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Ciguatoxin 3C (CTX3C) (1) (Figure 1) was isolated from 

cultured dinoflagellate Gambierdiscus toxicus as one of the 

causative toxins of ciguatera fish poisoning, which often breaks 

out in tropical and subtropical coral leaf regions causing serious 

nervous system disorders in patients.
1,2

 The ciguatera toxins 

including 1 have a ladder-shaped, fused polycyclic ether 

framework typically including 13 ether rings with 30 or more 

stereocenters. The complex molecular structure and the strong 

neurotoxicity of the ciguatera toxins have attracted considerable 

attention from synthetic chemists, and, therefore, many studies 

toward the total synthesis of 1 and its congeners have been 

conducted.
3,4,5,6

 However, to date, only the Hirama
4
 and the 

Isobe
5
 groups have achieved the total synthesis of the ciguatera 

toxins.  

 

During the course of our investigations toward the total 

synthesis of 1,
6
 we have synthesized the ABCDEF-ring and the 

IJKLM-ring segments
6b,c,g

 and developed a method for the 

construction of the FGHI-ring from the F- and I-ring segments as 

a prototype for the final steps of the total synthesis of 1.
6d

 

However, in the synthesis of the IJKLM-ring, the lengthy 

synthetic process (3.9% over 30 steps from tri-O-acetyl-D-glucal) 

for the intermediate C42-C52 (L-ring) segment caused difficulty 

in large-scale synthesis.
6b

 Therefore, a new pathway for the C42-

C52 segment was explored. Here, we describe the successful 

synthesis of a new C42-C52 segment, having modified protecting 

groups, with a reduced number of reactions compared to that of 

the previous route.  

We planned a convergent synthesis of the IJKL-ring 2 from I-

ring 3 and newly designed the C42-C52 segment 4 as shown in 

Scheme 1. Due to the expected instability of the LM-ring of 1, 

the spiroacetal was intended to be constructed at the final stage of 

the total synthesis from an intermediate having a stable cyclic 

ether corresponding to the L-ring. Therefore, oxane 4 was 

employed as the stable L-ring segment, which would be 

connected to I-ring 3 to form IJKL-ring 2 by our previously 

developed method. Since the previous C42-C52 segment had 

issues of unfavorable detachment of the protecting group at O52 

during the formation of the J- and K-rings, we replaced the 

protecting group with a stable 4-methoxyphenyl (PMP) group. 

For the protecting group of the oxygen atom at C44, a 4-

bromobenzyl (PBB) group was selected based on stability and 

removability under specific conditions.
7
 The PMP and PBB 

groups would be removed at the final stage of the total synthesis. 

The 4-(methylphenylamino)benzyl (PMPAB) group at O46 was 

employed as a temporary protecting group, which would be 

removed before the K-ring formation.
7
 Thus, compound 4 was 

designed as the new C42-C52 segment. 
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Figure 1. The structure of ciguatoxin 3C (1). 
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The plan for the construction of 4 is shown in Scheme 2. 

Aldehyde 4 would be derived by oxidative cleavage of alkene 5, 

in which the C43 and C44 stereocenters would be established by 

Brown's asymmetric crotylboration of 6.
8
 The installation of the 

C50-C52 unit and the PBB group to lactone 7 would produce 6. 

The construction of the stereocenters at C45 and C46 of 7 would 

rely on a process including transformation of the 2,2-dimethyl-

1,3-dioxolane moiety of 8 to a hydroxymethyl group, asymmetric 

epoxidation of the double bond at C45 and C46, and 5-exo 

cyclization of the resulting epoxy ester to form a γ-lactone. The 

resulting γ-lactone was expected to be transformed to stable δ-

lactone 7, in which all the four substituents are equatorial.
9
 

Establishment of the syn-dimethyl group with (47R,48S)-

configuration in 8 employed chirality-transferring Ireland-

Claisen rearrangement of ester 9, which would be prepared from 

chiral Weinreb amide 10.  

 

The synthesis of 9 via 10 is illustrated in Scheme 3. Weinreb 

amide 10 was prepared from L-ascorbic acid through a three-step 

process as follows: (i) formation of isopropylidene ketal 11 

(98%),
10

 (ii) oxidative cleavage of 11 by Carlsen's procedure
11

 

with some modifications
12

 to give protected glycerate salt 12, and 

(iii) amidation of 12 with N,O-dimethylhydroxylamine in the 

presence of N,N'-dicyclohexylcarbodiimide (DCC) to produce 10 

(85% over 2 steps). Weinreb amide 10 was reacted with 1-

propynylmagnesium bromide to afford ketone 13 (90%).
13

 

