00 (CH3O), 64.37 (CH2O), 64.38 

(CH2O), 116.4 (CH, Ar), 118.0 (CH, Ar), 120.0 (CN), 120.4 (CH), 127.4 (C, Ar), 

143.8 (С, Ar), 144.1 (С, Ar), 168.6 (CO2Me), 168.7 (CO2Me). IR (KBr):  = 

3465, 2983, 2955, 2881, 2242, 1750, 1736, 1592, 1510, 1437, 1334, 1289, 1252, 

1200, 1157, 1067, 1049, 921, 889 сm-1. HRMS ESI-TOF m/z: [M+Na]+ Calcd for 

C16H17NNaO6 342.0948; Found 342.0953. Anal. Calcd for C16H17NO6: C, 60.18; 

H, 5.37; N, 4.39. Found: С, 60.00; H, 5.03; N, 4.40.

Dimethyl 2-[2-([1,3]benzodioxol-5-yl)-2-cyanoethyl]malonate (3c) was obtained 

according to the Method A from cyclopropane 1f32 (150 

mg, 0.54 mmol) and TMSCN (107 mg, 0.13 mL, 1.08 

mmol) using B(C6F5)3 (28 mg, 0.055 mmol) in HFIP (0.27 mL). Yield 30 mg 

(18%).

The compound 3c was obtained according to the Method B at room 

temperature for 26 h from cyclopropane 1f (150 mg, 0.54 mmol) and TMSCN 

(107 mg, 0.13 mL, 1.08 mmol) using B(C6F5)3 (28 mg, 0.05 mmol) in HFIP (0.27 

mL). Yield 69 mg (42%).

CN

CO2Me

CO2Me

2'
1'

2

O

O
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The compound 3c was also obtained according to the Method C from 

cyclopropane 1f (150 mg, 0.54 mmol) and TMSCN (108 mg, 0.13 mL, 1.09 

mmol) using TfOH (4.8 µL, 0.05 mmol) in HFIP (0.27 mL). Yield 45 mg (28%); 

colorless oil; Rf = 0.52 (petroleum ether : ethyl acetate; 4:1). 1H NMR (CDCl3, 

400 MHz):  = 2.41–2.51 (m, 2H, C(1')H2), 3.52 (dd, 3J = 8.1 Hz, 3J = 6.9 Hz, 

1H, C(2)H), 3.77 (s, 3H, CH3O), 3.79 (s, 3H, CH3O), 3.89 (dd, 3J = 8.5 Hz, 3J = 

7.2 Hz, 1H, C(2')H), 6.00 (s, 2H, OCH2O), 6.80 (dd, 3J = 8.2 Hz, 4J = 1.2 Hz, 1H, 

Ar), 6.82 (br. d, 3J = 8.2 Hz, 1H, Ar), 6.83 (br. d, 4J = 1.2 Hz, 1H, Ar). 13С{1H} 

NMR (CDCl3, 100 MHz):  = 34.8 (C(1')H2), 34.9 (C(2')H), 49.0 (C(2)H), 53.08 

(CH3O), 53.11 (CH3O), 101.7 (OCH2O), 107.9 (CH, Ar), 109.0 (CH, Ar), 120.0 

(CN), 121.2 (CH, Ar), 128.2 (C, Ar), 148.1 (С, Ar), 148.7 (С, Ar), 168.68 

(CO2Me), 168.75 (CO2Me). IR (KBr):  = 2956, 2917, 2849, 2242, 1736, 1611, 

1505, 1510, 1437, 1334, 1289, 1252, 1200, 1157, 1067, 1049, 921, 889 сm-1. 

HRMS ESI-TOF m/z: [M+Na]+ Calcd for C15H15NNaO6 328.0792; Found 

328.0790. Anal. Calcd for C15H15NO6: C, 59.02; H, 4.95; N, 4.59. Found: С, 

59.13; H, 4.95; N, 4.34.

Dimethyl 2-[2-cyano-2-(4-methoxyphenyl)ethyl]malonate (3d) was obtained 

according to the Method A from cyclopropane 1b23b (200 mg, 0.83 mol) and 

TMSCN (165 mg, 0.21 mL, 1.67 mmol) using B(C6F5)3 (39 mg, 0.076 mmol) in 

HFIP (0.38 mL). Yield 114 mg (52%); yellow oil; Rf = 0.85 (petroleum ether : 

ethyl acetate; 4:1). 1H NMR (CDCl3, 400 MHz):  = 2.37–2.50 (m, 2H, CH2), 
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3.50 (dd, 3J = 8.1 Hz, 3J = 6.9 Hz, 1H, CH), 3.71 (s, 3H, CH3O), 3.74 (s, 3H, 

CH3O), 3.78 (s, 3H, CH3O), 3.89 (dd, 3J = 8.1 Hz, 3J = 7.4 Hz, 1H, CH), 6.87 (br. 

d, 3J = 8.5 Hz, 2H, Ar), 7.23 (br. d, 3J = 8.5 Hz, 2H, Ar). 13С{1H} NMR (CDCl3, 

100 MHz):  = 34.3 (CH), 34.6 (CH2), 48.9 (CH), 53.0 (2×CH3O), 55.4 (CH3O), 

114.7 (2×CH), 120.1 (CN), 126.2 (C, Ar), 128.6 (2×CH, Ar), 159.7 (С, Ar), 168.6 

(CO2Me), 168.7 (CO2Me). IR (ZnSe):  = 3005, 2954, 2840, 2241, 1751, 1736, 

1612, 1514, 1437, 1306, 1254, 1180, 1157, 1032 сm-1. HRMS ESI-TOF m/z: 

[M+Na]+ Calcd for C15H17NNaO5 309.1445; Found 309.1445. Anal. Calcd for 

C15H17NO5: C, 61.85; H, 5.88; N, 4.81. Found: С, 61.86; H, 6.01; N, 4.78.

Dimethyl 2-[2-cyano-2-(3,4,5-trimethoxyphenyl)ethyl]malonate (3e) was 

obtained according to the Method A from cyclopropane 1g23b (200 mg, 0.62 

mmol) and TMSCN (122 mg, 0.15 mL, 1.23 mmol) using B(C6F5)3 (32 mg, 0.06 

mmol) in HFIP (0.31 mL). Yield 43 mg (20%); yellow oil; Rf = 0.48 (petroleum 

ether : ethyl acetate; 2:1).

The compound 3e was also obtained according to the Method B at 70 C 

for 26 h from cyclopropane 1g (200 mg, 0.62 mmol) and TMSCN (122 mg, 0.15 

mL, 1.23 mmol) using B(C6F5)3 (32 mg, 0.06 mmol) in HFIP (0.31 mL). Yield 

113 mg (52%). 1Н NMR (CDCl3, 400 MHz):  = 2.45–2.49 (m, 2Н, CH2), 3.56 

(t, 3J = 7.4 Hz, 1H, CH), 3.75 (s, 3H, CH3O), 3.78 (s, 3H, CH3O), 3.83 (s, 3H, 

CH3O), 3.87 (s, 6H, 2×CH3O), 3.90 (t, 3J = 7.8 Hz, 1Н, CH), 6.52 (s, 2H, Ar). 

13С{1H} NMR (CDCl3, 100 MHz):  = 34.7 (CH2), 35.5 (CH), 49.1 (CH), 53.1 

Page 23 of 55

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(CH3O), 56.4 (3×CH3O), 61.0 (CH3O), 104.5 (2×CH, Ar), 119.9 (CN), 130.0 (С, 

Ar), 138.1 (С, Ar), 153.9 (2×С, Ar), 168.7 (CO2Me), 168.8 (CO2Me). IR (KBr): 

 = 3002, 2953, 2842, 2241, 1752, 1738, 1593, 1510, 1463, 1435, 1426, 1336, 

1242, 1153, 1128, 1052, 1006 сm-1. HRMS ESI-TOF m/z: [M+Na]+ Calcd for 

C17H21NNaO7 374.1210; Found 374.1203. Anal. Calcd for C17H21NO7: C, 58.11; 

H, 6.02; N, 3.99. Found: С, 58.10; H, 6.13; N, 3.64.

