

S0040-4039(96)00069-X

Synthesis of Novel CMP-NeuNAc Analogues Having a Glycosyl Phosphonate Structure

Masakazu Imamura and Hironobu Hashimoto*

Department of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226, Japan

Abstract: Sialyl phosphonate was synthesized by nucleophilic substitution of sialyl phosphite with dimethyl trimethylsilyl phosphite using TMSOTf as a catalyst and converted to CMP-NeuNAc analogue 2 using Mitsunobu condensation.

Sialic acid plays important roles in biological phenomena, such as molecular recognition events and cell adhesion.¹⁻³ Sialyltransferase catalyzes the transfer of sialic acid from cytidine 5'-monophospho-*N*-acetylneuraminic acid (CMP-NeuNAc) to an oligosaccharide.⁴ Substrate analogue inhibitors of this enzyme could be potential compounds for the elucidation of the substrate recognition of sialyltransferase. While several 6'-substituted *N*-acetyllactosaminides were proved to be the acceptor-analogue inhibitors of $\alpha \ 2 \rightarrow 6$ sialyltransferase,⁵ only protected sialic acid-nucleoside conjugates, the donor-analogues without a phosphate linkage, were reported to inhibit sialyltransferase in the cell homogenate of lymphocyte.⁶ Recently, one of these analogues was elucidated to be ineffective for inhibition of sialyltransferase using the homogenate of human colonic tumor cell or the human liver.⁷ In this paper, we describe a new method for the formation of a carbon-phosphorus bond at the anomeric tertiary carbon of sialic acid and the synthesis of new sugar-nucleotide analogues of a glycosyl phosphonate type (1 and 2).

Carbon-phosphorus bond formation at the anomeric carbon of aldopyranoses and also furanoses using trimethyl phosphite $[P(OMe)_3]$ and trimethylsilyl triflate (TMSOTf) has been reported by Vasella *et al.*⁸ We applied the same method to hexulosonyl acetate 3^9 as a model compound of sialic acid. However, only the β -elimination product 4 was obtained as shown in Scheme 1 even with a reduced molar equivalent of TMSOTf. Moreover, the Arbzov type reaction between P(OMe)₃ and TMSOTf proceeded to give dimethyl methylphosphonate, which was confirmed by ³¹P NMR.

The desired ulosonyl phosphonate 5^{10} was first obtained in 32% yield (Scheme 1) using dimethyltrimethylsilyl phosphite instead of P(OMe)₃, thus avoiding the formation of dimethyl methylphosphonate.

The ulosonyl phosphites 6^9 and 7^9 were found to be more active as glycosyl donors than 3 in the presence of TMSOTf and could be converted to the corresponding phosphonates 5 and 8 in better yields (48% and 61%) as shown in Scheme 2.

This glycosyl phosphite method was proved to be also effective for the conversion of sialyl phosphite 9^{11} to sialyl phosphonate 10^{12} (Scheme 2).

The dimethyl phosphonates 8 and 10 were half-deesterified with thiophenol and triethylamine in dioxane¹³ to give monomethyl esters 11 and 12. Mitsunobu condensation¹⁴ (PPh₃ and DIAD in THF) of 11 and 12 with 2', 3'-di-O-acetyl-N-benzoylcytidine gave the protected CMP-NeuNAc analogues 13 and 14. Further deesterification of these methyl phosphonates with the same reagents as described as above gave 15 and 16, respectively. Successive O-deacetylation and N-debenzoylation with 20:1 NH₄OH (28%) - MeOH, and hydrolysis of methyl carboxylate using 1M NaOH, afforded the desired CMP-NeuNAc analogues 1¹⁵ and 2¹⁶ (Scheme 3).

Subsequent purification of 1 and 2 was carried out on a column of anion-exchange resin (formate form), a gel-permeator (Biogel P-2) and cation-exchange resin (sodium form). Futher studies to assay the inhibition of 1 and 2 against sialyltransferase are now in progress.

Thus, the carbon-phosphorus bond formation at the anomeric carbon of sialic acid was made possible by nucleophilic substitution of glycosyl phosphite with dimethyl trimethylsilyl phosphite using trimethylsilyl triflate as a catalyst and the obtained glycosyl phosphonates were converted to novel CMP-NeuNAc analogues.

