

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 8285-8288

Tetrahedron Letters

Convergent synthesis of the IJKLM-ring part of ciguatoxin CTX3C

Daisuke Domon, Kenshu Fujiwara,* Akio Murai, Hidethoshi Kawai and Takanori Suzuki

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 2 September 2005; revised 22 September 2005; accepted 28 September 2005 Available online 17 October 2005

Abstract—Convergent synthesis of the IJKLM-ring part (2) of ciguatoxin CTX3C has been achieved from the I-ring and the L-ring parts (4 and 5) in total eight steps in 27% overall yield. The carbanion derived from 4, stabilized by a dimethyldithioacetal S-oxide group, was readily reacted with aldehyde 5 to give an adduct, which was facilely transformed into the corresponding α , ε -dihydroxy ketone 3. The JK-ring formation from 3 under reductive conditions followed by oxidative M-ring cyclization efficiently led to the pentacyclic ether 2. Improved synthesis of 6, a synthetic intermediate for 4, was also established. © 2005 Elsevier Ltd. All rights reserved.

CTX3C (1)¹ was isolated as a congener of ciguatoxin (CTX)² from cultured dinoflagellate *Gambierdiscus toxicus* by the Yasumoto group. It shows potent neurotoxicity [ip LD₅₀ (mouse): $1.3 \,\mu$ g/kg] by strong binding to voltage-sensitive sodium channels.³ Its unique ladder-shaped polycyclic ether structure and strong bioactivity have attracted the attention of many synthetic chemists.^{4,5} In the course of our studies directed toward the total synthesis of ciguatoxins,⁶ we have developed a general method for the convergent construction of X/6/7/X ring systems and applied the method to the synthesis of the ABCDE-ring part of 1.^{6k} Herein, we describe an efficient synthesis of the IJKLM-ring part (2)⁷ of 1 based on our established methodology.^{6g}

We planned the synthesis of **2** from the I-ring part **4** and the L-ring part **5**⁶ⁿ via the same route as that previously established in the IJKL-ring model (Scheme 1).^{6g} The dimethyldithioacetal mono-*S*-oxide group of **4** would be deprotonated facilely by an appropriate amide base to give an acyl anion equivalent,⁸ which would be readily coupled with aldehyde **5**. The resulting adduct would be transformed to the corresponding α ,ɛ-dihydroxy ketone **3**. The subsequent reductive hydroxy-ketone cyclization reactions⁹ would construct the JK-ring part. The M-ring would be constructed through an intramolecular hydrogen abstraction–cyclization process at the final stage.¹⁰ Although the I-ring part **6**, which would

0040-4039/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.09.164

be a precursor of **4**, was previously synthesized from aldehyde **8** in total 17 steps,^{6h} we also envisioned an alternative route to **6** from **8** via **7**, including a two-step ring-closing olefin metathesis (RCM)/stereoselective hydrogenation process, in order to improve the efficiency of the I-ring synthesis.

The synthesis of 4, which includes the improved route to 6 from 8, is shown in Scheme 2. Stereoselective methallylation of 8 by treatment with methallyltributyltin and dichlorodiisopropoxytitanium afforded homoallyl alcohol **9** as a major product (89%) along with a small amount of 34-epi-**9** (11%).¹¹ After deprotection of the TBS groups of 9 followed by oxidative cleavage, the resulting dialdehyde was reduced to triol 10 (85% overall yield). The 1,3-diol part of 10 was selectively protected as phenyl boronate to give alcohol 11 in quantitative yield, which was converted to diol 12 by a three-step process [(i) Dess-Martin oxidation;¹² (ii) Wittig reaction; (iii) removal of the phenyl boronate group] (67%) overall yield). The primary hydroxy group of 12 was selectively protected as its TBDPS ether to give diene 7 in 90% yield. Ring closure of 7 in refluxing 1,2-dichloroethane by Grubbs' second-generation ruthenium catalyst¹³ afforded olefin 13 (82% yield), which was hydrogenated stereoselectively using Crabtree's catalyst¹⁴ to give eight-membered ether 6 in 80% yield (dr > 20:1).^{6h} Thereby, the improved synthesis of **6** from 8 was achieved in 10 steps in overall 34% yield.¹⁵ Conversion of 6 to diol 14 was performed through a threestep protection/deprotection sequence [(i) removal of the TBDPS group; (ii) protection of the resulting diol as the benzyl ether; and (iii) removal of the benzylidene

Keywords: Ciguatoxin CTX3C; Natural product synthesis; Acyl anion equivalent; Reductive etherification; Spirocyclic acetal formation.

