Synthesis of cedranoid sesquiterpenes. II. Functionalization at carbon 12¹

Peter Yates and Kenneth E. Stevens

Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ont., Canada M5S 1A1 Received October 9, 1981

PETER YATES and KENNETH E. STEVENS. Can. J. Chem. 60, 825 (1982).

Dimethyl 6,6-dimethyl-7-oxotricyclo[3.2.1.0^{2.8}]octane-1,8-dicarboxylate (6) undergoes homoconjugate addition with lithium diphenylcuprate to give dimethyl 3-hydroxy-4,4-dimethyl-*exo*-8-phenyl-*cis*-bicyclo[3.3.0]oct-2-ene-1,2-dicarboxylate (12*a*), which on monodecarboxymethylation, ozonolysis, and esterification with diazomethane gives dimethyl 6,6-dimethyl-7-oxo-*cis*-bicyclo-[3.3.0]octane-1,*exo*-2-dicarboxylate (15). Reaction of 6 with diethylaluminum cyanide gives dimethyl *exo*-8-cyano-3-hydroxy-4,4-dimethyl-*cis*-bicyclo[3.3.0]oct-2-ene-1,2-dicarboxylate (15). Reaction of 6 with diethylaluminum cyanide gives dimethyl *exo*-8-cyano-3-hydroxy-4,4-dimethyl-*cis*-bicyclo[3.3.0]oct-2-ene-1,2-dicarboxylate (16), which on hydrolysis and esterification with diazomethane also gives 15. Sensitized photolysis of dimethyl 5-oxo-6,6-dimethylbicyclo[2.2.2]octa-2,7-diene-2,3-dicarboxylate (19) gives dimethyl 4,4-dimethyl-3-oxotricyclo[3.2.1.0^{2.8}]oct-6-ene-1,*exo*-2-dicarboxylate (20), which on reduction with lithium in ammonia gives dimethyl 6,6-dimethyl-7-oxobicyclo[3.3.0]oct-3-ene-1,*exo*-2-dicarboxylate (31); conversion of 31 to its 2-ene isomer 32 followed by catalytic hydrogenation gives 15 and its *endo*-2 epimer 33.

PETER YATES et KENNETH E. STEVENS. Can. J. Chem. 60, 825 (1982).

Le diméthyl-6,6 oxo-7 tricyclo[$3.2.1.0^{2.8}$] octanedicarboxylate-1,8 de méthyle (6) subit une addition homoconjuguée du diphénylcuprate de lithium pour donner l'hydroxy-3 diméthyl-4,4 phényl-8-*exo* bicyclo[3.3.0] octène-2 dicarboxylate-1,2-*cis* de méthyle (**12***a*) qui par monodécarboxyméthylation, ozonolyse et estérification par le diazométhane conduit au diméthyl-6,6 oxo-7 bicyclo[3.2.0] octanedicarboxylate-1,2-*exo* de méthyle (**15**). La réaction de 6 avec du cyanure de diéthylaluminium fournit le cyano-8-*exo* hydroxy-3 diméthyl-4,4 bicyclo[3.3.0] octène-2 dicarboxylate-1,2-*cis* de méthyle (**16**) qui, par hydrolyse et estérification par le diazométhane, conduit aussi à **15**. La photolyse sensibilisée de l'oxo-5 diméthyl-6,6 bicyclo[2.2.2] octadiène-2,7 dicarboxylate-2,3 de méthyle (**19**) fournit le diméthyl-4,4 oxo-3 tricyclo[$3.2.1.0^{2.8}$] octène-6 dicarboxylate-1,8 de méthyle (**20**) qui, par réduction par le lithium dans l'ammoniac, conduit au diméthyl-6,6 oxo-7 bicyclo[3.3.0] octène-3 dicarboxylate-1,2*exo* de méthyle (**31**); la conversion de **31** dans son isomère ène-2 (**32**), suivie par une hydrogénation catalytique, conduit à **15** et à son épimère 2-*endo* (**33**).

[Traduit par le journal]

The cedranoid sesquiterpenes are a group of naturally occurring compounds and their congeners that have the tricyclo[5.3.1.0^{1.5}]undecane skeleton, of which the simplest members are α -cedrene (1) and cedrol (2) (2).² A variety of more highly oxygenated compounds have also been isolated, such as laccishellolic acid (3) (4) and shellolic acid (4) (5).

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV OF MANCHESTER on 11/21/14 For personal use only.

1

3

Several total syntheses of compounds 1 and 2 have been achieved (6, 7), but none of compounds 3 and 4. We have recently designed a new synthesis of (\pm) -cedrol (2) that it was hoped could subsequently be elaborated to provide syntheses of the more highly oxygenated cedranoid sesquiterpenes, including 3 and 4 (1, 8). This synthesis (Scheme 1)

¹For a preliminary account of part of this work, see ref. 1.

²At least four systems of numbering of the cedrene skeleton have been used; that in 1 is in accord with the IUPAC rules (3).

has as key steps the photochemical oxa-di- π rearrangement of the bicyclo[2.2.2]octenone 5 to the tricyclo[3.2.1.0^{2,8}]octanone 6 and reaction of lithium dimethylcuprate with the latter to give the homoconjugate addition product 7 [cf. ref. 9]. The bicyclo[3.3.0]octanone 7 was converted in five steps to the β -diketone 8, which had earlier been prepared by Stork and Clarke by a different route and transformed into cedrol (2) (6). The desired elaboration of this approach requires the incorporation of oxygenated functions at C-12 and C-14 in 8 and appropriate manipulations of the ketonic functions at C-8 and C-10. We report now on progress

0008-4042/82/070825-10\$01.00/0 ©1982 National Research Council of Canada/Conseil national de recherches du Canada towards the attainment of the first of these objectives.