Dimethyl 2-[2-cyano-2-(2,4,6-trimethoxyphenyl)ethyl]malonate (3f) was 

obtained according to the Method B at room temperature for 17 h from 

cyclopropane 1h25 (200 mg, 0.62 mol) and TMSCN (122 mg, 154 µL, 1.23 mmol) 

using B(C6F5)3 (32 mg, 0.06 mmol) in HFIP (0.31 mL). Yield 152 mg (70%); 

yellow oil; Rf = 0.52 (petroleum ether : ethyl acetate; 2:1). 1H NMR (CDCl3, 500 

MHz):  = 2.34 (ddd, 2J = 13.8 Hz, 3J = 9.3 Hz, 3J = 6.8 Hz, 1H, C(1')H2), 2.47 

(ddd, 2J = 13.8 Hz, 3J = 8.1 Hz, 3J = 6.5 Hz, 1H, C(1')H2), 3.18 (dd, 3J = 8.1 Hz, 

3J = 6.8 Hz, 1H, C(2)H), 3.54 (s, 3H, CH3O), 3.63 (s, 3H, CH3O), 3.69 (s, 3H, 

CH3O), 3.70 (s, 6H, 2×CH3O), 4.31 (dd, 3J = 9.3 Hz, 3J = 6.5 Hz, 1H, C(2')H), 

6.01 (s, 2H, Ar). 13С{1H} NMR (CDCl3, 125 MHz):  = 23.2 (C(2')H), 30.3 

(C(1')H2), 49.1 (CH), 52.6 (CH3O), 53.0 (CH3O), 56.3 (CH3O), 56.6 (2×CH3O), 

90.8 (2×CH), 101.9 (C, Ar), 120.3 (CN), 158.6 (2×C, Ar), 161.7 (С, Ar), 168.8 

(CO2Me), 169.0 (CO2Me). IR (KBr):  = 3002, 2954, 2839, 2240, 1752, 1736, 

1612, 1515, 1439, 1401, 1347, 1318, 1279, 1210, 1156, 1118, 1032 сm-1. HRMS 

ESI-TOF m/z: [M+Na]+ Calcd for C17H22NNaO7 374.1210; Found 374.1202. 
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Anal. Calcd for C17H21NO7: C, 58.11; H, 6.02; N, 3.99. Found: С, 57.95; H, 6.08; 

N, 3.85.

Dimethyl 2-[2-cyano-2-(2,4,5-trimethoxyphenyl)ethyl]malonate (3g) was 

obtained according to the Method C from cyclopropane 

1i (0.40 g, 1.2 mmol) and TMSCN (0.46 mL, 0.37 g, 2.4 

mmol) using TfOH (0.02 mL, 0.23 mmol) in HFIP (0.5 mL). Yield 160 mg 

(37%); yellowish oil; Rf = 0.58 (petroleum ether : ethyl acetate; 1:1). Additionally, 

the dimeric product 9 was isolated in 33% yield (130 mg).

Compound 3g was also obtained according to the Method B at room 

temperature for 17 h from cyclopropane 1i (0.20 g, 0.62 mmol) and TMSCN (0.15 

mL, 122 mg, 1.24 mmol) using B(C6F5)3 (32 mg, 0.062 mmol) in HFIP (0.31 

mL). Yield 187 mg (86%). 1Н NMR (CDCl3, 500 MHz):  = 2.39–2.45 (m, 1Н, 

CH2), 2.53–2.59 (m, 1Н, CH2), 3.48 (t, 3J = 7.4 Hz, 1H, C(2)H), 3.75 (s, 3H, 

CH3O), 3.76 (s, 3H, CH3O), 3.84 (s, 3H, CH3O), 3.88 (s, 3H, CH3O), 3.92 (s, 3H, 

CH3O), 4.28 (t, 3J = 7.7 Hz, 1Н, C(2')H), 6.53 (s, 1H, C(3'')H, Ar), 6.89 (s, 1H, 

C(6'')H, Ar). 13С{1H} NMR (CDCl3, 125 MHz):  = 29.2 (C(2')H), 32.7 (C(1')H2), 

49.2 (C(2)H), 52.94 (CH3O), 53.01 (CH3O), 56.40 (CH3O), 56.41 (CH3O), 56.9 

(CH3O), 97.6 (C(3'')H, Ar), 112.4 (C(6'')H, Ar), 113.4 (С(1''), Ar), 120.3 (CN), 

143.6 (С(5''), Ar), 150.3 (С(2''), Ar), 150.9 (С(4''), Ar), 168.8 (CO2Me), 168.9 

(CO2Me). IR (KBr):  = 3003, 2954, 2848, 2241, 1752, 1737, 1612, 1514, 1440, 

1401, 1347, 1317, 1210, 1156, 1118, 1033 сm-1. HRMS ESI-TOF m/z: [M+Na]+ 

CN

CO2Me

CO2Me

OMe

OMe

2'

2''

6''
1'

2

5''

3''
1''

4''MeO
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Calcd for C17H21NNaO7 374.1210; Found 374.1208. Anal. Calcd for C17H21NO7: 

C, 58.11; H, 6.02; N, 3.99. Found: С, 58.12; H, 6.03; N, 3.91.

Dimethyl 2-{2-cyano-2-[4-(methylsulfanyl)phenyl]ethyl}malonate (3h) was 

prepared according to the Method С at 50 C from cyclopropane 1j (160 mg, 

0.57 mmol) and TMSCN (131 mg, 0.16 mL, 1.32 mmol) using TfOH (10 µL, 

0.115 mmol) in HFIP (0.28 mL). Yield 89 mg (51%); colorless oil; Rf = 0.64 

(petroleum ether : ethyl acetate; 4:1). 1H NMR (CDCl3, 400 MHz):  = 2.40–2.48 

(m, 2H, CH2), 2.46 (s, 3H, CH3S), 3.52 (dd, 3J = 7.8 Hz, 3J = 7.2 Hz, 1H, CH), 

3.72 (s, 3H, CH3O), 3.75 (s, 3H, CH3O), 3.91 (dd, 3J = 8.2 Hz, 3J = 7.6 Hz, 1H, 

CH), 7.23 (br. s, 4H, Ar). 13С{1H} NMR (CDCl3, 100 MHz):  = 15.5 (CH3S), 

34.4 (CH), 34.6 (CH2), 48.8 (CH), 52.9 (2×CH3O), 119.6 (CN), 126.9 (2×CH, 

Ar), 127.8 (2×CH, Ar), 130.8 (C, Ar), 139.5 (С, Ar), 168.45 (CO2Me), 168.53 

(CO2Me). IR (ZnSe):  = 3002, 2954, 2924, 2850, 2242, 1752, 1737, 1600, 1496, 

1437, 1409, 1354, 1302, 1275, 1253, 1232, 1201, 1157, 1096, 1045, 1016 сm-1. 

HRMS ESI-TOF m/z: [M+NH4]+ Calcd for C15H21N2O4S 325.1217; Found 

325.1213.

