
Tetrahedron Letters 46 (2005) 8285–8288

Tetrahedron
Letters
Convergent synthesis of the IJKLM-ring part of ciguatoxin CTX3C
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Abstract—Convergent synthesis of the IJKLM-ring part (2) of ciguatoxin CTX3C has been achieved from the I-ring and the L-ring
parts (4 and 5) in total eight steps in 27% overall yield. The carbanion derived from 4, stabilized by a dimethyldithioacetal S-oxide
group, was readily reacted with aldehyde 5 to give an adduct, which was facilely transformed into the corresponding a,e-dihydroxy
ketone 3. The JK-ring formation from 3 under reductive conditions followed by oxidative M-ring cyclization efficiently led to the
pentacyclic ether 2. Improved synthesis of 6, a synthetic intermediate for 4, was also established.
� 2005 Elsevier Ltd. All rights reserved.
CTX3C (1)1 was isolated as a congener of ciguatoxin
(CTX)2 from cultured dinoflagellate Gambierdiscus toxi-
cus by the Yasumoto group. It shows potent neurotoxi-
city [ip LD50 (mouse): 1.3 lg/kg] by strong binding to
voltage-sensitive sodium channels.3 Its unique ladder-
shaped polycyclic ether structure and strong bioactivity
have attracted the attention of many synthetic chem-
ists.4,5 In the course of our studies directed toward the
total synthesis of ciguatoxins,6 we have developed a gen-
eral method for the convergent construction of X/6/7/X
ring systems and applied the method to the synthesis of
the ABCDE-ring part of 1.6k Herein, we describe an effi-
cient synthesis of the IJKLM-ring part (2)7 of 1 based on
our established methodology.6g

We planned the synthesis of 2 from the I-ring part 4 and
the L-ring part 56n via the same route as that previously
established in the IJKL-ring model (Scheme 1).6g The
dimethyldithioacetal mono-S-oxide group of 4 would
be deprotonated facilely by an appropriate amide base
to give an acyl anion equivalent,8 which would be read-
ily coupled with aldehyde 5. The resulting adduct would
be transformed to the corresponding a,e-dihydroxy
ketone 3. The subsequent reductive hydroxy-ketone
cyclization reactions9 would construct the JK-ring part.
The M-ring would be constructed through an intramo-
lecular hydrogen abstraction–cyclization process at the
final stage.10 Although the I-ring part 6, which would
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2005.09.164

Keywords: Ciguatoxin CTX3C; Natural product synthesis; Acyl anion
equivalent; Reductive etherification; Spirocyclic acetal formation.
* Corresponding author. Tel.: +81 11 706 2701; fax: +81 11 706
4924; e-mail: fjwkn@sci.hokudai.ac.jp
be a precursor of 4, was previously synthesized from
aldehyde 8 in total 17 steps,6h we also envisioned an
alternative route to 6 from 8 via 7, including a two-step
ring-closing olefin metathesis (RCM)/stereoselective
hydrogenation process, in order to improve the effi-
ciency of the I-ring synthesis.

The synthesis of 4, which includes the improved route to
6 from 8, is shown in Scheme 2. Stereoselective methal-
lylation of 8 by treatment with methallyltributyltin and
dichlorodiisopropoxytitanium afforded homoallyl alco-
hol 9 as a major product (89%) along with a small
amount of 34-epi-9 (11%).11 After deprotection of the
TBS groups of 9 followed by oxidative cleavage, the
resulting dialdehyde was reduced to triol 10 (85% overall
yield). The 1,3-diol part of 10 was selectively protected
as phenyl boronate to give alcohol 11 in quantitative
yield, which was converted to diol 12 by a three-step
process [(i) Dess–Martin oxidation;12 (ii) Wittig reac-
tion; (iii) removal of the phenyl boronate group] (67%
overall yield). The primary hydroxy group of 12 was
selectively protected as its TBDPS ether to give diene
7 in 90% yield. Ring closure of 7 in refluxing 1,2-dichlo-
roethane by Grubbs� second-generation ruthenium cata-
lyst13 afforded olefin 13 (82% yield), which was
hydrogenated stereoselectively using Crabtree�s cata-
lyst14 to give eight-membered ether 6 in 80% yield
(dr >20:1).6h Thereby, the improved synthesis of 6 from
8 was achieved in 10 steps in overall 34% yield.15 Con-
version of 6 to diol 14 was performed through a three-
step protection/deprotection sequence [(i) removal of
the TBDPS group; (ii) protection of the resulting diol
as the benzyl ether; and (iii) removal of the benzylidene
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Scheme 1. Synthetic plan for the IJKLM-ring part (2) of CTX3C (1).
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Scheme 2. Synthesis of the I-ring part 4. Reagents and conditions: (a)
Bu3SnCH2C(CH3)CH2, TiCl2(O