Acknowledgment

This work was supported in part by a Grant-in-Aid (No. 06240218) for Scientific Research on Priority Area from the Japanese Ministry of Education, Science, Sports and Culture.

References and Notes

- 1. Weis, W.; Brown, J. H.; Cusack, S.; Skehel, J. J.; and Wiley, D. C. Nature 1988, 333, 426-431.
- Phillips, M. L.; Nudelman, E.; Gaeta, F. C. A.; Perez, M.; Singhal, A. K.; Hakomori, S.; Paulson, J. C.Science 1990, 250, 1130-1132.
- 3. Waltz, G.; Arufto, A.; Kalanus, W.; Bevilacqua, M.; Seed, B. Science 1990, 250, 1132-1135.
- Beyer, T. A.; Sadler, J. E.; Rearick, J. I.; Paulson, J. C.; Hill, R. L. Adv. Enzymol. Relat. Areas Mol. Biol. 1981, 52, 23-175.
- Kajihara, Y.; Kodama, H.; Wakabayashi, T.; Sato. K.; Hashimoto, H. Carbohydr. Res. 1993, 247, 179-193.
- Kijima, I.; Ezawa, K.; Toyoshima, S.; Furuhata, K.; Ogura, H.; Osawa, T. Chem. Pharm. Bull. 1982,30, 3278-3283.
- 7. Harvey, B. E.; Thomas, P. Biochem. Biophys. Res. Commun. 1993, 190, 571-575
- 8. Mewly, R.; Vasella, A. Helv. Chim. Acta 1986, 69, 25-34.
- 9. Compounds 3, 6 and 7 were synthesized from GlcNAc (11 steps, 13 steps and 14 steps).

NMR Data of Compound 3; ¹H-NMR (270 MHz, CDCl₃) : δ 4.49(dd, 1H, $J_{6eq\beta,5\beta}$ 2.2, $J_{6eq\beta,6ax\beta}$ 12.0 Hz, H-6eqβ), 4.33(dd, 1H, $J_{6eq\alpha,5\alpha}$ 5.0, $J_{6eq\alpha,6ax\alpha}$ 11.2 Hz, H-6eqα), 3.80(s, 3H, COOCH₃α), 3.79(s, 3H, COOCH₃β), 3.71(dd, 1H, $J_{6ax\beta,5\beta}$ 1.0 Hz, H-6axβ), 3.53(dd, 1H, $J_{6ax\alpha,5\alpha}$ 9.6 Hz, H-6axα), 2.64(dd, 1H, $J_{3eq\alpha,4\alpha}$ 4.6, $J_{3eq\alpha,3ax\alpha}$ 13.9 Hz, H-3eqα), 2.44(dd, 1H, $J_{3eq\beta,4\beta}$ 2.3, $J_{3eq\beta,3ax\beta}$ 15.5 Hz, H-3eqβ), 2.18(dd, 1H, $J_{3ax\beta,4\beta}$ 4.0 Hz, H-3axβ), 1.96(dd, 1H, $J_{3ax\alpha,4\alpha}$ 9.6 Hz, H-3axα). NMR Data of Compound 6; ³¹P-NMR (109.25 MHz, CDCl₃, H₃PO₄ as an external standard) δ 139.87, 138.24(α and β phosphites).

NMR Data of Compound 7; ³¹P-NMR (109.25 MHz, CDCl₃) δ 139.45(α and β phosphites).