Dimethyl 2-{2-cyano-2-[4-(dimethylamino)phenyl]ethyl}malonate (3i) was 

obtained according to the Method A from cyclopropane 1k23b (100 mg, 0.36 

mmol) and TMSCN (0.1 mL, 0.8 mmol) using B(C6F5)3 (18 mg, 0.035 mmol) in 

HFIP (0.18 mL). Yield 79 mg (72%); yellow oil; Rf = 0.44 (petroleum ether : 

ethyl acetate; 3:1). 1H NMR (CDCl3, 500 MHz):  = 2.41–2.52 (m, 2H, C(1')H2), 
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2.97 (s, 6H, N(CH3)2), 3.50 (dd, 3J = 7.5 Hz, 3J = 6.7 Hz, 1H, C(2)H), 3.76 (s, 3H, 

CH3O), 3.77 (s, 3H, CH3O), 3.86 (dd, 3J = 8.6 Hz, 3J = 7.3 Hz, 1H, C(2')H), 6.72 

(br. d, 3J = 8.7 Hz, 2H, Ar), 7.18 (br. d, 3J = 8.7 Hz, 2H, Ar). 13С{1H} NMR 

(CDCl3, 125 MHz):  = 34.3 (C(2')H), 34.7 (C(1')H2), 49.1 (C(2)H), 40.5 

(N(CH3)2), 53.0 (2×CH3O), 112.9 (C(3'')H, C(5'')H), 120.5 (CN), 121.5 (C(1''), 

Ar), 128.3 (C(2'')H, C(6'')H, Ar), 150.6 (С(4''), Ar), 168.8 (CO2Me), 168.9 

(CO2Me). IR (KBr):  = 2993, 2954, 2924, 2894, 2850, 2807, 2240, 1752, 1738, 

1615, 1602, 1567, 1525, 1483, 1437, 1356, 1289, 1256, 1230, 1207, 1164, 1092, 

1046 сm-1. HRMS ESI-TOF m/z: [M+H]+ Calcd for C16H21N2O4 305.1496; Found 

305.1491. Anal. Calcd for C16H20N2O4: C, 63.14; H, 6.62; N, 9.20. Found: С, 

63.04; H, 6.62; N, 9.17.

Dimethyl 2-{2-cyano-2-[4-(pyrrolidin-1-yl)phenyl]ethyl}malonate (3j) was 

obtained according to the Method B from cyclopropane 1l33 (195 mg, 0.64 mmol) 

and TMSCN (0.16 mL, 1.28 mmol) using B(C6F5)3 (33 mg, 0.06 mmol) in HFIP 

(0.32 mL) at room temperature for 4 h. Yield 166 mg (78%); yellow oil; Rf = 0.36 

(petroleum ether : ethyl acetate; 1:1). 1H NMR (CDCl3, 600 MHz):  = 1.98–2.02 

(m, 4H, 2CH2), 2.42 (ddd, 2J = 14.0 Hz, 3J = 7.6 Hz, 3J = 7.0 Hz, 1H, C(1')H2), 

2.48 (ddd, 2J = 14.0 Hz, 3J = 8.6 Hz, 3J = 7.0 Hz, 1H, C(1')H2), 3.25–3.28 (m, 4Н, 

2CH2N), 3.51 (dd, 3J = 7.6 Hz, 3J = 7.0 Hz, 1H, C(2)H), 3.74 (s, 3H, CH3O), 

3.75 (s, 3H, CH3O), 3.83 (dd, 3J = 8.6 Hz, 3J = 7.0 Hz, 1H, C(2')H), 6.53 (br. d, 

3J = 8.6 Hz, 2H, C(3'')H, C(5'')H), Ar), 7.14 (br. d, 3J = 8.6 Hz, 2H, C(2'')H, 
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C(6'')H, Ar). 13С{1H} NMR (CDCl3, 150 MHz):  = 25.3 (2×CH2), 34.1 (C(2')H), 

34.5 (C(1')H2), 47.5 (2×CH2), 48.8 (C(2)H), 52.7 (2×CH3O), 119.2 (C(2'')H, 

C(6'')H, Ar), 120.1 (C(1''), Ar), 120.4 (CN), 128.1 (C(2'')H, C(6'')H, Ar), 147.27 

(С(4''), Ar), 168.6 (CO2Me), 168.7 (CO2Me). IR (ZnSe):  = 2956, 2925, 2853, 

2242, 1749, 1733, 1683, 1600, 1516, 1436, 1393, 1305, 1287, 1260, 1228, 1161 

сm-1. HRMS ESI-TOF m/z: [M+H]+ Calcd for C18H23N2O4 347.1652; Found 

331.1645. Anal. Calcd for C18H22N2O4: C, 65.44; H, 6.71; N, 8.48. Found: С, 

65.10; H, 6.69; N, 8.09.

Dimethyl 2-[2-cyano-2-(4-morpholinophenyl)ethyl]malonate (3k) was obtained 

according to the Method A from cyclopropane 1m33 (200 mg, 0.63 mmol) and 

TMSCN (124 mg, 0.16 mL, 1.25 mmol) using B(C6F5)3 (32 mg, 0.063 mmol) in 

HFIP (0.32 mL). Yield 190 mg (88%); yellow solid; mp = 75–76 ºC; Rf = 0.53 

(petroleum ether : ethyl acetate; 1:1). 1H NMR (CDCl3, 500 MHz):  = 2.49–2.90 

(m, 2H, C(1')H2), 3.14–3.16 (m, 4H, 2×CH2), 3.51 (dd, 3J = 7.9 Hz, 3J = 6.8 Hz, 

1H, C(2)H), 3.73 (s, 3H, CH3O), 3.75 (s, 3H, CH3O), 3.83–3.84 (4H, 2×CH2), 

3.88 (dd, 3J = 7.9 Hz, 3J = 7.1 Hz, 1H, C(2')H), 6.89 (br. d, 3J = 8.6 Hz, 2H, 

C(3'')H, C(5'')H, Ar), 7.21 (br. d, 3J = 8.6 Hz, 2H, C(2'')H, C(6'')H, Ar). 13С{1H} 

NMR (CDCl3, 125 MHz):  = 34.0 (C(1')H2), 34.3 (C(2')H), 48.67 (2×CH2), 

48.74 (C(2)H), 52.7 (2×CH3O), 66.6 (2×CH2), 115.7 (2×CH, C(3'')H, C(5'')H, 

Ar), 119.9 (CN, Ar), 124.9 (C(1''), Ar), 128.1 (C(2'')H, C(6'')H, Ar), 151.1 (С(4''), 

Ar), 168.4 (CO2Me), 168.5 (CO2Me). IR (KBr):  = 2956, 2923, 2896, 2855, 
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2241, 1751, 1736, 1612, 1518, 1450, 1437, 1345, 1306, 1265, 1237, 1158, 1122, 

1050, 927 сm-1. HRMS ESI-TOF m/z: [M+H]+ Calcd for C18H23N2O5 347.1601; 

Found 347.1609. Anal. Calcd for C18H22N2O5: C, 62.42; H, 6.40; N, 8.09. Found: 

С, 62.56; H, 6.46; N, 7.93.

Dimethyl 2-[2-cyano-2-(5-methylthiophen-2-yl)ethyl]malonate (3m) was 

obtained according to the Method B at room temperature for 26 h from 

cyclopropane 1o34 (0.20 g, 0.79 mmol) and TMSCN (0.20 mL, 156 mg, 1.57 

mmol) using B(C6F5)3 (40 mg, 0.079 mmol) in HFIP (0.39 mL). Yield 135 mg 

(60%); yellowish oil; Rf = 0.58 (petroleum ether : ethyl acetate; 4:1). 1Н NMR 

(CDCl3, 500 MHz):  = 2.47 (d, 4J = 1.0 Hz, 3H, CH3), 2.49–2.60 (m, 2Н, CH2), 

3.58 dd, 3J = 7.9 Hz, 3J = 7.2 Hz, 1H, CH), 3.77 (s, 3H, CH3O), 3.78 (s, 3H, 

CH3O), 4.07 (dd, 3J = 8.3 Hz, 3J = 7.2 Hz, 1Н, CH), 6.63 (dq, 3J = 3.5 Hz, 4J = 

1.0 Hz, 1H, Ar), 6.20 (d, 3J = 3.5 Hz, 1H, Ar). 13С{1H} NMR (CDCl3, 125 MHz): 

 = 15.4 (CH3), 30.5 (CH), 34.5 (CH2), 48.8 (CH), 53.07 (CH3O), 53.10 (CH3O), 

119.1 (СN), 125.3 (CH, Ar), 126.9 (CH, Ar), 133.6 (С, Ar), 141.1 (С, Ar), 168.55 

(CO2Me), 168.63 (CO2Me). IR (ZnSe):  = 2955, 2922, 2851, 2244, 1751, 1738, 

1437, 1351, 1308, 1267, 1237, 1159, 1043 сm-1. HRMS ESI-TOF m/z: [M+Na]+ 

Calcd for C13H15NNaO4S 304.0614; Found 304.0609. Anal. Calcd for 

C13H15NO4S: C, 55.50; H, 5.37; N, 4.98. Found: С, 55.88; H, 5.33; N, 4.63.