Although several successful examples were reported for the 

diastereoselective reduction of 2,2-dimethyl-1,3-dioxolan-4-yl 

ketones,
14,6e

 ketone 13 was only reduced with low 

diastereoselectivity even after intensive exploration of reaction 

conditions using achiral reductants. Therefore, the asymmetric 

reduction of 13 was examined with ruthenium catalyst (S,S)-14 

under Noyori conditions.
15

 As a result, desired (R)-alcohol 15 

was produced in 83% yield with high stereoselectivity (15:epi-15 

= 17:1). Interestingly, the enantiomer of 13 (ent-13) gave (R)-

alcohol ent-epi-15 with lower stereoselectivity (ent-15:ent-epi-15 

= 1:7) under the same reduction conditions using (S,S)-14, 

thereby indicating that the 2,2-dimethyl-1,3-dioxolane moiety of 

13 has matched stereochemistry with (S,S)-14 in the Noyori 

reduction. Upon treatment with LiAlH4, propargyl alcohol 15 was 

converted to (E)-allyl alcohol 16 (95%), which was esterified 

with propanoyl chloride to give ester 9 (99%). The (R)-

configuration of the C45 stereocenter of the product was 

confirmed by NMR analysis using (R)- and (S)-Mosher esters of 

16.
16

  

 

Lactone 7 was constructed from ester 9 as shown in Scheme 4. 

First, ester 9 was subjected to Ireland-Claisen rearrangement. 

After intensive explorations, we found the following optimized 

conditions: treatment of 9 with KDA, prepared by the mixing of 

LDA and Tf2NK in THF-HMPA (3:1) at –40 °C for 5 min, and 

TMSCl at –78 °C for 30 min followed by warming to ambient 

temperature gave a rearranged product, which was esterified with 

TMSCHN2 to afford a 6:1 inseparable mixture of 8 and α-epi-8 in 

88% combined yield from 9. The standard conditions using LDA 

in THF gave 8 and α-epi-8 in 79% yield with low selectivity 

(1:1), while the use of sodium bis(trimethylsilyl)amide 

(NHMDS) in THF-HMPA (2:1) produced 8 selectively (8:α-epi-8 

= >10:1) but in low yield (<30%). The undesired, minor -

epimer could not be separated from the desired major 

stereoisomer until the stage of lactone formation. Upon treatment 

in one-pot with aqueous HCl followed by NaIO4, the 6:1 mixture 

of 8 and α-epi-8 was converted to a diastereomeric mixture of 

aldehydes, which was reduced under Luche conditions
17

 to 

produce a 6:1 mixture of 18 and α-epi-18 (98% over 3 steps). The 

mixture of allyl alcohols was stereoselectively transformed to a 

6:1 mixture of 19 and α-epi-19 by Sharpless asymmetric 

epoxidation using L-(+)-DIPT (78%).
18

 When the mixture of 

epoxides was heated in refluxing H2O, the formation of γ-

lactones (20 and α-epi-20) by 5-exo epoxide ring opening was 

observed. Next, the reaction solution was basified in situ with 

NaOH to produce hydrolyzed 21 and α-epi-21, which were 

cyclized in situ by acidification of the solution with HCl to give 

Scheme 1. Plan for the construction of IJKL-ring 2. PMP: 4-
methoxyphenyl; PBB: 4-bromobenzyl; NAP: 2-naphthylmethyl; 
PMPAB: 4-(methylphenylamino)benzyl. 
 

Scheme 2. Plan for the synthesis of C42-C52 segment 4. PMP: 4-
methoxyphenyl; PMPAB: 4-(methylphenylamino)benzyl; PBB: 4-
bromobenzyl.  

 

Scheme 3. Synthesis of ester 9. Reagents and conditions: (a) 2,2-
dimethoxypropane, PTS·H2O (cat.), acetone, 20 °C, 2 h, 98%; (b) 
2 mol/L aq. NaOH, 2 mol/L aq. NaClO, RuO2·H2O (cat.), 40 °C, 1 
h; (c) MeN(H)OMe·HCl, DCC, DMAP (cat.), CH2Cl2, 25 °C, 3 h, 
85% from 11; (d) 1-propynylmagnesium bromide, THF, –20 °C, 
30 min, 90%; (e) formic acid, Et3N, (S,S)-14 (cat.), Et2O, 25 °C, 3 
h, 83% (15:epi-15 = 17:1); (f) LiAlH4, THF, 40 °C, 5 h, 95%; (g) 
propanoyl chloride, pyridine, DMAP (cat.), CH2Cl2, 24 °C, 8 h, 
99%. PTS: p-toluenesulfonic acid; DCC: N,N'-
dicyclohexylcarbodiimide; DMAP: 4-dimethylaminopyridine. 
 



