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Abstract NiCl,(PPh;)(IPr) catalyzes cross-coupling reactions of 2-methyl-
sulfanylbenzofurans with alkyl Grignard reagents. Other nickel com-
plexes such as NiCl,(dppe) failed to catalyze the same reaction. The
alkylation is applicable to the synthesis of a couple of protein tyrosine
phosphatase inhibitors, 3-(4-biphenylyl)-2-alkylbenzofurans.
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Cross-coupling reactions of organosulfur compounds
date back to 1979, when Takei and Wenkert independently
reported the NiCl,(PPh;),-catalyzed arylation of aryl or
alkenyl sulfides with Grignard reagents.! Despite subse-
quent extensive studies since then,?>* cross-coupling of aryl
sulfides still remains in its infancy compared with the ma-
ture cross-coupling of aryl halides. The immaturity would
be mostly attributable to 1) slow oxidative addition of their
rather strong C(sp?)-S bonds, 2) reluctant transmetalation
due to high affinity between a transition metal and sulfur
in an oxidative adduct, and 3) catalyst poisoning by sulfur
compounds. New reaction conditions for more efficient and
robust cross-coupling of aryl sulfides with a sustainable
metal catalyst have thus been awaited.

We have been interested in extended Pummerer reac-
tions® of ketene dithioacetal monoxides*"%7 and recently
developed an efficient and modular access to multisubsti-
tuted benzofurans through Pummerer annulation*sh6ef
(Scheme 1). Since our annulation always leads to the forma-
tion of 2-methylsulfanyl-substituted benzofurans, transfor-
mations of the sulfur moieties should dictate the usefulness
of our methodology. Indeed, with state-of-the-art transi-
tion-metal catalysis, cross-coupling arylation of the prod-
ucts yielded highly fluorescent compounds?*&h6ef as well as
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anticancer agents.*®" Along this line, we report herein that
a nickel-NHC (N-heterocyclic carbene) complex is an effec-
tive catalyst for cross-coupling alkylation® of 2-methylsulfa-
nyl-substituted benzofurans, which was applied to efficient
synthesis of protein tyrosine phosphatase (PTP) 1B inhibi-
tors 6.
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Scheme 1 Pummerer annulation-cross-coupling strategy for tailor-
made synthesis of benzofurans

Cross-coupling butylation of benzofuran 1a was chosen
as a model reaction to probe a potent catalytic system. The
results of catalyst optimization are summarized in Table 1.
Although nickel-phosphine complexes are known to pro-
mote cross-coupling of aryl sulfides,?-¢ the transforma-
tion of 1a is not trivial. Attempted butylation with nickel
diphosphine complexes resulted in no conversions (Table 1,
entries 1-3). As 1a is regarded as a bulky aryl sulfide due to
the neighboring phenyl group, we envisioned a nickel-NHC
complex bearing a bulky NHC to be suitable in analogy with
the relevant palladium chemistry.>!° Indeed, a commercial-
ly available nickel complex NiCl,(PPh;)(IPr)!! [IPr = 1,3-
bis(2,6-diisopropylphenyl)imidazol-2-ylidene]  catalyzed
the desired alkylation very smoothly to afford 2a in 95%
yield (Table 1, entry 4). Finally, replacing toluene with THF
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as a solvent led to quantitative formation of 2a in 30 min-
utes (Table 1, entry 5). In the absence of any catalysts, no
reaction took place (Table 1, entry 6).

Table 1 Optimization of Catalyst for Alkylation

@[y

Ni cat. (3 mol%)
BuMgBr (1.3 equiv)

T Gl

solvent, 25 °C, 0.5 h

Entry Catalyst Solvent Results?
1 NiCly(PPh3), toluene no conversion
2 NiCly(dppe) toluene no conversion
3 NiCl,(dppp) toluene no conversion
4 NiCl,(PPh3)(IPr) toluene 95% yield of 2a
5 NiCl,(PPhs)(IPr) THF >99% yield of 2a
6 none THF no conversion

2By NMR analyses.

The scope of the alkylation is summarized in Scheme
2.12 Electronically biased substituents at the 6-position
have virtually no influence on the efficiency of the reaction
(2b and 2c). The smallest methyl (2d), unsaturated 10-un-
decenyl (2f), and THP-protected 11-hydroxyundecyl (2h)
groups were installed easily. Benzylmagnesium chloride
was less reactive and required four hours to reach comple-
tion (2e). Trimethylsilylmethylmagnesium chloride was
much more reluctant to afford 2g in 24 hours even at 50 °C.
It is worth noting that 2-methylsulfanylbenzofuran, which
has no substituent at the 3-position, totally resisted alkyla-
tion with NiCl,(dppe) but underwent very smooth alkyla-
tion with NiCl(PPh;)(IPr) to yield 2i."* Secondary alkyl
Grignard reagents underwent the cross-coupling with
much less efficiency. Cyclohexylation required sequential
additions of totally four equivalents of a cyclohexyl Gri-
gnard reagent to afford 2j in 65% yield, along with a reduced
byproduct where the SMe was replaced with H atom.

A series of 3-(4-biphenylyl)-2-alkylbenzofurans are at-
tracting significant attention since they serve as potent in-
hibitors of PTP 1B." In the previous report, each
alkylbenzofuran in the library was prepared via a lengthy
linear route. Advantageously, our approach to 2-alkylben-
zofurans has proved to be more efficient for the synthesis of
3-(4-biphenylyl)-2-alkylbenzofurans bearing variety in the
alkyl chain. Ketene dithioacetal monoxide 3 was prepared

328

NiClo(PPha)(IPr)

R (3 mol%) R
R3MgX (1.3 equiv)
msm o b
(0] ’ (6}

2a 97% A

R1
N\ R'=H
Bu _4
S R'=0OMe 2b 97%

R'=CF; 2c 94%
BuMgBr, 0.5 h

Ph Ph

RN
(I\gf(CHZ)QCH:CHg
O 2¢ 95% O 2f 94%

BnMgCl, 4 h (in toluene) CH»=CH(CH,)9MgBr (2 equiv), 2 h, 5 mol% cat.

CH,SiMes @g—(cm )11OTHP

2g 65% 2h 94%

MesSiCHMgCl, 24 h  THPO(CH,)1;MgBr (2 equiv), 1.5 h, 5 mol% cat.
(50 °C in toluene)

. 30

2j 65%

CeH11MgBr (1.0 equiv each
atOh,0.5h,2h,4h),6h

O 2d >99%
MeMgCl (2 equiv), 2 h

/
Z

Ph

2i 94%
BuMgBr, 0.5 h

Scheme 2 Scope of alkylation

through the Knoevenagel condensation in one step accord-
ing to the literature procedure.”® Phenol underwent the
Pummerer annulation“®" with 3 by means of trifluoroacetic
anhydride to afford 2-methylsulfanylbenzofuran 4 in 61%
yield. The following cross-coupling butylation and benzyla-
tion were successful, yielding intermediates 5a and 5b, re-
spectively, in a diversity-oriented fashion. Benzofurans 5a
and 5b are key intermediates that should undergo demeth-
ylation as the last step to yield potent PTP 1B inhibitors 6
(Scheme 3).14

In summary, we have developed a highly efficient cross-
coupling alkylation of benzofuryl sulfides with a nickel-
NHC catalyst and applied it to the formal synthesis of PTP
1B inhibitors. Investigations to find efficient transforma-
tions of organosulfur compounds with a sustainable transi-
tion-metal catalyst are underway in our laboratory.
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Scheme 3 Formal synthesis of PTP inhibitors
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