Dimethyl 2-[2-cyano-2-(5-methylfuran-2-yl)ethyl]malonate (3o) was obtained 

according to the Method B at room temperature for 2.5 h from cyclopropane 1q35 
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(175 mg, 0.74 mol) and TMSCN (146 mg, 184 µL, 1.47 mmol) using B(C6F5)3 

(38 mg, 0.074 mmol) in HFIP (0.37 mL). Yield 121 mg (62%); colorless oil; Rf 

= 0.40 (petroleum ether : ethyl acetate; 2:1).

Compound 3o was also obtained according to the Method A from 

cyclopropane 1q (0.20 g, 0.84 mmol) and TMSCN (0.21 mL, 166 mg, 1.68 mmol) 

using B(C6F5)3 (43 mg, 0.084 mmol) in HFIP (0.4 mL). Yield 84 mg (38%). 1Н 

NMR (CDCl3, 500 MHz):  = 2.29 (s, 3H, CH3), 2.51–2.60 (m, 2Н, CH2), 3.57 

(t, 3J = 7.4 Hz, 1H, CH), 3.76 (s, 3H, CH3O), 3.78 (s, 3H, CH3O), 4.07 (t, 3J = 7.6 

Hz, 1Н, CH), 5.93 (dq, 3J = 3.1 Hz, 4J = 1.0 Hz, 1H, Ar), 6.20 (d, 3J = 3.1 Hz, 

1H, Ar). 13С{1H} NMR (CDCl3, 125 MHz):  = 13.6 (CH3), 29.1 (CH), 31.2 

(CH2), 48.9 (CH), 53.05 (CH3O), 53.09 (CH3O), 106.7 (CH, Ar), 109.5 (CH, Ar), 

118.0 (CN), 144.3 (С, Ar), 153.5 (С, Ar), 168.57 (CO2Me), 168.64 (CO2Me). IR 

(KBr):  = 3473, 3132, 3005, 2956, 2926, 2850, 2247, 1740, 1734, 1564, 1520, 

1357, 1267, 1240, 1215, 1157, 1097, 1047, 1024 сm-1. HRMS ESI-TOF m/z: 

[M+NH4]+ Calcd for C13H19N2O5 283.1289; Found 283.1291.

Tetramethyl (9RS,10RS)-2,2'-[(2,3,6,7-tetramethoxy-9,10-dihydroanthracene-

9,10-diyl)di(methylene)]dimalonate (5a). A dry reaction vial was charged with 

cyclopropane 1a (155 mg, 0.53 mmol), TMSCN (135 mg, 0.17 mL, 1.36 mmol) 

and HFIP (0.41 mL) under N2 atmosphere. B(C6F5)3 (27 mg, 0.053 mmol) was 

added and the reaction mixture was stirred at room temperature for 2 h, quenched 

with conc. aqueous NaHCO3 and extracted with ethyl acetate (3×4 mL). The 
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combined organic extracts were washed with NaHCO3 and brine, dried with 

anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by 

column chromatography on a silica gel to afford cyanide 3a (yield 69 mg, 41%) 

and dimer 5a (yield 39 mg, 25%) as colorless oil; Rf = 0.60 (petroleum ether : 

ethyl acetate; 2:1). The relative configuration of stereocenters was assigned by 

comparison with NMR data of the related dihydroanthracene dimers of DA 

cyclopropanes.23b 1Н NMR (CDCl3, 400 MHz):  = 2.26–2.30 (m, 4Н, 2CH2), 

3.61 (br. d, 3J = 7.8 Hz, 2H, 2×CH), 3.72 (s, 12Н, 4×CH3O), 3.79 (br. d, 3J = 7.8 

Hz, 2H, 2×CH), 3.85 (s, 12Н, 4×CH3O), 6.70 (s, 4H, Ar). 13C{1H} NMR (CDCl3, 

100 МHz):  = 40.0 (2CH2), 43.0 (2CH), 50.3 (2×CH), 52.6 (4CH3O), 55.8 

(4CH3O), 111.5 (4×CH, Ar), 130.5 (4C, Ar), 147.4 (4C, Ar), 169.3 

(4CO2Me). HRMS ESI-TOF m/z: [M+Na]+ Calcd for C30H36NaO12 611.2104; 

Found 611.2103.

Dimethyl 2-{2-(3,4-dimethoxyphenyl)-2-[(1,1,1,3,3,3-hexafluoropropan-2-

yl)oxy]ethyl}malonate (8a). To cyclopropane 1a (100 mg, 0.34 mmol) TfOH (3.0 

µL, 10 mol %) in HFIP (0.17 mL) was added. The reaction mixture was stirred at 

room temperature for 3 h under N2 atmosphere, quenched with conc. aqueous 

NaHCO3 and extracted with ethyl acetate (3×10 mL). The combined organic 

extracts were washed with brine, dried with anhydrous Na2SO4 and concentrated 

in vacuo. The residue was purified by column chromatography on a silica gel to 

afford the desired product. Yield 64 mg (41%); colorless oil; Rf = 0.51 (petroleum 
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ether : ethyl acetate; 4:1). 1Н NMR (CDCl3, 500 MHz):  = 2.34 (ddd, 2J = 14.3 

Hz, 3J = 8.6 Hz, 3J = 4.2 Hz, 1Н, CH2), 2.54 (ddd, 2J = 14.3 Hz, 3J = 9.6 Hz, 3J = 

6.0 Hz, 1Н, CH2), 3.67 (dd, 3J = 8.6 Hz, 3J = 6.0 Hz, 1H, CH), 3.75 (s, 3H, CH3O), 

3.76 (s, 3H, CH3O), 3.89 (s, 3H, CH3O), 3.90 (s, 3H, CH3O), 3.96 (sep, 3J = 6.3 

Hz, 1Н, CH), 4.74 (dd, 3J = 9.6 Hz, 3J = 4.2 Hz, 1H, CH), 6.86–6.87 (m, 3H, Ar). 

13С{1H} NMR (CDCl3, 125 MHz):  = 36.6 (CH2), 48.4 (CH), 52.7 (CH3O), 52.8 

(CH3O), 56.0 (CH3O), 56.1 (CH3O), 72.2 (sept, 2JCF = 32 Hz, CH(CF3)2), 82.5 

(CHO), 110.0 (CH, Ar), 111.1 (CH, Ar), 121.2 (CH, Ar), 120.5 (q, 1JCF = 282 Hz, 

CF3), 123.8 (q, 1JCF = 282 Hz, CF3), 129.2 (C), 149.8 (С, Ar), 150.3 (С, Ar), 169.4 

(CO2Me), 169.6 (CO2Me). 19F NMR (CDCl3, 470 MHz):  = 73.4, 72.4. IR 

(KBr):  = 3004, 2957, 2842, 1752, 1738, 1595, 1519, 1466, 1439, 1368, 1285, 

1264, 1219, 1192, 1158, 1125, 1102, 1027 сm-1. HRMS ESI-TOF m/z: [M+Na]+ 

Calcd for C18H20F6NaO7 485.1005; Found 485.0996.

