SYNTHESIS OF [<sup>2</sup>H<sub>8</sub>] ESTRADIOL, [<sup>2</sup>H<sub>7</sub>] ESTRONE,

[<sup>2</sup>H<sub>6</sub>] 2-HYDROXYESTRONE AND [<sup>2</sup>H<sub>6</sub>] 4-HYDROXYESTRONE

AS INTERNAL STANDARDS FOR SELECTED ION MONITORING

R.Knuppen, O.Haupt and H.-O.Hoppen\*

Institut für Biochemische Endokrinologie der Medizinischen Hochschule Lübeck, Ratzeburger Allee 160, D-2400 Lübeck; and \*Max-Planck-Institut für Experimentelle Endokrinologie, Postfach 61 03 09, D-3000 Hannover 61.

Received: 5-6-82

### ABSTRACT

The synthesis of  $[{}^{2}H_{\theta}]$  estradiol,  $[{}^{2}H_{7}]$  estrone,  $[{}^{2}H_{6}]$  2-hydroxyestrone and  $[{}^{2}H_{6}]$  4-hydroxyestrone from estrone (as a source) is described. The high isotopical purity renders the labelled compounds as suitable carriers and internal standards for quantitative gas chromatography - mass spectrometry. The content of protonium-form (i.e. natural) estrogens in the labelled derivatives ranged from 0.12 % to 2.58 %. The performance of these compounds in quantitative assays using selected ion monitoring has been established; and this allows the determination of estrogens from biological material in the lower picogram range.

# INTRODUCTION

Combined gas chromatography-mass spectrometry (GC-MS) has been applied for quantitative evaluation of a variety of compounds in biological fluids and tissues, using the technique of selected ion monitoring (SIM) or mass fragmentography. Since 1970 methods have been described for steroid hormones [1] and prostaglandins [2] which use isotopically labelled substances as carriers and internal standards for the nonlabelled endogenous compounds. These "homogenous" standards offer certain advantages: although their chemical and chromato-

TEROIDS

graphic properties are almost identical they can be easily separated from the non-labelled compounds in the mass spectrometer. As discussed in a recent review [3], the performance of the fragmentographic assay, particularly its sensitivity, depends highly on the stability and purity of the internal standard used.

## RESULTS AND DISCUSSION

The main objective of the syntheses described in this paper was to obtain an estrogen standard with a high deuterium content and the lowest possible contamination by (natural) protonium-form. This was achieved by specific reduction of carbonyl functions and saturation of double bonds. The introduction of deuterium into 15-dehydroestrone (1) by  $NaB^2H_4$ , as the first step (Fig.1) was an adaption of a method described by Sondheimer et al [4]. The introduction of a  $\Delta^6$ -double bond and its catalytic reduction later, followed well established procedures in estrogen chemistry [5]. Estradiol (7), as the final product of the deuterium labelling, contained two deuterium atoms more than expected from the synthetic pathway (Fig.1). It was assumed that, while preparing 6-dehydroestradiol (6), hydrogen atoms 2 and 4 had been exchanged for deuterium during the treatment with <sup>2</sup>HC1. These conditions have been described to yield 2,4-labelled estrogens with a good isotopic purity [6]. The fragmentation pattern of (7) supported this assumption (Fig.2). Further evidence arose from the fact that synthesis of labelled 2-hydroxyestrone (9) as

668

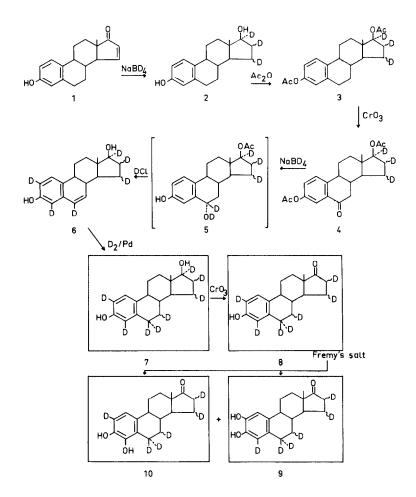



Fig. 1: Synthesis of Deuterium Labelled Phenolic Steroids.

well as 4-hydroxyestrone (10) from estrone (8), as indicated by the mass spectra (Fig.3), causes the loss of one deuterium atom - apparently from positions 2 or 4, respectively. The mass spectrum of 4-hydroxyestrone was omitted as it was virtually indistinguishable from that of 2-hydroxyestrone [7].



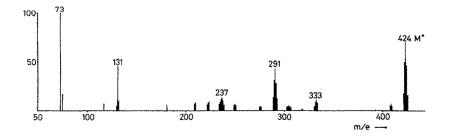



Fig. 2: Mass Spectrum of Deuterium Labelled Estradiol (7) (TMS-Derivative). For conditions see text.