^{*} Corresponding author. Tel.: +81 11 706 2701; fax: +81 11 706 4924; e-mail: fjwkn@sci.hokudai.ac.jp

Scheme 1. Synthetic plan for the IJKLM-ring part (2) of CTX3C (1).

Scheme 2. Synthesis of the I-ring part 4. Reagents and conditions: (a) $Bu_3SnCH_2C(CH_3)CH_2$, $TiCl_2(O'Pr)_2$, CH_2Cl_2 , -78 °C, 2 h, 9: 89%, 34-*epi-9*: 11%; (b) TBAF, THF, 23 °C, 12 h; (c) NaIO₄, 1,4-dioxane–H₂O (3:1), 23 °C, 1 h, then NaBH₄, MeOH, 0 °C, 1 h, 85% from **8**; (d) PhB(OH)₂, PhH, 23 °C, 30 min, 100%; (e) DMPI, CH₂Cl₂, 23 °C, 21 h; (f) Ph₃PCH₃Br, NHMDS, THF, 23 °C, 1 h, $-78 \rightarrow 23$ °C, 2 h; (g) H₂O₂, EtOAc, 23 °C, 1 h, 67% from **10**; (h) TBDPSCl, imidazole, DMF, 23 °C, 30 min, 90%; (i) (H₂IMes)(PCy₃)Cl₂RuCHPh, (CH₂Cl)₂, reflux, 82%; (j) H₂, [(cod)(py)(Cy₃P)Ir]PF₆, CH₂Cl₂, 0 °C, 5 h, 80%; (k) TBAF, THF, 23 °C, 30 min; (l) BnBr, [']BuOK, TBAI, THF, 23 °C, 30 min; (m) ethanedithiol, BF₃Et₂O, CH₂Cl₂, -20 °C, 30 min, 91% from **6**; (n) 2-naphthaldehyde, PPTS, benzene, reflux, 12 h, 93%; (o) LiAlH₄, AlCl₃, CH₂Cl₂–Et₂O (1:1), 23 °C, 2 h, 85%; (p) Tf₂O, 2,6-lutidine, CH₂Cl₂, -20 °C, 30 min; (q) MeSCH₂S(O)Me, NHMDS, THF, -20 °C, 15 min, 84% from **16**.

acetal group] (91% overall yield). Since diol 14 was obtained as colorless plates (mp 63–64 °C), the structure of 14 was established by X-ray crystallographic analysis (Fig. 1).¹⁶ Diol 14 was treated with 2-naphthaldehyde to produce naphthylmethylene acetal 15 (93% yield), which was cleaved regioselectively using LiAlH₄–AlCl₃ to give primary alcohol 16 exclusively in 85% yield.¹⁷ Transformation of 16 into the corresponding triflate ester and the subsequent substitution by the carbanion generated from methylthiomethyl methyl sulfoxide afforded 4 in 84% yield. Thus, the I-ring part 4 was synthesized from 8 in 17 steps in 18% overall yield.

Construction of the IJKLM-ring part 2 is depicted in Scheme 3. Deprotonation of 4 with LDA followed by the reaction with 5^{6n} (0.19 equiv) produced 17 as a mixture of diastereomers (98% yield from 5, 81% recovery of 4). The TBS, TBDPS, and methylthio methylsulfinyl acetal groups of 17 were removed under acidic conditions to give 3 (69% yield), which was cyclized by the treatment with Et₃SiH in the presence of TMSOTf into 18 as the sole stereoisomer in 73% yield.⁹ After the

Figure 1. ORTEP diagram of 14.

Scheme 3. Synthesis of the IJKLM-ring part 2. Reagents and conditions: (a) 4, LDA, THF, $-20 \degree$ C, 15 min, then 5, $-78 \degree$ C, 30 min, 98%; (b) PTS, MeOH, 23 °C, 30 min, 69%; (c) TMSOTf, Et₃SiH, CH₂Cl₂, 0 °C, 30 min, 73%; (d) TBDPSCl, imidazole, DMF, 23 °C, 30 min, 87%; (e) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, $-78 \degree$ C, 10 min; (f) DDQ, CH₂Cl₂—pH 7 buffer (10:1), 23 °C, 10 min; (g) TMSOTf, Et₃SiH, CH₂Cl₂, 0 °C, 30 min, 86% from 19; (h) PhI(OAc)₂, I₂, hv, cyclohexane, 23 °C, 3 h, then CSA, MeOH, 23 °C, 5 h, 73%.