Dimethyl 2-{2-[(1,1,1,3,3,3-hexafluoropropan-2-yl)oxy]-2-phenylethyl}malona-

te (8b). To a solution of cyclopropane 1r (200 mg, 0.41 mmol) in HFIP (0.5 mL) 

(4 Å) TfOH (7.5 µL, 10 mol %) in HFIP (0.9 mL) was added. The reaction 

mixture was stirred at room temperature for 3 h under N2 atmosphere, quenched 

with conc. aqueous NaHCO3 and extracted with ethyl acetate (3×10 mL). The 

combined organic extracts were washed with brine, dried with anhydrous Na2SO4 

and concentrated in vacuo. The residue was purified by column chromatography 

on a silica gel to afford the product 8b. Yield 45 mg (13%); colorless oil; Rf = 
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0.50 (petroleum ether : ethyl acetate; 6:1). 1Н NMR (CDCl3, 500 MHz):  = 2.37 

(ddd, 2J = 13.1 Hz, 3J = 8.8 Hz, 3J = 4.3 Hz, 1Н, CH2), 2.56 (ddd, 2J = 13.1 Hz, 

3J = 9.6 Hz, 3J = 5.9 Hz, 1Н, CH2), 3.70 (dd, 3J = 8.8 Hz, 3J = 5.9 Hz, 1H, CH), 

3.76 (s, 3H, CH3O), 3.77 (s, 3H, CH3O), 3.96 (sep, 3J = 5.9 Hz, 1Н, CH), 4.80 

(dd, 3J = 9.6 Hz, 3J = 4.3 Hz, 1H, CH), 7.34–7.37 (m, 2H, Ar), 7.40–7.44 (m, 3H, 

Ar). 13С{1H} NMR (CDCl3, 100 MHz):  = 36.6 (CH2), 48.4 (CH), 52.8 (CH3O), 

\52.9 (CH3O), 72.6 (sept, 2JCF = 32 Hz, CH(CF3)2), 82.8 (CHO), 128.0 (2×CH, 

Ar), 128.8 (2×CH, Ar), 129.8 (CH, Ar), 137.1 (C, Ar), 169.4 (CO2Me), 169.5 

(CO2Me).35 IR (KBr):  = 2957, 1754, 1438, 1367, 1287, 1264, 1220, 1196, 1127, 

1159, 1103 сm-1. HRMS ESI-TOF m/z: [M+Na]+ Calcd for C16H17F6O5 403.0975; 

Found 403.0976.

Dimethyl (1RS,4RS)-5,6,8-trimethoxy-1-[3-methoxy-2-(methoxycarbonyl)-3-

oxopropyl]-4-(2,4,5-trimethoxyphenyl)-3,4-

dihydronaphthalene-2,2(1H)-dicarboxylate (9) 

was obtained as by-product in the reaction of 

cyclopropane 1i with TMSCN in 33% yield. Colorless solid; mp 89–91 °C; Rf = 

0.60 (petroleum ether : ethyl acetate; 1:2). 1Н NMR (DMSO-d6, 500 MHz, 353 

K):  = 1.78–1.84 (m, 1Н, C(1')H2), 1.91–1.99 (m, 1Н, C(3)H2), 2.01–2.09 (m, 

1Н, C(1')H2), 2.75–2.79 (m, 1Н, C(3)H2), 3.08 (s, 3H, CH3O), 3.48 (s, 3H, 

CH3O), 3.49 (dd, 3J = 10.4 Hz, 3J = 3.5 Hz, 1H, C(2')H), 3.54 (s, 3H, CH3O), 3.57 

(s, 3H, CH3O), 3.73 (s, 3H, CH3O), 3.77 (s, 6H, 2×CH3O), 3.786 (s, 3H, CH3O), 

CO2Me
CO2Me

CH(CO2Me)2
MeO

MeO

MeO

OMe

MeO OMe8
76

1
2

5

3 1'
4 2'
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3.794 (s, 6H, 2×CH3O), 3.93 (br. d, 3J = 10.9 Hz, 1H, C(1)H), 4.39–4.49 (m, 1Н, 

C(4)H), 6.29 (br. s, 1/2 = 23 Hz, 1H, Ar), 6.64 (s, 1H, Ar), 6.72 (s, 1H, Ar). 

13С{1H} NMR (DMSO-d6, 125 MHz, 353 K):  = 31.1 (C(3)H2), 31.92 (C(1')H2), 

33.6 (C(4)H, C(1)H), 48.9 (C(2')H), 52.1 (CH3O), 52.2 (2×CH3O), 52.5 (CH3O), 

55.6 (CH3O), 55.8 (CH3O), 56.2 (CH3O), 56.6 (CH3O), 56.7 (CH3O), 58.2 (C), 

58.6 (CH3O), 96.7 (CH, Ar), 100.0 (CH, Ar), 113.3 (CH, Ar), 119.3 (C, Ar), 128.1 

(C, Ar), 131.5 (C, Ar), 140.7 (C, Ar), 143.2 (C, Ar), 148.1 (C, Ar), 151.0 (C, Ar), 

151.3 (C, Ar), 152.3 (C, Ar), 168.6 (CO2Me), 169.5 (CO2Me), 169.6 (CO2Me), 

170.1 (CO2Me). IR (KBr):  = 3004, 2954, 2840, 1756, 1736, 1597, 1511, 1485, 

1436, 1396, 1326, 1241, 1207, 1105, 1070, 1034 сm-1. HRMS ESI-TOF m/z: [M]+ 

Calcd for C32H40O14 648.2413; Found 648.2418. Anal. Calcd for C32H40O14: C, 

59.25; H, 6.22. Found: С, 59.22; H, 6.20.

Trimethyl 3-(4-methoxyphenyl)propane-1,1,3-tricarboxylate (10). TMSCl (3.78 

mL, 29.7 mmol) was added dropwise to a dry flask containing nitrile 3d (100 mg, 

0.34 mmol), and MeOH (2.4 mL, 59.3 mmol) under nitrogen atmosphere at room 

temperature. Then the reaction mixture was heated at 57 ºC (oil bath) for 5 h. 

After that, the reaction mixture was cooled to room temperature, water (0.7 mL), 

Na2CO3 (1.0 g, 9.4 mmol) and CH2Cl2 (7 mL) were successively added to it. The 

mixture was dried with Na2SO4 and concentrated at reduced pressure to afford 

product 10 in 81% yield (90 mg) as colorless oil. 1Н NMR (CDCl3, 600 MHz):  

= 2.37 (ddd, 2J = 14.3 Hz, 3J = 8.5 Hz, 3J = 6.7 Hz, 1Н, CH2), 2.61 (2J = 14.3 Hz, 
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3J = 8.2 Hz, 3J = 7.2 Hz, 1Н, CH2), 3.27 (dd, 3J = 8.2 Hz, 3J = 6.7 Hz, 1Н, CH), 

3.59 (dd, 3J = 8.5 Hz, 3J = 7.2 Hz, 1Н, CH), 3.66 (s, 3H, CH3O), 3.69 (s, 3H, 

CH3O), 3.74 (s, 3H, CH3O), 3.79 (s, 3H, CH3O), 6.86 (d, 3J = 8.8 Hz, 2H, Ar), 

7.18 (d, 3J = 8.8 Hz, 2H, Ar). 13С{1H} NMR (CDCl3, 150 MHz):  = 32.0 (CH2), 

47.9\ (CH), 49.3 (CH), 52.2 (CH3O), 52.6 (2×CH3O), 55.2 (CH3O), 114.3 (2×CH, 

Ar), 129.0 (2×CH, Ar), 129.5 (С, Ar), 159.1 (С, Ar), 169.3 (CO2Me), 169.4 

(CO2Me), 173.6 (CO2Me). IR (ZnSe):  = 3000, 2954, 2925, 2848, 1760, 1732, 

1610, 1512, 1436, 1327, 1303, 1249, 1156, 1032 сm-1. HRMS ESI-TOF m/z: 

[M+NH4]+ Calcd for C16H24NO7 342.1547; Found 342.1560.