iPr)2, CH2Cl2, �78 �C, 2 h, 9: 89%, 34-
epi-9: 11%; (b) TBAF, THF, 23 �C, 12 h; (c) NaIO4, 1,4-dioxane–H2O
(3:1), 23 �C, 1 h, then NaBH4, MeOH, 0 �C, 1 h, 85% from 8; (d)
PhB(OH)2, PhH, 23 �C, 30 min, 100%; (e) DMPI, CH2Cl2, 23 �C, 21 h;
(f) Ph3PCH3Br, NHMDS, THF, 23 �C, 1 h, �78! 23 �C, 2 h; (g)
H2O2, EtOAc, 23 �C, 1 h, 67% from 10; (h) TBDPSCl, imidazole,
DMF, 23 �C, 30 min, 90%; (i) (H2IMes)(PCy3)Cl2RuCHPh, (CH2Cl)2,
reflux, 82%; (j) H2, [(cod)(py)(Cy3P)Ir]PF6, CH2Cl2, 0 �C, 5 h, 80%; (k)
TBAF, THF, 23 �C, 30 min; (l) BnBr, tBuOK, TBAI, THF, 23 �C,
30 min; (m) ethanedithiol, BF3Et2O, CH2Cl2, �20 �C, 30 min, 91%
from 6; (n) 2-naphthaldehyde, PPTS, benzene, reflux, 12 h, 93%; (o)
LiAlH4, AlCl3, CH2Cl2–Et2O (1:1), 23 �C, 2 h, 85%; (p) Tf2O, 2,6-
lutidine, CH2Cl2, �20 �C, 30 min; (q) MeSCH2S(O)Me, NHMDS,
THF, �20 �C, 15 min, 84% from 16.
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acetal group] (91% overall yield). Since diol 14 was
obtained as colorless plates (mp 63–64 �C), the structure
of 14 was established by X-ray crystallographic analysis
(Fig. 1).16 Diol 14 was treated with 2-naphthaldehyde to
produce naphthylmethylene acetal 15 (93% yield), which
was cleaved regioselectively using LiAlH4–AlCl3 to give
primary alcohol 16 exclusively in 85% yield.17 Transfor-
mation of 16 into the corresponding triflate ester and the
subsequent substitution by the carbanion generated
from methylthiomethyl methyl sulfoxide afforded 4 in
84% yield. Thus, the I-ring part 4 was synthesized from
8 in 17 steps in 18% overall yield.

Construction of the IJKLM-ring part 2 is depicted in
Scheme 3. Deprotonation of 4 with LDA followed by
the reaction with 56n (0.19 equiv) produced 17 as a mix-
ture of diastereomers (98% yield from 5, 81% recovery
of 4). The TBS, TBDPS, and methylthio methylsulfinyl
acetal groups of 17 were removed under acidic condi-
tions to give 3 (69% yield), which was cyclized by the
treatment with Et3SiH in the presence of TMSOTf into
18 as the sole stereoisomer in 73% yield.9 After the
Figure 1. ORTEP diagram of 14.
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protection of the primary hydroxy group of 18 as its
TBDPS ether (87% yield), oxidation and the subsequent
deprotection of the NAP group with DDQ afforded
hydroxy-ketone 20. Reductive cyclization of 20 with the
concomitant detachment of the TBDPS group produced
tetracyclic ether 2118 (86% overall yield). The presence
of NOE (H41/H46 and H38/H42) in 21 confirmed that
the newly formed stereocenters at the C41 and C42 posi-
tions had the desired stereochemistry. With the IJKL-
ring part 21 in hand, oxidative radical cyclization of
the M-ring was performed. Irradiation of a mixture of
21, PhI(OAc)2, and iodine in cyclohexane with a 60 W
incandescent lamp successfully produced a 1:1 mixture
of spirocyclic acetal 2 and its C49 epimer.10 When the
diastereomeric mixture was exposed to CSA in MeOH
in order to perform isomerization, the spirocyclic acetal
2 was given as the sole product in 73% yield. The spec-
tral data (1H NMR and 13C NMR) and optical rotation
{½a�23D �39.0 (c 0.070, CHCl3); Lit.: ½a�29D �41.2 (c 0.807,
CHCl3)

4d} of 2 agreed well with those of the literature.4d

Thus, the I- and L-ring parts (4 and 5) were conver-
gently assembled into the IJKLM-ring part 2 in eight
steps in 27% overall yield.