protection of the primary hydroxy group of 18 as its TBDPS ether (87% yield), oxidation and the subsequent deprotection of the NAP group with DDQ afforded hydroxy-ketone 20. Reductive cyclization of 20 with the concomitant detachment of the TBDPS group produced tetracyclic ether 21^{18} (86% overall yield). The presence of NOE (H41/H46 and H38/H42) in 21 confirmed that the newly formed stereocenters at the C41 and C42 positions had the desired stereochemistry. With the IJKLring part 21 in hand, oxidative radical cyclization of the M-ring was performed. Irradiation of a mixture of **21**, $PhI(OAc)_2$, and iodine in cyclohexane with a 60 W incandescent lamp successfully produced a 1:1 mixture of spirocyclic acetal 2 and its C49 epimer.¹⁰ When the diastereomeric mixture was exposed to CSA in MeOH in order to perform isomerization, the spirocyclic acetal 2 was given as the sole product in 73% yield. The spectral data (¹H NMR and ¹³C NMR) and optical rotation $\{[\alpha]_D^{29} - 39.0 \ (c \ 0.070, \text{CHCl}_3); \text{Lit.: } [\alpha]_D^{29} - 41.2 \ (c \ 0.807, \text{CHCl}_3)\}$ $CHCl_3)^{4d}$ of **2** agreed well with those of the literature.^{4d} Thus, the I- and L-ring parts (4 and 5) were convergently assembled into the IJKLM-ring part 2 in eight steps in 27% overall yield.

In conclusion, convergent synthesis of the IJKLM-ring part (2) of ciguatoxin CTX3C has been achieved from the I-ring and the L-ring parts (4 and 5). The carbanion derived from 4, stabilized by a dimethyldithioacetal Soxide group, was readily reacted with the aldehyde group of 5. The resulting adduct 17 was facilely transformed to the corresponding α,ε -dihydroxy ketone 3, which was efficiently transformed into the pentacyclic ether 2 by reductive etherification constructing the JK-ring part and the subsequent oxidative M-ring cyclization. Further studies toward the total synthesis of ciguatoxin CTX3C are now in progress in this laboratory.

Supplementary data

Crystallographic data (excluding structure factors) of 14 have been deposited with the Cambridge Crystallo-

graphic Data Center as supplementary publication number CCDC 282748. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

Acknowledgements

We are grateful to Professor Masahiro Hirama and Professor Masayuki Inoue (Tohoku University), for kindly providing ¹H NMR, ¹³C NMR spectra of compound **2**. We also thank Mr. Kenji Watanabe and Dr. Eri Fukushi (GC–MS and NMR Laboratory, Graduate School of Agriculture, Hokkaido University), for the measurements of mass spectra. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japanese Government.

References and notes

- 1. Satake, M.; Murata, M.; Yasumoto, T. *Tetrahedron Lett.* **1993**, *34*, 1975.
- (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967, 155, 1267; (b) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380; (c) Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325; (d) Yasumoto, T. Chem. Rec. 2001, 1, 228.
- (a) Anger, T.; Madge, D. J.; Mulla, M.; Riddal, D. J. Med. Chem. 2001, 44, 115; (b) Catterall, W. A. Neuron 2000, 26, 13; (c) Dechraoui, M.-Y.; Naar, J.; Pauillac, S.; Legrand, A.-M. Toxicon 1999, 37, 125; (d) Lombet, A.; Bidard, J.-N.; Lazdunski, M. FEBS Lett. 1987, 219, 355.
- Total synthesis of CTX3C: (a) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294, 1904; (b) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551; (c) Maruyama, M.; Inoue, M.; Oishi, T.; Oguri, H.; Ogasawara, Y.; Shindo, Y.; Hirama, M. Tetrahedron 2002, 58,

1835; (d) Uehara, H.; Oishi, T.; Inoue, M.; Shoji, M.; Nagumo, Y.; Kosaka, M.; Le Brazidec, J.-Y.; Hirama, M. *Tetrahedron* **2002**, *58*, 6493; (e) Kobayashi, S.; Takahashi, Y.; Komano, K.; Alizadeh, B. H.; Kawada, Y.; Oishi, T.; Tanaka, S.-i.; Ogasawara, Y.; Sasaki, S.-y.; Hirama, M. *Tetrahedron* **2004**, *60*, 8375; (f) Inoue, M.; Yamashita, S.; Tatami, A.; Miyazaki, K.; Hirama, M. J. Org. Chem. **2004**, *69*, 2797; Reviews: (g) Inoue, M.; Hirama, M. *Synlett* **2004**, *57*; (h) Inoue, M.; Miyazaki, K.; Uehara, H.; Maruyama, M.; Hirama, M. Proc. Natl. Sci. Acad. U.S.A. **2004**, *101*, 12013; (i) Inoue, M.; Hirama, M. Acc. Chem. Res. **2004**, *37*, 961.