Dimethyl [2-carbamoyl-2-(2,3-dihydro[1,4]benzodioxin-6-yl)ethyl]malonate 

(11). TMSCl (40 µL, 0.31 mmol) and water (10 µL) were successively added to 

nitrile 3b (50 mg, 0.16 mmol) keeping temperature below 5 ºC, after that the 

reaction mixture was allowed to warm up to 25 ºC and stirred for 4 h. The mixture 

was neutralized with saturated NaHCO3 solution (2 mL) and extracted with 

CH2Cl2 (5  3 mL). The combined organic fractions were washed with water (2 

 10 mL), dried with Na2SO4 and concentrated in vacuo. The resulting residue 

was purified by column chromatography on silica gel affording amide 11. Yield 

42 mg (78%); colorless oil; Rf = 0.20 (ethyl acetate). 1Н NMR (CDCl3, 600 MHz): 

 = 2.29 (ddd, 2J = 14.7 Hz, 3J = 8.5 Hz, 3J = 6.9 Hz, 1H, CH2), 2.66 (ddd, 2J = 

14.7 Hz, 3J = 8.2 Hz, 3J = 7.2 Hz, 1H, CH2), 3.35 (dd, 3J = 8.2 Hz, 3J = 6.9 Hz, 

1H, CH), 3.41 (dd, 3J = 8.5 Hz, 3J = 7.2 Hz, 1H, CH), 3.69 (s, 3H, CH3O), 3.73 
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(s, 3H, CH3O), 4.24 (s, 4H, 2×CH2O), 5.42 (br. s, 1H, NH2), 5.50 (br. s, 1H, NH2), 

6.72 (dd, 3J = 8.1 Hz, 4J = 2.1 Hz, 1H, Ar), 6.79 (d, 4J = 2.1 Hz, 1H, Ar), 6.82 (d, 

3J = 8.1 Hz, 1H, Ar). 13С{1H} NMR (CDCl3, 150 MHz):  = 31.7 (CH2), 48.8 

(CH), 49.3 (CH), 52.5 (2×CH3O), 64.28 (2×CH2O), 116.8 (CH, Ar), 117.8 (CH, 

Ar), 120.9 (CH, Ar), 131.5 (С, Ar), 143.2 (С, Ar), 143.9 (С, Ar), 169.4 (CO2Me), 

169.6 (CO2Me), 174.7 (CONH2). IR (ZnSe):  = 3458, 3357, 3199, 2956, 2939, 

1733, 1674, 1590, 1507, 1436, 1288, 1261, 1158, 1068 сm-1. HRMS ESI-TOF 

m/z: [M+H]+ сalcd for C16H20NO7 338.1234; Found 338.1226.

General procedure D for the synthesis of 12. To a cooled to 0 C 0.133 M 

solution of cyanide 3 in dry methanol, Boc2O (2 equiv) and NiCl2 (1 equiv) were 

successively added under stirring. Then NaBH4 (10 equiv) was added in small 

portions under cooling the reaction mixture with cold water. When effervescence 

has entirely ceased, the resulting reaction mixture containing a finely divided 

black precipitate was allowed to warm to room temperature and stirred for 48 h, 

at which point aqueous solution of EDTA was added. The mixture was stirred for 

additional 30 min before solvent evaporation. The blue residue was dissolved in 

EtOAc (10 mL) and extracted with saturated NaHCO3 (3×10 mL). The combined 

organic fractions were dried with Na2SO4, filtered, and concentrated in vacuo. 

The crude material was purified by flash chromatography on silica gel to afford 

amine 12.
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Dimethyl 2-[3-(tert-butoxycarbonyl)amino-2-(3,4-dimethoxyphenyl)propyl]-

malonate (12a) was prepared according to the General Procedure D from cyanide 

3a (0.16 g, 0.50 mmol), Boc2O (217 mg, 100 mmol) and NiCl2 (65 mg, 0.50 

mmol) in methanol (3.7 mL). Yield 100 mg (47%); yellowish oil; Rf = 0.41 

(petroleum ether : ethyl acetate; 2:1). 1Н NMR (CDCl3, 400 MHz):  = 1.35 (s, 

9Н, 3×CH3), 2.04 (ddd, 2J = 13.7 Hz, 3J = 11.5 Hz, 3J = 4.9 Hz, 1Н, CH2), 2.27 

(ddd, 2J = 13.7 Hz, 3J = 9.8 Hz, 3J = 3.8 Hz, 1Н, CH2), 2.62–2.72 (m, 1Н, CH2N), 

3.11–3.19 (m, 2Н, 2×CH), 3.33–3.42 (m, 1Н, CH2N), 4.44–4.48 (m, 1Н, NH), 

3.56 (s, 3H, CH3O), 3.68 (s, 3H, CH3O), 3.81 (s, 3H, CH3O), 3.82 (s, 3H, CH3O), 

6.61 (br. s, 1H, Ar), 6.64 (d, 3J = 8.1 Hz, 1H, Ar), 6.78 (d, 3J = 8.1 Hz, 1H, Ar). 

13С{1H} NMR (CDCl3, 100 MHz):  = 28.2 (3×CH3), 32.3 (CH2), 43.3 (CH), 45.8 

(CH2), 49.3 (CH), 52.4 (2×CH3O), 55.7 (2×CH3O), 79.1 (C), 110.6 (CH, Ar), 

111.2 (CH, Ar), 119.8 (СH, Ar), 132.8 (С, Ar), 147.9 (C, Ar), 149.0 (C, Ar), 

155.6 (CONH), 169.4 (CO2Me), 169.6 (CO2Me). IR (ZnSe):  = 3384, 2955, 

2838, 1752, 1735, 1712, 1606, 1592, 1518, 1454, 1440, 1422, 1404, 1366, 1262, 

1163, 1087, 1028 сm-1. HRMS ESI-TOF m/z: [M+H]+ Calcd for C21H32NO8 

426.2122; Found 426.2122. Anal. Calcd for C21H31NO8: C, 59.28; H, 7.34; N, 

3.29. Found: С, 58.89; H, 7.14; N, 3.14.

Dimethyl 2-[3-(tert-butoxycarbonyl)amino-2-(2,4,5-trimethoxyphenyl)propyl]-

malonate (12b) was obtained according to the General Procedure D from cyanide 

3g (0.283 g, 0.81 mmol), Boc2O (352 mg, 1.61 mmol) and NiCl2 (104 mg, 0.81 
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mmol) in methanol (6 mL). Yield 251 mg (68%); yellowish oil; Rf = 0.33 

(petroleum ether : ethyl acetate; 2:1). 1Н NMR (CDCl3, 400 MHz):  = 1.33 (s, 

9Н, 3×CH3), 2.07 (2J = 13.9 Hz, 3J =11.1 Hz, 3J = 5.1 Hz, 1Н, CH2), 2.26 (2J = 

13.9 Hz, 3J = 9.6 Hz, 3J = 4.1 Hz, 1Н, CH2), 3.06–3.17 (m, 2Н, 2×CH), 3.17–3.25 

(m, 1Н, CH2N), 3.34–3.43 (m, 1Н, CH2N), 4.43–4.48 (m, 1Н, NH), 3.54 (s, 3H, 

CH3O), 3.67 (s, 3H, CH3O), 3.70 (s, 3H, CH3O), 3.77 (s, 3H, CH3O), 3.82 (s, 3H, 

CH3O), 6.44 (br. s, 1H, Ar), 6.57 (br. s, 1H, Ar). 13С{1H} NMR (CDCl3, 100 

MHz):  = 28.2 (3×CH3), 31.4 (CH2), 37.0 (CH), 44.6 (CH2), 49.6 (CH), 52.3 

(CH3O), 52.4 (CH3O), 55.97 (CH3O), 56.04 (CH3O), 56.5 (CH3O), 78.9 (C), 97.5 

(CH, Ar), 112.1 (CH, Ar), 119.4 (С, Ar), 143.1 (С, Ar), 148.3 (C, Ar), 152.0 (C, 

Ar), 156.8 (CONH), 169.5 (CO2Me), 169.8 (CO2Me). IR (KBr):  = 3391, 2954, 

2837, 1752, 1734, 1713, 1611, 1512, 1456, 1439, 1399, 1366, 1316, 1270, 1249, 

1207, 1171, 1081, 1035 сm-1. HRMS ESI-TOF m/z: [M+Na]+ Calcd for 

C22H33NNaO9 478.2048; Found 478.2042.