- NMR Data of Compound 5; ¹H-NMR (270 MHz, CDCl₃) : δ 4.25(dd, 1H, J_{6eq,5} 4.6, J_{6eq,6ax} 12.9 Hz, H-6eq), 3.87, 3.86(each d, each 3H, J_{P,Me} 10.2 Hz, 2P-O-Me), 3.85(s, 3H, COOMe), 3.84–3.89(m, 1H, H-5), 3.21(t, 1H, J_{6ax,5} 10.6 Hz, H-6ax), 3.17-3.31(m, 1H, H-4), 2.98(ddd, J_{3eq,3ax} 12.9, J_{3eq,4} 4.3 Hz, J_{3eq,P} 2.0 Hz, H-3eq), 2.01(dt, J_{3ax,4} 12.8, J_{3ax,P} 11.2 Hz, H-3ax), 1.87(s, 3H, N-Ac). ³¹P-NMR (109.25 MHz, CDCl₃, H₃PO₄) δ 17.49.
- 11. Martin, T. J.; Brescello, R.; Toepfer, A.; Schmidt, R. R. Glycoconjugate J. 1993, 10, 16-25.
- NMR Data of Compound 10; ¹H-NMR (270 MHz, CDCl₃): δ 5.38-5.32(m, 3H, H-7, H-8, NH),
 4,86(m, 1H, H-4), 4.42(dd, 1H, J_{9a,8} 2.3, J_{9a,9b} 13.2 Hz, H-9a), 4.17-4.01(m, 3H, H-5, H-6, H-9b),
 3.90, 3.84(each d, each 3H, J_{P,Me} 10.7 Hz, 2P-O-Me), 3.86(s, 3H, COOMe), 2.75(ddd, J_{3eq,3ax} 13.0,
 J_{3eq,4} 3.6, J_{3eq,P} 1.0 Hz, H-3eq), 2.25(dt, J_{3ax,4} 11.7, J_{3ax,P} 11.7 Hz, H-3ax), 2.15, 2.13, 2.04, 2.03,
 1.89(each s, each 3H, 5Ac). ³¹P-NMR (109.25 MHz, CDCl₃) δ 15.95.
- 13. Daub, G. W.; Van Tamelen, E. E. J. Am. Chem. Soc. 1977, 99, 3526-3528.
- 14. Malachowski, W. P.; Coward, J. K. J. Org. Chem. 1994, 59, 7616-7624.
- 15. NMR Data of Compound 1; ¹H-NMR (400 MHz, D₂O, 25 °C, HDO=4.81 ppm) : δ 8.06(d, 1H, J_{6,5} 7.6 Hz, H-6), 6.19(d, 1H, H-5), 6.05(d, 1H, J_{1',2'} 4.4 Hz, H-1'), 4.40(t, 1H, J_{3',2'} 4.4, J_{3',4'} 4.4 Hz, H-3'), 4.37(t, 1H, H-2'), 4.33(ddd, 1H, J_{5'a,4'} 4.7, J_{5'a,5'b} 11.8, J_{5'a,P} 2.3 Hz, H-5'a), 4.28(dt, 1H, J_{4',5'b} 2.4 Hz, H-4'), 4.23(ddd, 1H, J_{5'b,P} 5.8 Hz, H-5'b), 3.85(dd, 1H, J_{6"eq,5"} 5.2, J_{6"eq,6"ax} 11.4 Hz, H-6"eq), 3.78(dt, 1H, J_{5",4"} 10.4, J_{5",6"ax} 10.4 Hz, H-5"), 3.62(dt, 1H, J_{4",3"ax} 10.5, J_{4",3"eq} 4.3 Hz, H-4"), 3.39(t, 1H, H-6"ax), 2.85(dd, 1H, J_{3"eq,3"ax} 10.5 Hz, H-3"eq), 2.05(s, 3H, N-Ac), 1.91(dt, 1H, J_{3ax,P} 10.4 Hz, H-3"ax). ³¹P-NMR (109.25 MHz, D₂O) δ 15.95.
- 16. NMR Data of Compound 2; ¹H-NMR (400 MHz, D₂O, 25 °C, HDO=4.81 ppm) : δ 8.07(d, 1H, J_{6,5}
 7.6 Hz, H-6), 6.20(d, 1H, H-5), 6.01(d, 1H, J_{1',2'} 4.4Hz, H-1'), 4.38-4.19(m, 5H, H-2', H-3', H-4', H-5'a, H-5'b), 3.86-3.80(m, 2H, H-5", H-8"), 3.71-3.58(m, 5H, H-4", H-6", H-7", H-9"a, H-9"b), 2.84(dd, 1H, J_{3"eq,3"ax} 12.8, J_{3"eq,4"} 4.7 Hz, H-3"eq), 2.06(s, 3H, N-Ac), 1.95(dt, 1H, J_{3"ax,4"} 11.8 Hz, J_{3"ax,P} 11.8 Hz, H-3"ax). ³¹P-NMR (109.25 MHz, D₂O) δ 16.00

(Received in Japan 8 November 1995; revised 6 January 1996; accepted 10 January 1995)