- Recent synthetic studies on ciguatoxins by other groups: (a) Kobayashi, S.; Alizadeh, B. H.; Sasaki, S.-y.; Oguri, H.; Hirama, M. Org. Lett. 2004, 6, 751; (b) Baba, T.; Takai, S.; Sawada, N.; Isobe, M. Synlett 2004, 603; (c) Baba, T.; Huang, G.; Isobe, M. Tetrahedron 2003, 59, 6851; (d) Fuwa, H.; Fujikawa, S.; Tachibana, K.; Takakura, H.; Sasaki, M. Tetrahedron Lett. 2004, 45, 4795; (e) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. Org. Lett. 2002, 4, 2771; (f) Bond, S.; Perlmutter, P. Tetrahedron 2002, 58, 1779; (g) Candenas, M. L.; Pinto, F. J.; Cintada, C. G.; Morales, E. Q.; Brouard, I.; Díaz, M. T.; Rico, M.; Rodríguez, E.; Rodríguez, R. M.; Pérez, R.; Pérez, R. L.; Martín, J. D. Tetrahedron 2002, 58, 1921.
- 6. (a) Oka, T.; Fujiwara, K.; Murai, A. Tetrahedron 1996, 52, 12091; (b) Atsuta, H.; Fujiwara, K.; Murai, A. Synlett 1997, 307; (c) Oka, T.; Murai, A. Tetrahedron 1998, 54, 1; (d) Oka, T.; Fujiwara, K.; Murai, A. Tetrahedron 1998, 54, 21; (e) Fujiwara, K.; Saka, K.; Takaoka, D.; Murai, A. Synlett 1999, 1037; (f) Fujiwara, K.; Tanaka, H.; Murai, A. Chem. Lett. 2000, 610; (g) Fujiwara, K.; Takaoka, D.; Kusumi, K.; Kawai, K.; Murai, A. Synlett 2001, 691; (h) Fujiwara, K.; Koyama, Y.; Doi, E.; Shimawaki, K.; Ohtaniuchi, Y.; Takemura, A.; Souma, S.; Murai, A. Synlett 2002, 1496; (i) Fujiwara, K.; Koyama, Y.; Kawai, K.; Tanaka, H.; Murai, A. Synlett 2002, 1835; (j) Tanaka, H.; Kawai, K.; Fujiwara, K.; Murai, A. Tetrahedron 2002, 58, 10017; (k) Fujiwara, K.; Goto, A.; Sato, D.; Ohtaniuchi, Y.; Tanaka, H.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2004, 45, 7011; (1) Takemura, A.; Fujiwara, K.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2004, 45, 7567; (m) Takemura, A.; Fujiwara, K.; Shimawaki, K.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron 2005, 61, 7392; (n) Fujiwara, K; Domon, D.; Ohtaniuchi, Y.; Takeda, S.; Takezawa, A.; Kawasaki, H.; Murai, A.; Kawai, H.; Suzuki, T., preceding paper, Tetrahedron Lett. 2005, 46, doi:10.1016/j.tetlet.2005.09. 163.
- 7. The IJKLM-ring part **2** was first reported by Hirama, see: Ref. 4d.
- (a) Ogura, K.; Tsuchihashi, G. *Tetrahedron Lett.* **1972**, *13*, 2681; (b) Herrmann, J. L.; Richman, J. E.; Wepplo, P. J.; Schlessinger, R. H. *Tetrahedron Lett.* **1973**, *14*, 4707.
- Nicolaou, K. C.; Hwang, C.-K.; Nugiel, D. A. J. Am. Chem. Soc. 1989, 111, 4136.