Methyl 2-oxo-5-(2,4,5-trimethoxyphenyl)piperidine-3-carboxylate (13). To a 

cooled to 0 C solution of cyanide 3g (0.283 g, 0.81 mmol) in dry methanol (6 

mL) Boc2O (352 mg, 1.61 mmol) and NiCl2 (104 mg, 0.81 mmol) were 

successively added under stirring. NaBH4 (308 mg, 8.1 mmol) was then added in 

small portions under the same temperature. When effervescence has entirely 

ceased, the resulting mixture containing a finely divided black precipitate was 

allowed to warm to room temperature and stirred for 48 h, at which point EDTA 
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aqueous solution was added. The mixture was stirred for additional 30 min before 

solvent evaporation. The blue residue was dissolved in EtOAc (10 mL) and 

extracted with saturated NaHCO3 (3×10 mL). The combined organic fractions 

were dried with Na2SO4, filtered and concentrated in vacuo. The crude Boc-

protected amine 12b was further used without additional purification. This amine 

(250 mg, ca. 0.55 mmol) was dissolved in 3 M solution of HC1 in EtOAc 

(304 μL) and stirred at room temperature for 1 h. Then EtOAc (2 mL) was added 

and mixture was refluxed for 1.5 h. The solution was concentrated in vacuo; the 

resulting residue was purified by column chromatography on silica gel yielding 

product 13 as a mixture of diastereomers (A and B) in a ratio of 55:45. Yield 170 

mg (65%); yellowish oil; Rf = 0.31 (ethyl acetate). 1Н NMR (CDCl3, 600 MHz): 

 = 2.18–2.22 (m, 1Н), 2.29–2.35 (m, 1Н), 2.40–2.46 (m, 1Н), 3.27–3.36 (m, 

1Н), 3.40–3.48 (m, 1Н), 3.54–3.61 (m, 1Н), 3.76, 3.77, 3.80, 3.81, 3.82, 3.88 (s, 

12H, 4×CH3O), 6.51 (br. s, 1H, Ar), 6.70 (br. s, 1H, Ar), 6.99–6.74 (m, 1Н, NH). 

13С{1H} NMR (CDCl3, 150 MHz):  = 29.6 (CH2, B), 30.0 (CH, B), 30.4 (CH2, 

A), 31.9 (CH, A), 46.8 (CH2, B), 47.3 (CH2, A), 49.4 (CH, A + CH, B), 56.1 

(3×CH3O, A + 3×CH3O, B), 56.7 (CH3O, A), 56.8 (CH3O, B), 97.3 (CH, Ar, A), 

97.5 (CH, Ar, B), 110.9 (CH, Ar, A), 111.5 (CH, Ar, B), 119.8 (С, Ar, A), 120.2 

(С, Ar, B), 142.8 (С, Ar, B), 143.0 (С, Ar, A), 148.6 (C, Ar, A), 148.7 (C, Ar, B), 

151.3 (C, Ar, A), 151.6 (C, Ar, B), 167.9 (CONH, A + CONH, B), 171.1 (CO2Me, 

A), 171.2 (CO2Me, B). IR (ZnSe):  = 3200, 3074, 2943, 1737, 1663, 1522, 1471, 
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1457, 1267, 1207, 1033 сm-1. HRMS ESI-TOF m/z: [M+Na]+ Calcd for 

C16H21NNaO6 346.1261; Found 346.1264.

Dimethyl 2-[2-({[(1,1,1,3,3,3-hexafluoropropan-2-yl)oxy]carbonyl}amino)-2-

phenylethyl]malonate (14). To a mixture of cyclopropane 1r31 (138 mg, 0.59 

mmol) and TMSNCO (0.17 mL, 1.26 mmol) the solution of TfOH (0.01 mL, 0.11 

mmol, 20 mol %) in HFIP (0.3 mL) was added under N2 atmosphere. The reaction 

mixture was stirred at room temperature for 22 h, quenched with conc. aqueous 

NaHCO3 and extracted with ethyl acetate (3×10 mL). The combined organic 

fractions were washed with brine, dried with anhydrous Na2SO4 and concentrated 

in vacuo. The residue was purified by column chromatography on a silica gel to 

afford carbamate 14. Yield 160 mg (61%); colorless solid; mp 94–95 C; Rf = 

0.78 (petroleum ether : ethyl acetate; 2:1). 1Н NMR (CDCl3, 600 MHz):  = 2.45 

(ddd, 2J = 14.2 Hz, 3J = 6.4 Hz, 3J = 6.1 Hz, 1H, CH2), 2.50 (ddd, 2J = 14.2 Hz, 

3J = 9.3 Hz, 3J = 7.6 Hz, 1H, CH2), 3.44 (dd, 3J = 7.6 Hz, 3J = 6.4 Hz, 1H, CH), 

3.72 (s, 3H, CH3O), 3.76 (s, 3H, CH3O), 4.80 (ddd, 3J = 9.3 Hz, 3J = 8.3 Hz, 3J = 

6.1 Hz, 1H, CHNH), 5.75 (d, 3J = 8.3 Hz, 1H, NH), 7.27–7.33 (m, 3H, Ph), 7.36–

7.39 (m, 2H, Ph). 13С{1H} NMR (CDCl3, 150 MHz):  = 34.9 (CH2), 49.0 (CH), 

52.85 (CH3O), 52.90 (CH3O), 54.8 (CH), 67.7 (sept, 2JCF = 35 Hz, CH(CF3)2), 

120.5 (q, 1JCF = 277 Hz, CF3), 120.6 (q, 1JCF = 277 Hz, CF3), 126.1 (2×CH, Ph), 

128.3 (CH, Ph), 129.1 (2×CH, Ph), 139.9 (C, Ph), 151.9 (CONH), 169.2 

(CO2Me), 169.7 (CO2Me). IR (ZnSe):  = 3366, 3339, 2973, 1746, 1733, 1531, 
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1521, 1447, 1393, 1290, 1264, 1228, 1200, 1107 сm-1. HRMS ESI-TOF m/z: 

[M+NH4]+ Calcd for C17H21F6N2O6 463.1298; Found 463.1290. (Anal. Calcd for 

C17H17F6NO6: C, 45.85; H, 3.85; N, 3.15. Found: С, 46.20; H, 3.76; N, 3.15.

General procedure E for DA cyclopropanes 1 ring opening with silylated 

amines. A dry tube for microwave oven was charged with 2 M solution of 

cyclopropane 1 (1 equiv) in HFIP and 4-(trimethylsilyl)morpholine or 1-

(trimethylsilyl)pyrrolidine (2 equiv) under N2 atmosphere. TfOH (10 mol %) was 

added, and the reaction mixture was heated in a microwave reactor at 80 C for 

10 h, quenched with conc. aqueous NaHCO3 and extracted with ethyl acetate 

(3×10 mL). The combined organic extracts were washed with NaHCO3 and brine, 

dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was 

purified by column chromatography on a silica gel to afford the desired product.