  

 3 
lactones 7 and α-epi-7. Because lactone 7 was obtained as 

crystals, recrystallization was effective to separate 7 from α-epi-7. 

The stereostructure of 7 was confirmed by X-ray crystallographic 

analysis (Figure 2).
19

 Thus, lactone 7 was obtained in 66% yield 

from the 6:1 mixture of 19 and α-epi-19 through a one-pot three-

step process, achieved by simple heating, basification, and 

acidification in aqueous media.  

 

 

 

Next, lactone 7 was converted to L-ring segment 4 (Scheme 5). 

After protection of 7 as a cyclic 4-bromobenzylidene acetal 

(100%), the resulting lactone 22 was reacted with a lithium 

acetylide, derived from 3-(4-methoxyphenyloxy)prop-1-yne, to 

afford 23 (92%), which was hydrogenated with Wilkinson's 

catalyst to produce 24 (95%). Upon treatment of 24 with Et3SiH 

in the presence of PhBCl2 as a Lewis acid, the regioselective 

reductive cleavage of the cyclic acetal group and the 

stereoselective reduction of the hemiacetal group were 

simultaneously accomplished to give 25 (81%).
20

 Oxidation of 25 

with Dess-Martin periodinane (DMPI)
21

 followed by Brown's 

asymmetric crotylboration using 26 produced 27 

stereoselectively (72% over 2 steps).
8
 The absolute configuration 

of 27 was determined by X-ray crystallographic analysis on 3,5-

dinitrobenzoyl ester 29, derived from 27 (Figure 3).
22,23

 The PBB 

group of 27 was converted to the PMPAB group according to the 

Buchwald-Seeberger procedure (71%).
7
 The resulting 28 was 

protected with PBBBr to give 5 (75%), the vinyl group of which 

was then transformed to a formyl group by a one-pot 

dihydroxylation/oxidative cleavage process to afford 4 (93%).
24

 

Thus, L-ring segment 4 was synthesized in 6.6% yield over 26 

(or 18 isolation/purification) steps from L-ascorbic acid.  

 

 

 

With L-ring segment 4 in hand, we examined the connection 

of 4 with I-ring segment 3B
6c

 followed by JK-ring formation 

(Scheme 6). Although the Bn groups of 3B are inappropriate for 

further synthesis due to the difficulty in their selective removal in 

the presence of the PBB ether after completion of the IJKL-ring 

synthesis, we used 3B as a good model compound to demonstrate 

the function of the protecting groups of 4 during the 

Scheme 4. Synthesis of lactone 7. Reagents and conditions: (a) i-
Pr2NH, Tf2NK, BuLi, –40 °C, THF-HMPA (3:1), 5 min, then 9, 
TMSCl, THF-HMPA (2:1), –78 °C, 30 min, then 24 °C, 3.5 h; (b) 
TMSCHN2, MeOH-PhH (1:1), 24 °C, 20 min, 88% (an inseparable 
6:1 mixture of 8 and α-epi-8) from 9; (c) 2 mol/L aq. HCl, THF, 24 
°C, 3 h, then pH 7 buffer, NaIO4, 0 → 24 °C, 1 h; (d) NaBH4, 
CeCl3·7H2O, MeOH, –78 °C, 30 min, 98% (an inseparable 6:1 
mixture of 18 and α-epi-18) from the above mixture of 8 and α-
epi-8; (e) L-(+)-DIPT, Ti(Oi-Pr)4, TBHP, MS4A, CH2Cl2, –20 °C, 
18 h, 78% (an inseparable 6:1 mixture of 19 and α-epi-19); (f) 
H2O, reflux, 11 h, then 2 mol/L aq. NaOH, 24 °C, 6 h, then 12 
mol/L aq. HCl, 24 °C, 2 h, then recrystallization, 66% (7) from the 
above mixture of 19 and α-epi-19. Tf: trifluoromethanesulfonyl; 
TMS: trimethylsilyl; HMPA: hexamethylphosphoric triamide; 
DIPT: diisopropyl tartrate; TBHP: tert-butyl hydroperoxide. 
 

Scheme 5. Synthesis of C42-C52 segment 5. Reagents and 
conditions: (a) 4-bromobenzaldehyde dimethylacetal, CSA (cat.), 
CH2Cl2, reflux, 30 min, 100%; (b) 3-(4-methoxyphenyloxy)prop-
1-yne, BuLi, THF, –70 °C, 30 min, then 22, –70 °C, 10 min, 92%; 
(c) H2, (Ph3P)3RhCl (cat.), PhH, 25 °C, 19 h, 95%; (d) Et3SiH, 
PhBCl2, –78 °C, 40 min, 81%; (e) DMPI, NaHCO3, CH2Cl2, 25 
°C, 1 h; (f) 26, THF, –78 °C, 1 h, 72% from 25; (g) PhN(H)Me, t-
BuONa, (2-biphenyl)P(t-Bu)2, Pd(OAc)2 (cat.), THF, 25 °C, 3 d, 
71%; (h) t-BuOK, Bu4NI (cat.), PBBBr, THF, 25 °C, 16 h, 75%; 
(i) OsO4 (cat.), NMO, pH 7 buffer, 1,4-dioxane, 25 °C, 11.5 h, then 
NaIO4, 24 °C, 1 h, 93%. CSA: 10-camphorsulfonic acid; DMPI: 
Dess-Martin periodinane; NMO: N-methylmorpholine N-oxide. 
 