In conclusion, convergent synthesis of the IJKLM-ring
part (2) of ciguatoxin CTX3C has been achieved from
the I-ring and the L-ring parts (4 and 5). The carbanion
derived from 4, stabilized by a dimethyldithioacetal S-
oxide group, was readily reacted with the aldehyde
group of 5. The resulting adduct 17 was facilely trans-
formed to the corresponding a,e-dihydroxy ketone 3,
which was efficiently transformed into the pentacyclic
ether 2 by reductive etherification constructing the
JK-ring part and the subsequent oxidative M-ring cycli-
zation. Further studies toward the total synthesis of
ciguatoxinCTX3C are now in progress in this laboratory.
Supplementary data

Crystallographic data (excluding structure factors) of 14
have been deposited with the Cambridge Crystallo-
graphic Data Center as supplementary publication num-
ber CCDC 282748. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK [fax: +44 (0)1223
336033 or e-mail: deposit@ccdc.cam.ac.uk].
Acknowledgements

We are grateful to Professor Masahiro Hirama and Pro-
fessor Masayuki Inoue (Tohoku University), for kindly
providing 1H NMR, 13C NMR spectra of compound 2.
We also thank Mr. Kenji Watanabe and Dr. Eri Fuku-
shi (GC–MS and NMR Laboratory, Graduate School
of Agriculture, Hokkaido University), for the measure-
ments of mass spectra. This work was supported by a
Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science, and Technology
of Japanese Government.
References and notes

1. Satake, M.; Murata, M.; Yasumoto, T. Tetrahedron Lett.
1993, 34, 1975.

2. (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida,
T. Science 1967, 155, 1267; (b) Murata, M.; Legrand, A.
M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem.
Soc. 1990, 112, 4380; (c) Satake, M.; Morohashi, A.;
Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto,
T. J. Am. Chem. Soc. 1997, 119, 11325; (d) Yasumoto, T.
Chem. Rec. 2001, 1, 228.

3. (a) Anger, T.; Madge, D. J.; Mulla, M.; Riddal, D. J. Med.
Chem. 2001, 44, 115; (b) Catterall, W. A. Neuron 2000, 26,
13; (c) Dechraoui, M.-Y.; Naar, J.; Pauillac, S.; Legrand,
A.-M.Toxicon 1999, 37, 125; (d) Lombet, A.; Bidard, J.-N.;
Lazdunski, M. FEBS Lett. 1987, 219, 355.

4. Total synthesis of CTX3C: (a) Hirama, M.; Oishi, T.;
Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake,
M. Science 2001, 294, 1904; (b) Inoue, M.; Uehara, H.;
Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551; (c)
Maruyama, M.; Inoue, M.; Oishi, T.; Oguri, H.; Ogasa-
wara, Y.; Shindo, Y.; Hirama, M. Tetrahedron 2002, 58,



8288 D. Domon et al. / Tetrahedron Letters 46 (2005) 8285–8288
1835; (d) Uehara, H.; Oishi, T.; Inoue, M.; Shoji, M.;
Nagumo, Y.; Kosaka, M.; Le Brazidec, J.-Y.; Hirama, M.
Tetrahedron 2002, 58, 6493; (e) Kobayashi, S.; Takahashi,
Y.; Komano, K.; Alizadeh, B. H.; Kawada, Y.; Oishi, T.;
Tanaka, S.-i.; Ogasawara, Y.; Sasaki, S.-y.; Hirama, M.
Tetrahedron 2004, 60, 8375; (f) Inoue, M.; Yamashita, S.;
Tatami, A.; Miyazaki, K.; Hirama, M. J. Org. Chem.
2004, 69, 2797; Reviews: (g) Inoue, M.; Hirama, M.
Synlett 2004, 57; (h) Inoue, M.; Miyazaki, K.; Uehara, H.;
Maruyama, M.; Hirama, M. Proc. Natl. Sci. Acad. U.S.A.
2004, 101, 12013; (i) Inoue, M.; Hirama, M. Acc. Chem.
Res. 2004, 37, 961.

5. Recent synthetic studies on ciguatoxins by other groups:
(a) Kobayashi, S.; Alizadeh, B. H.; Sasaki, S.-y.; Oguri,
H.; Hirama, M. Org. Lett. 2004, 6, 751; (b) Baba, T.;
Takai, S.; Sawada, N.; Isobe, M. Synlett 2004, 603; (c)
Baba, T.; Huang, G.; Isobe, M. Tetrahedron 2003, 59,
6851; (d) Fuwa, H.; Fujikawa, S.; Tachibana, K.; Taka-
kura, H.; Sasaki, M. Tetrahedron Lett. 2004, 45, 4795;
(e) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K.
Org. Lett. 2002, 4, 2771; (f) Bond, S.; Perlmutter, P.
Tetrahedron 2002, 58, 1779; (g) Candenas, M. L.; Pinto,
F. J.; Cintada, C. G.; Morales, E. Q.; Brouard, I.; Dı́az,
M. T.; Rico, M.; Rodrı́guez, E.; Rodrı́guez, R. M.;
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cm3, T = 153 K, l = 0.85 cm�1. The final R value is 0.052
for 2616 independent reflections with I > 2rI and 271
parameters.

17. (a) Borbás, A.; Szabó, Z. B.; Szilágyi, L.; Béneyi, A.;
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