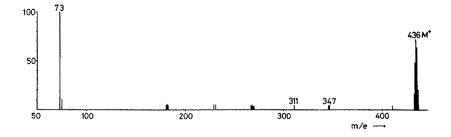



Fig. 3: Mass Spectrum of Deuterium Labelled 2-Hydroxyestrone (9) (TMS-Derivative). For conditions see text.

The content of non-labelled steroids in the deuterium-labelled products, which eventually determined the detection limit of the mass spectrometric assays, was calculated from the labelled compounds' mass spectra <u>i.e.</u> 0.148 % for (7), 0.120 % for (8), 2.56 % for (9) and 2.58 % for (10). The results indicate that only minute amounts of the protoniumform are left in the labelled compounds which in turn render the latter suitable as standards for mass fragmentography [8].

#### EXPERIMENTAL

Estrone was kindly donated by Schering AG, Berlin. Deuterium labelled reagents (isotopic purity > 99 %) were purchased from E. Merck, Darmstadt. Deuterium gas (isotopic purity 99.7 %) was supplied by Messer-Griesheim, Düsseldorf. UV spectra were recorded on a Beckman Acta III spectrophotometer.

Mass spectra were taken on a LKB 2091 gas chromatographmass spectrometer (LKB instruments, Bromma, Sweden) using a glass column (0.2 x 150 cm) filled with 3 % OV-3 on 100/120 chromosorb WHP (W. Günther Analysentechnik, Düsseldorf) under the following conditions: Injector temp. 240°C, column temp. 220°C, separator temp. 245°C, ion source temp. 250°C, carrier gas flow 25 ml He/min, ionization energy 70 eV with 50  $\mu$ A emission current, scan speed from m/e 50 to 450 in 6 s, filters 200 Hz, and slits adjusted to a resolution of approximately 1000.

<u>15-Dehydroestrone (1)</u>. 15-Dehydroestrone was prepared from 16α-bromoestrone according to Cantrall et al. [9]. Prior to use its purity was checked by paper chromatography using the system formamide/chlorobenzene ( $R_F = 0.58$  as compared to  $R_F = 0.67$  for estrone).

 $[15,16,17\alpha^{-2}H_3]$ Estradiol (2). 350 mg of (1) was dissolved in CH<sub>3</sub>O<sup>2</sup>H (50 ml) and treated with NaB<sup>2</sup>H<sub>4</sub> (1 g) at 20°C for 12 h. The reaction mixture was acidified with acetic acid and diluted with water (50 ml). After evaporation of the methanol the mixture was extracted with ethyl acetate (3 x 50 ml). The extract was washed with water and the solvent was evaporated. Recrystallization of the residue from methanol/water yielded 320 mg of white crystals. MS : mol. weight 275.

<u>[15,16,17a-<sup>2</sup>H<sub>3</sub>]Estradiol-3,17β-diacetate (3)</u>. 320 mg of (2) was treated with a mixture of pyridine/acetic acid anhydride (3 : 2; 20 ml) at 20°C overnight. The reaction mixture was diluted with water (100 ml) and extracted with ethyl acetate (3 x 50 ml). The extract was washed with 0.1 M HCl and water and the solvent was evaporated. After recrystallization of the residue from methanol/water, 300 mg of white crystals were obtained. MS : mol. weight 359.

STEROIDS

 $[15, 16, 17a^{-2}H_3]6$ -Ketoestradiol (4). 300 mg of (3) was dissolved in 1.2 ml of acetic acid and treated with a solution of  $CrO_3$  (250 mg) in water (0.22 ml) and acetic acid (1.6 ml) at 20°C for 24 h. Ethanol (1 ml) was added and the mixture was diluted with water (5 ml) and extracted with ether (3 x 10 ml). The etheral layer was washed with sat. NaHCO3-solution (3 x 2 ml) and a mixture of 1 M Na<sub>2</sub>CO<sub>3</sub> sat. NaHCO<sub>3</sub>-solution (3 : 1, 6 x 2 ml), then with water until neutral. The ether was evaporated yielding 130 mg of dry residue. The crude product was dissolved in 10 ml of ethanol and 1 ml of acetic acid and, after addition of 1 g of Girard-T reagent, refluxed for 1 h. After cooling, the reaction mixture was poured into ice-water (50 ml) containing 1 g Na<sub>2</sub>CO<sub>3</sub>. The mixture was then extracted with ether (2 x 50 ml) yielding 20 mg of non-ketonic products. The aqueous layer was acidified with 1 M HCl and again extracted with ether  $(2 \times 50 \text{ ml})$ yielding 80 mg of crude ketone. The product was treated with 5 % KOH in methanol at 20°C for 12 h. After dilution with water (50 ml) and neutralization with acetic acid the mixture was extracted with ether (2 x 25 ml). Evaporation of the solvent left 70 mg of a brown semicrystalline product. Further purification was achieved by column chromatography on 15 g of neutral Al<sub>2</sub>O<sub>3</sub> (Woelm, Eschwege, activity II-III) using benzene/ethanol (98 : 2, by vol.) as solvent. Yield: 60 mg.