- 10. Martín, A.; Salazar, J. A.; Suárez, E. J. Org. Chem. 1996, 61, 3999.
- When this reaction was performed using the chiral Lewis acid prepared in situ from Cl₂Ti(O⁷Pr)₂ and (*R*)-BINOL, no reaction occurred probably due to steric hindrance. Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467.
- 12. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
- Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
- (a) Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Chem. Soc., Chem. Commun. 1976, 716; (b) Crabtree, R. H.; Felkin, H.; Fellebeen-Khan, T.; Morris, G. E. J. Organomet. Chem. 1979, 168, 183; (c) Crabtree, R. H.; Davis, M. W. Organometallics 1983, 2, 681; (d) Stork, G.; Kahne, D. E. J. Am. Chem. Soc. 1983, 105, 1072.
- 15. In our previous route,^{6h} cyclic ether **6** was synthesized from **8** in 17 steps in 34% overall yield. Although the overall yields of both new and old routes were equal, this new route, seven steps shorter than the previous route, saved time and labor.
- 16. Crystal data of **14**: C₂₄H₃₄O₆, *M* 418.53, monoclinic *P*₂₁ (No. 4), *a* = 12.785(6) Å, *b* = 4.685(2) Å, *c* = 19.814(9) Å, $\beta = 103.620(3)$, *U* = 1153.4(9) Å³, *D_c* (*Z* = 2) = 1.205 g/ cm³, *T* = 153 K, $\mu = 0.85$ cm⁻¹. The final *R* value is 0.052 for 2616 independent reflections with *I* > 2 σI and 271 parameters.
- (a) Borbás, A.; Szabó, Z. B.; Szilágyi, L.; Béneyi, A.; Lipták, A. *Tetrahedron* 2002, 58, 5723; (b) Lipták, A.; Borbás, A.; Jánossy, L.; Szilágyi, L. *Tetrahedron Lett.* 2000, 41, 4949.
- 18. Selected spectral data of **21**: $[\alpha]_{D}^{23}$ –9.6 (*c* 0.13, CHCl₃); ¹H NMR (400 MHz, C_6D_6 , C_6HD_5 as 7.15 ppm): δ 0.65 (3H, d, J = 6.1 Hz), 1.01 (3H, d, J = 6.8 Hz), 1.11–1.14 (6H, m), 1.14-1.23 (2H, m), 1.35-1.44 (1H, m), 1.55-1.81 (5H, m), 1.87–1.95 (2H, m), 2.05 (1H, br d, J = 10.3 Hz), 2.48 (1H, m), 2.68 (1H, dt, J = 9.1, 3.3 Hz), 2.85 (1H, br t, J = 4.0), 3.05 (1H, dd, J = 4.8, 9.2 Hz), 3.16 (1H, dt, J = 1.5, 7.5 Hz, 3.28 (1H, m), 3.30 (1H, br d, J = 9.6 Hz), 3.37 (1H, dt, J = 1.5, 6.3 Hz), 3.59 (1H, t, J = 9.6 Hz), 3.48–3.74 (5H, m), 4.09 (1H, m), 4.12 (1H, d, *J* = 11.8 Hz), 4.35–4.46 (3H, m), 4.67 (1H, d, J = 12.0 Hz), 4.72 (1H, d, J = 12.0 Hz), 7.04–7.65 (15H, m); ¹³C NMR (75 MHz, C_6D_6 , ${}^{13}CC_5D_6$ as 128.0 ppm): δ 14.4 (CH₃), 15.8 (CH₃), 20.2 (CH₃), 26.7 (CH₃), 28.6 (CH), 28.8 (CH₂), 30.0 (CH₂), 39.5 (CH₂), 40.3 (CH), 40.4 (CH₂), 40.8 (CH), 42.7 (CH), 44.5 (CH₂), 62.9 (CH₂), 71.3 (CH₂), 72.6 (CH₂), 72.8 (CH₂), 73.4 (CH₂), 74.8 (CH), 78.4 (CH), 79.6 (CH), 80.3 (CH), 81.1 (CH), 82.5 (CH), 82.6 (CH), 85.2 (CH), 85.6 (CH), 87.6 (CH), 127.5 (CH), 127.61 (CH), 127.64 (CH), 127.7 (CH) × 4, 127.9 (CH) × 2, 128.3 (CH) × 4, 128.5 (CH) × 2, 139.2 (C), 139.5 (C), 139.6 (C); IR (film) v_{max} 3447, 3061, 3029, 2922, 2853, 1496, 1453, 1436, 1375, 1336, 1285, 1274, 1259, 1071, 1028, 734, 697, 677; LR-FDMS, m/z 743 ([M⁺], bp); HR-FDMS, calcd for $C_{46}H_{62}O_8$ [M⁺]: 742.4445, found: 742.4453.