Dimethyl 2-[2-(4-fluorophenyl)-2-morpholinoethyl]malonate (15a) was obtained 

according to the General Procedure E from cyclopropane 1t25 (108 mg, 0.43 

mmol), 4-(trimethylsilyl)morpholine (137 mg, 152 µL, 0.86 mmol) and TfOH 

(3.8 µL, 0.043 mmol) in HFIP (0.22 mL). Yield 118 mg (81%); yellowish oil; Rf 

= 0.39 (petroleum ether : ethyl acetate; 4:1). 1Н NMR (CDCl3, 500 MHz):  = 

2.10–2.16 (m, 1H, C(1')H2), 2.26–2.33 (m, 2H, (CH2)2N), 2.37–2.42 (m, 2H, 

(CH2)2N), 2.62–2.71 (m, 1H, C(1')H2), 3.35–3.39 (m, 1H, C(2')H), 3.38 (dd, 3J = 

8.4 Hz, 3J = 5.6 Hz, 1H, C(2)H), 3.59–3.64 (m, 4H, (CH2)2O), 3.66 (s, 3H, CH3O), 

3.73 (s, 3H, CH3O), 7.00–7.05 (m, 2H, Ar), 7.13–7.17 (m, 2H, Ar). 13С{1H} NMR 

(CDCl3, 125 MHz):  = 31.3 (CH2), 48.9 (C(2)H), 49.7 (2×CH2), 50.4 (CH3O), 

52.8 (CH3O), 67.3 (2×CH2), 67.5 (C(2')H), 114.6 (d, 2J = 21 Hz, 2×CH, Ar), 129.6 

(d, 3J = 8 Hz, 2×CH, Ar), 133.6 (C, Ar), 162.4 (d, 1J = 246.0 Hz, CF), 169.9 

(2×CO2Me). 19F NMR (CDCl3, 470 MHz):  = 114.7. IR (KBr):  = 2954, 2854, 

2818, 1752, 1734, 1603, 1510, 1453, 1436, 1347, 1288, 1268, 1224, 1202, 1159, 

1118 сm-1. HRMS ESI-TOF m/z: [M+H]+ Calcd for C17H23FNO5 340.1555; 
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Found 340.1559. Anal. Calcd for C17H22FNO5: C, 60.17; H, 6.53; N, 4.13. Found: 

С, 60.15; H, 6.54; N, 4.06.

Dimethyl 2-[2-(2-methylphenyl)-2-morpholinoethyl]malonate (15b) was 

obtained according to the General Procedure E from cyclopropane 1s36 (106 mg, 

0.43 mmol), 4-(trimethylsilyl)morpholine (137 mg, 152 µL, 0.86 mmol) and 

TfOH (3.8 µL, 0.043 mmol) in HFIP (0.22 mL). Yield 119 mg (83%); colorless 

oil; Rf = 0.34 (petroleum ether : ethyl acetate; 4:1). 1Н NMR (CDCl3, 500 MHz): 

 = 2.23 (ddd, 2J = 13.8 Hz, 3J = 8.4 Hz, 3J = 4.8 Hz, 1H, C(1')H2), 2.63 (ddd, 2J 

= 13.8 Hz, 3J = 9.1 Hz, 3J = 5.7 Hz, 1H, C(1')H2), 2.31 (s, 3H, CH3), 2.36–2.46 

(m, 2H, (CH2)2N), 2.47–2.52 (m, 2H, (CH2)2N), 3.25 (dd, 3J = 9.1 Hz, 3J = 4.8 

Hz, 1H, C(2)H), 3.62 (dd, 3J = 8.4 Hz, 3J = 5.7 Hz, 1H, C(2')H), 3.61–3.65 (m, 

4H, (CH2)2O), 3.63 (s, 3H, CH3O), 3.68 (s, 3H, CH3O), 7.12–7.18 (m, 3H, Ar), 

7.23–7.26 (m, 1H, Ar). 13С{1H} NMR (CDCl3, 125 MHz):  = 19.7 (CH3), 30.5 

(C(1')H2), 48.9 (C(2)H), 50.7 (2×CH2), 52.40 (CH3O), 52.47 (CH3O), 62.9 

(C(2')H), 67.2 (2×CH2), 125.8 (CH, Ar), 127.1 (CH, Ar), 127.8 (CH, Ar), 130.7 

(CH, Ar), 136.9 (C, Ar), 137.1 (C, Ar), 169.70 (CO2Me), 169.72 (CO2Me). IR 

(ZnSe):  = 3020, 2954, 2854, 2811, 1753, 1735, 1452, 1436, 1344, 1329, 1269, 

1237, 1199, 1152, 1119 сm-1. HRMS ESI-TOF m/z: [M+H]+ Calcd for C18H26NO5 

336.1805; Found 336.1805. Anal. Calcd for C18H25NO5: C, 64.46; H, 7.51; N, 

4.18. Found: С, 64.49; H, 7.53; N, 4.21.

Dimethyl 2-[2-(4-bromophenyl)-2-pyrrolidinoethyl]malonate (16) was obtained 

according to the General Procedure E from cyclopropane 1u32 (160 mg, 0.51 

mmol), 1-(trimethylsilyl)pyrrolidine (146 mg, 178 µL, 1.02 mmol) and TfOH 

(4.5 µL, 0.051 mmol) in HFIP (0.26 mL) for 10 h. Yield 125 mg (64%); yellowish 

oil; Rf = 0.52 (petroleum ether : ethyl acetate; 1:1). 1Н NMR (CDCl3, 400 MHz): 

 = 1.64–1.69 (m, 4H, CH2), 2.16 (ddd, 2J = 13.8 Hz, 3J = 9.4 Hz, 3J = 4.6 Hz, 
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1H, CH2), 2.28–2.35 (m, 2H, CH2), 2.43–2.49 (m, 2H, CH2), 2.59 (ddd, 2J = 13.8 

Hz, 3J = 10.0 Hz, 3J = 5.0 Hz, 1H, CH2), 3.09 (dd, 3J = 10.0 Hz, 3J = 4.6 Hz, 1H, 

CH), 3.14 (dd, 3J = 9.4 Hz, 3J = 5.0 Hz, 1H, CH), 3.59 (s, 3H, CH3O), 3.68 (s, 

3H, CH3O), 7.11 (br. d, 3J = 8.4 Hz, 2H, Ar), 7.40 (br. d, 3J = 8.4 Hz, 2H, Ar). 

13С{1H} NMR (CDCl3, 100 MHz):  = 23.2 (2×CH2), 34.2 (CH2), 48.8 (CH), 51.9 

(2×CH2), 52.4 (CH3O), 52.5 (CH3O), 67.2 (CH), 121.2 (C, Ar), 130.0 (2×CH, 

Ar), 131.4 (2×CH, Ar), 139.8 (C, Ar), 169.5 (CO2Me), 169.6 (CO2Me). IR 

(ZnSe):  = 2966, 2875, 2797, 1761, 1741, 1590, 1486, 1437, 1407, 1348, 1319, 

1282, 1240, 1204, 1157, 1072, 1054, 1011 сm-1. HRMS ESI-TOF m/z: [M+H]+ 

Calcd for C17H23BrNO4 384.0805; Found = 384.0807. Anal. Calcd for 

C18H22BrNO4: C, 53.14; H, 5.77; N, 3.65. Found: С, 53.49; H, 5.73; N, 3.41..
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The supporting information is available free of charge on the ACS Publications 

website at doi:… Copies of 1D and 2D NMR spectra (pdf). 
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