Figure 2. ORTEP diagram of 7. 
 

Figure 3. ORTEP diagram of 3,5-dinitrobenzoyl ester 29. 
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transformation to the IJKL-ring 2B. First, dithioacetal mono-S-

oxide 3B was deprotonated with LDA, and the resulting anion 

was reacted with aldehyde 4 to give adduct 30 (72%).
6c,25

 Upon 

treatment of 30 with p-toluenesulfonic acid (PTS) in MeOH, the 

dithioacetal mono-S-oxide moiety and the PMPAB group were 

hydrolyzed to give ketodiol 31 (65%). Reductive etherification of 

31 with Et3SiH in the presence of TMSOTf afforded tricyclic 

ether 32,
26

 which was subjected to Swern oxidation to produce 

ketone 33 as a single diastereomer (87% over 2 steps).
27

 The 

stereochemistry at C41 was determined by NMR analysis, in 

which the NOE enhancement between H41 and H46 was 

observed. After the NAP group of 33 was removed by DDQ,
28

 the 

resulting 34 was cyclized with Et3SiH and TMSOTf to furnish 

tetracyclic 2B (79% over 2 steps).
29

 The trans-fusion between the 

J- and K-rings was confirmed by the presence of NOE 

correlations between H38/H42 and between H41/H46 as well as 

a large 
3
JH41-H42 value (9.2 Hz). Thus, the connection of L-ring 4 

with I-ring 3B followed by JK-ring formation smoothly 

proceeded in 6 steps to produce 2B in 32% overall yield without 

any problem with the protecting groups.  

 

Finally, formation of the LM-ring and detachment of the PBB 

group at O44, which were scheduled for the final stage of our 

total synthesis of CTX3C, were demonstrated (Scheme 7). The 

PMP group of 2B was removed with cerium(IV) ammonium 

nitrate (CAN) to give alcohol 35 (86%).
30

 Treatment of 35 with 

PhI(OAc)2 and iodine under photoirradiation with a 60 W 

incandescent lamp afforded a 1:1 mixture of spiroacetal 36
31

 and 

its C49 epimer.
32

 The epimer was isomerized with 10-

camphorsulfonic acid (CSA) in MeOH to give 36 as a single 

stereoisomer (78%).
33,6c

 The stereochemistry of the spiroacetal 

moiety was confirmed by the transformation of 36 under basic 

conditions to known 37 (89%), which was previously synthesized 

by the Hirama group
34

 and ours.
6c

 The removal of the PBB group 

of 36 was also tested. The amination of the PBB group with N-

methylaniline in the presence of a palladium catalyst followed by 

the acidic removal of the resulting PMPAB ether produced 38
35

 

(69% over 2 steps).
7
 This strongly suggests that the PMP group at 

O52 and the PBB group at O44 would properly function as 

protecting groups in the total synthesis of CTX3C.  

 

In conclusion, an improved process for the C42-C52 segment 

(4) of CTX3C, having modified protecting groups, was 

developed. The new route includes chirality transferring Ireland-

Claisen rearrangement for the construction of the vicinal 

dimethyl branching at C47-48, a one-pot cyclization process for 

the establishment of the stereocenters at C45 and C46 as well as 

the γ-hydroxy δ-lactone framework corresponding to the L-ring, 

and Brown's asymmetric crotylboration for the installation of the 

stereocenters at C43 and C44. The new process, which produced 

4 in 6.6% yield over 26 steps from L-ascorbic acid, was also 

simplified by the omission of 8 isolation/purification steps, 

thereby requiring only 18 isolation/purification steps from L-

ascorbic acid. Thus, the present synthesis of 4 is clearly improved 

as compared to the previous synthesis, which provided the same 

part in 3.9% yield over 30 (or 26 isolation/purification) steps 

from tri-O-acetyl-D-glucal. The new C42-C52 segment (4) was 

successfully coupled to the previously reported C32-C41 (I-ring) 

segment (3B) to produce the IJKLM-ring. Further studies toward 

the total synthesis of ciguatoxin CTX3C are now in progress in 

this laboratory.  
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