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Abstract—An allylgallium reagent is found to be effective for radical allylation of �-iodo or �-bromo carbonyl compounds.
Treatment of benzyl bromoacetate with allylgallium, prepared from allylmagnesium chloride and gallium trichloride, in the
presence of triethylborane in THF provided benzyl 4-pentenoate in good yield. The addition of water as a cosolvent improved the
yields of allylated products. It was revealed that the allylgallium species resists immediate decomposition on exposure to water.
© 2001 Elsevier Science Ltd. All rights reserved.

Radical allylation reactions provide a mild and efficient
method to introduce allyl groups into organic molecules
bearing ionically labile functionalities.1 Allylstannanes
have played an important role in radical allylation
because of their high reactivity.2 However, allylation
reactions based on allylstannanes have serious draw-
backs in the synthesis of biologically active compounds,
because the inherent toxicity of organotin derivatives
and the difficulty of removal of residual tin compounds
often prove fatal. The development of other allylating
reagents is still in its infancy compared to the tin-free
radical reduction.3 Allylsilanes4 and allylsulfones5 are
efficient alternatives and are being actively investigated.
Here we wish to introduce an alternative allylating
reagent. Radical allylation proceeded smoothly with
allylgallium reagents6 in the presence of triethylborane
as a radical initiator.7

Allylmagnesium chloride (3.0 mmol) was added to a
THF (2 mL)/hexane (1 mL) mixed solution of GaCl3
(3.0 mmol) under argon to prepare an allylgallium
reagent. Benzyl bromoacetate (1a, 1 mmol) and tri-
ethylborane (1.0 M hexane solution, 0.50 mL, 0.50
mmol) were added to the solution and air (10 mL) was
introduced to the reaction flask by a syringe. After the
mixture was stirred for 2 h, extractive workup followed
by silica gel column purification afforded benzyl 4-pen-
tenoate (2a) in 52% yield (Scheme 1). The reaction did
not proceed at all in the absence of Et3B. The azo

initiator, V-70 [2,2�-azobis(4-methoxy-2,4-dimethyl-
valeronitrile)],8 was also effective to afford 2a in 48%
yield after 14 h at 25°C. Additionally, radical scav-
engers such as galvinoxyl and 2,2,6,6-tetra-
methylpiperidine-N-oxyl, completely inhibited the
reaction. Therefore, a radical reaction mechanism is
suggested for the allylation with allylgallium. Although
the yield was moderate, the result encouraged us to
modify the reaction conditions. Consequently, we have
found that addition of water as a cosolvent to the
reaction mixture improved the yield of 2a. Water (1
mL) was added to a THF (2 mL)/hexane (1 mL)
solution of the allylgallium reagent prior to the addi-
tion of benzyl bromoacetate, Et3B, and air. After 2 h at
25°C, 2a was obtained in 78% yield.9 Thus, the allylgal-
lium species proved to be somewhat stable in aqueous
media10,11 and to act as a radical allylating reagent.

The origin of the favorable solvent effect is not clear at
this stage. Similar phenomena were reported12 on atom-
transfer radical reaction of �-iodo carbonyl compounds
in aqueous media, where the high cohesive energy

Scheme 1.
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density of water causes reduction of the volume of an
organic molecule. In the present case, the addition step
could be accelerated because the addition necessarily
accompanies the decrease of the total volume of the
reactants. It is also probable that the structure of the
allylgallium species would change and that the addition
of water could increase the reactivity of allylgallium.
Allylgallium dichloride is likely to be transformed into
allylgallium hydroxide that is possibly more reactive for
radical allylation.13

Various combinations of �-halo carbonyl compounds
and allylic gallium reagents were examined (Table 1).
More reactive �-iodo carbonyl compounds gave better
results compared with their bromo analogs. 2-Halo-
propanoate or 2-halopropanamide also reacted with the
allylgallium reagent to give 2-methyl-4-pentenoate or
2-methyl-4-pentenamide (entries 2, 3, and 5). In con-
trast, 2-bromo-2-methylpropanoate did not give the
anticipated product, and the starting material was
recovered unchanged, probably due to the steric hin-
drance around the carbon-centered radical. Interest-
ingly, allylation was effective for the substrates having a
terminal carbon�carbon double bond (entries 9 and 10).
An electron-deficient (alkoxycarbonyl)methyl radical
reacted faster with the highly electron-rich alkene moi-

ety of the allylgallium species than with the olefinic
parts of the substrate and of the product. Furthermore,
1k, prepared from butyroin, was selectively allylated to
give 4-pentenoate 2k in excellent yield. Allylation of the
ketone moiety was not observed.14

2-Butenylgallium, not 1-methyl-2-propenylgallium,15

was also available by simply mixing GaCl3 and a
Grignard reagent prepared from 1-chloro-2-butene and
magnesium, whereas synthesis of 2-butenylstannane is
somewhat troublesome.16 3-Methyl-4-pentenoates were
obtained in high yields without contamination by 4-
hexenoates (entries 12–16).17 However, methallylation
of �-halo carbonyl compounds with 2-methyl-2-
propenylgallium was disappointing (ca. 10% yield in the
case of 1a).18 The starting materials were mostly
recovered.

3-Methyl-2-butenylgallium reagent afforded 3,3-
dimethyl-4-pentenoate 3 in spite of the steric effect of
the dimethyl groups in the gallium reagent (Scheme 2).
In this case, the allylation product was contaminated
with cyclopropane 4. Bond formation at the less substi-
tuted carbon would yield the �-iodoalkylgallium via
atom-transfer addition, which undergoes intramolecular
cyclization to form the cyclopropane ring.

Table 1. Radical allylation of �-halo carbonyl compounds with allylgallium species
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Scheme 2.

The reaction mechanism of allylation, especially the
fate of the �-gallylalkyl radical intermediate, is not
clear at this stage. Two plausible mechanisms involve
(1) elimination of a gallyl radical from the �-gallylalkyl
radical,19 which is similar to the case of allylstannane,
or (2) halogen atom abstraction of the �-gallylalkyl
radical from an �-halo carbonyl compound like �-silyl-
alkyl radical. Further investigation to establish the
mechanism is necessary.20

In conclusion, the allylgallium reagent is found to be
effective for radical allylation of �-iodo or �-bromo
carbonyl compounds in place of allylstannane. The
addition of water as a cosolvent improved the yields of
allylated products. Allylic gallium reagents are easily
prepared, and this allylation avoids the use of tin
reagents that require prior preparation of the reagent
and special treatment for its removal.

Typical procedure for allylation with allylgallium in
aqueous THF

THF (2 mL) was mixed with a hexane solution of
gallium trichloride (1.0 M, 1.5 mL, 1.5 mmol) under
argon. Allylmagnesium chloride (1.0 M THF solution,
1.5 mL, 1.5 mmol) was added dropwise to the solution
of gallium trichloride at 25°C to give a white suspen-
sion. The suspension was then stirred for 20 min at
25°C. Water (1 mL) was added to the suspension. The
whole mixture turned clear although it was hetero-
geneous. A solution of benzyl iodoacetate (1d, 0.14 g,
0.50 mmol) in THF (2 mL), triethylborane (1.0 M
hexane solution, 0.25 mL, 0.25 mmol), and air (10 mL)
were then successively added. After being vigorously
stirred for 2 h, the mixture was poured into a 1 M HCl
solution, and the product was extracted with ethyl
acetate (20 mL×3). The combined organic layer was
dried over Na2SO4 and was concentrated in vacuo.
Purification of the residual oil by silica gel column
chromatography provided benzyl 4-pentenoate (2a, 85
mg, 0.45 mmol) in 89% yield.
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