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Abstract: Sialyl phosphonate was synthesized by nucleophilic substitution of sialyl phosphite with
dimethyl trimethylsilyl phosphite using TMSOTY as a catalyst and converted to CMP-NeuNAc analogue
2 using Mitsunobu condensation.

Sialic acid plays important roles in biological phenomena, such as molecular recognition events and cell
adhesion.!"3 Sialyltransferase catalyzes the transfer of sialic acid from cytidine 5'-monophospho-N-
acetylneuraminic acid (CMP-NeuNAc) to an oligosaccharide.4 Substrate analogue inhibitors of this enzyme
could be potential compounds for the elucidation of the substrate recognition of sialyltransferase. While several
6'-substituted N-acetyllactosaminides were proved to be the acceptor-analogue inhibitors of o 2—6
sialyltransfcrase,s only protected sialic acid-nucleoside conjugates, the donor-analogues without a phosphate
linkage, were reported to inhibit sialyltransferase in the cell homogenate of lymphocyte.5 Recently, one of these
analogues was elucidated to be ineffective for inhibition of sialyltransferase using the homogenate of human
colonic tunor cell or the human liver.? In this paper, we describe a new method for the formation of a carbon-
phosphorus bond at the anomeric tertiary carbon of sialic acid and the synthesis of new sugar-nucleotide

analogues of a glycosyl phosphonate type (1 and 2).
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Carbon-phosphorus bond formation at the anomeric carbon of aldopyranoses and also furanoses using
trimethyl phosphite [P(OMe);] and trimethylsilyl triflate (TMSOTY) has been reported by Vasella er ald we
applied the same method to hexulosonyl acetate 3% as a model compound of sialic acid. However, only the §-

elimination product 4 was obtained as shown in Scheme 1 even with a reduced molar equivalent of TMSOTS.
Moreover, the Arbzov type reaction between P(OMe); and TMSOTS proceeded to give dimethyl
methylphosphonate, which was confirmed by 31p NMR.
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The desired ulosonyl phosphonate was first obtained in 32% yield (Scheme 1) using dimethyl-

trimethylsilyl phosphite instead of P(OMe),, thus avoiding the formation of dimethyl methylphosphonate.

_OMe
0=PL
Coome POMe)s TMSOP(OMe), ~OMe
CH Cl. CH Cl
H BnO 352%2 322% 2 H BnO s

Scheme 1

The ulosonyl phosphites 6° and 7° were found to be more active as glycosyl donors than 3 in the presence
of TMSOTf and could be converted to the corresponding phosphonates § and 8 in better yields (48% and 61%)
as shown in Scheme 2.

This glycosy! phosphite method was proved to be also effective for the conversion of sialyl phosphite 9ll
to sialyl phosphonate 1012 (Scheme 2).
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Scheme 2

The dimethyl phosphonates 8 and 10 were half-deesterified with thiophenol and triethylamine in
dioxane!3 to give monomethyl esters 11 and 12. Mitsunobu condensation'4 (PPh; and DIAD in THF) of 11
and 12 with 2', 3'-di-O-acetyl-N-benzoylcytidine gave the protected CMP-NeuNAc analogues 13 and 14.
Further deesterification of these methyl phosphonates with the same reagents as described as above gave 15 and
16, respectively. Successive O-deacetylation and N-debenzoylation with 20:1 NH,OH (28%) - MeOH, and
hydrolysis of methyl carboxylate using 1M NaOH, afforded the desired CMP-NeuNAc analogues 1!5 and 216
(Scheme 3).

Subsequent purification of 1 and 2 was carried out on a column of anion-exchange resin (formate form), a
gel-permeator (Biogel P-2) and cation-exchange resin (sodium form). Futher studies to assay the inhibition of 1
and 2 against sialyltransferase are now in progress.
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Thus, the carbon-phosphorus bond formation at the anomeric carbon of sialic acid was made possible by
nucleophilic substitution of glycosyl phosphite with dimethyl trimethylsilyl phosphite using trimethylsilyl triflate
as a catalyst and the obtained glycosyl phosphonates were converted to novel CMP-NeuNAc analogues.
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