 $\frac{[2,4,6,15,16,17\alpha^{-2}H_6]6-Dehydroestradiol (6)}{was dissolved in CH_3O^2H (5 ml) and treated with NaB^2H_4}$ (150 mg) at 20°C for 12 h. Without isolating the crude 6αhydroxyestradiol (5) dehydration was achieved by adding <sup>2</sup>HCl (1 ml of a 37 % sol. in <sup>2</sup>H\_2O) and refluxing for 1 h. After cooling, the mixture was diluted with H<sub>2</sub>O (20 ml) and extracted with ethyl acetate (2 x 20 ml). The combined organic layers were washed with H<sub>2</sub>O until neutral. The solvent was evaporated yielding 45 mg of crude (6).

 $[2,4,6,6,7,15,16,17\alpha^{-2}H_{8}]$ Estradiol (7). 40 mg of (6) was dissolved in  ${}^{2}H_{2}$  saturated ethyl acetate (2 ml) and added to a suspension of palladium/charcoal (5 mg) in ethyl acetate (2 ml) which had been saturated with  ${}^{2}H_{2}$  prior to use. Deuteration was accomplished by treating with  ${}^{2}H_{2}$  under atmospheric pressure for 2 h. The catalyst was removed by filtration and the crude product crystallized from ethyl acetate/ petroleum ether (2 : 1, by vol.). Yield: 35 mg; MS : mol. weight 280; mol. weight of the TMS-derivative 424 (Fig.2).

 $[2,4,6,6,7,15,16^{-2}H_7]$ Estrone (8). 30 mg of (7) was oxidized with Jones reagent according to [10] and the resulting 17keto compound was recrystallized from methanol/water (4 : 1, by vol.) MS : mol. weight 277, mol. weight of the TMS-derivative 349. Yield: 24 mg. [4,6,6,7,15,16-<sup>2</sup>H<sub>6</sub>]2-Hydroxyestrone (9) and [2,6,6,7,15,16-<sup>2</sup>H<sub>6</sub>]4-Hydroxyestrone (10). 20 mg of (8) was oxidized with Fremy's salt according to Gelbke <u>et al</u>. [11]. The reaction products were separated by preparative paper chromatography using the system formamide/chlorobenzene-ethyl acetate (3 : 1, by vol.) under the protection of ascorbic acid. Zones containing labelled 2-hydroxyestrone (9), 4-hydroxyestrone (10) and non-converted estrone (8) were eluted separately. (9) was further purified on a column (1 cm I.D.) filled with silica gel (Kieselgel 60, 1.5 g) and ascorbic acid impregnated silica gel (5.5 g); (9) was eluted between 25 and 50 ml of the solvent system n-hexane/chloroform/acetic acid (4 : 4 : 1, by vol.) and was recrystallized from ether containing a few drops of acetic acid. MS : mol. weight of the TMS-derivative of (9) 436 and of (10) 436.

## ACKNOWLEDGEMENT

This study was supported by the Deutsche Forschungsgemein-schaft.

### REFERENCES

- Siekmann, L., Hoppen, H.-O. and Breuer, H., Z. ANAL. CHEM. <u>252</u>, 294 (1970).
- Green, K., Granström, K., Samuelsson, B. and Axen, U., ANAL. BIOCHEM. <u>54</u>, 434 (1973).
- Johnson, D.W., Phillipou, G. and Seamark, R.F., J. STEROID. BIOCHEM. 14, 793 (1981).
- Sondheimer, F., Velasco, M., Batres, E. and Rosencranz, G., CHEM. IND. (London) 1482 (1954).
- 5. Knuppen, R., Haupt, O. and Breuer, H., BIOCHEM. J. <u>101</u>, 397 (1966).
- Tökes, L. and Throop, L.J., In Organic Reactions in Steroid Chemistry I, J. Fried and J.A. Edwards, eds. van Nostrand Reinhold Co., New York (1972), p. 156.
- 7. Hoppen, H.-O. and Siekmann, L., STEROIDS 23, 17 (1974).
- Knuppen, R., Haupt, O., Schramm, W. and Hoppen, H.-O., J. STEROID BIOCHEM. II 153 (1979).
- Cantrall, E.W., Little, R. and Bernstein, S., J. ORG. CHEM. <u>29</u>, 214 (1964).
- Rasmusson, G.H. and Arth, G.E., In Organic Reactions in Chemistry I, J. Fried and J.A. Edwards, eds. van Nostrand Reinhold Co., New York (1972), p. 228.
- 11. Gelbke, H.P., Haupt, O. and Knuppen, R., STEROIDS <u>21</u>, 205 (1973).