With the intention of introducing a latent carboxylic acid group in place of the C-12 methyl group of 8, we first attempted to effect the homoconjugate addition of a vinyl group to 6 by treatment with lithium divinylcuprate reagents. However, the use of a large variety of reagents and conditions that had previously been used for the conjugate addition of a vinyl group to α , β -unsaturated carbonyl compounds (see Experimental) failed to effect homoconjugate addition.³ Nor could such addition be effected with lithium diisobutylhex-1envlmethylalanate (12) or with the potassium or thallous derivatives of diethyl malonate (9, 13). Attempted homoconjugate addition of an allyl group with allytrimethylsilane and titanium tetrachloride (14) led instead to homoconjugate addition of chloride ion to give 9, which showed the typical strong ir bands at 6.06 and 6.21 μ m of the enolized β -keto ester system of homoconjugate addition products from 6. We subsequently found that the same product is formed in the presence of titanium tetrachloride alone. The failure to add an allyl group indicates that, while the ethylenic bond of allyltrimethylsilane may be relatively nucleophilic (15), chloride ion is a much better nucleophile under the conditions used. It is possible that in the case of conjugate addition to α,β -unsaturated ketones (14), conjugate addition of chloride also occurs, but is reversible.

The recent report (16*a*; see, however, ref. 16*b*) of the homoconjugate addition of Grignard reagents to spiroactivated cyclopropane rings (9) led us to investigate the reaction of 6 with phenylethynyl-magnesium bromide in ether. At 2°C a voluminous white precipitate formed immediately and work-up gave two products in approximately equal amounts. When the reaction was conducted at -75° C for 9 hours and then at 2°C for 11 hours, one of these products was formed almost exclusively. This was

shown to be a homoconjugate addition product by strong bands in its ir spectrum at 6.06 and 6.19 µm (vide supra) and identified as the hydrogen bromide adduct 10. It was prepared independently by treatment of 6 with hydrogen bromide in dichloromethane. While the other product was not fully characterized, it is tentatively assigned structure 11a or 11b on the basis of the of the following spectroscopic data and mechanistic considerations. Its ir spectrum with a single band in the carbonylstretching region at 5.79 µm suggested that opening of the cyclopropane ring had not occurred; this spectrum also showed a band at 3.07 µm attributable to a strongly hydrogen-bonded hydroxyl group. Its ¹H nmr spectrum showed that only one methyl ester group remained (δ 3.67 ppm (s, 3H)) and that two phenyl groups had been incorporated into the molecule. We suggest that the keto and C-1 ester groups or the two ester groups of 6 act as a powerful bidentate ligand and that the precipitate is a magnesium bromide complex of 6 or 10, either of which could lead to 10 on work-up. As in the precipitation of magnesium bromide from Grignard reagents by dioxane (17), bis(phenylethynyl)magnesium remains in solution and reacts with uncomplexed 6 at 2° C, but not at -75° C. Weight is lent to these suppositions by the observation that treatment of 6 with a solution of bis(phenylethynyl)magnesium, prepared by the addition of dioxane to a solution of phenylethynylmagnesium bromide, at 4°C gives exclusively 11a (or 11b).

Eventually success was achieved in the introduction of a carboxylic acid function into 6 by the route shown in Scheme 2. Reaction with lithium diphenylcuprate led to homoconjugate addition of a phenyl group to give 12, whose ir spectrum showed strong bands at 6.09 and 6.25 µm. Life was still not without its complications, however, since the ¹H nmr spectrum of this product showed that it was a $\sim 2:1$ mixture of the methyl and ethyl esters 12aand 12b (see Experimental). The ethyl ester 12b is considered to be formed by exchange of ethoxide for methoxide in the C-2 ester group of 12a; the ethoxide ion most probably has its origin in a slow reaction of phenyllithium with ether, for the phenyllithium was obtained commercially as a solution in ether and benzene (30:70).⁴ It is of interest that although reaction of 6 with lithium dimethylcuprate gives, together with the homoconjugate product. small amounts of two stereoisomeric bicyclo-[3.2.1]octan-3-ones formed by reduction (8), there

826

³In the course of other work (10) it has recently been observed that lithium divinylcuprate reagents fail to effect conjugate addition of a vinyl group to cholest-4-en-3-one, although this compound undergoes conjugate addition with lithium dimethyland diethylcuprate (11).

⁴Compare the slow reaction of *n*-butyllithium with tetrahydrofuran to give butane, ethylene, and the lithium enolate of acetaldehyde (18).

YATES AND STEVENS

was no evidence for the formation of reduction products in the case of its reaction with lithium diphenylcuprate; this was unexpected since the two cuprates have similar reactivities towards α , β -unsaturated ketones (19). Attempts to separate 12a and 12b were unsuccessful and the mixture was therefore subjected to monodecarboalkoxylation with sodium chloride in aqueous dimethyl sulfoxide (20) to give the single product 13. This showed in its ir spectrum a single band in the carbonylstretching region at 5.80 μ m as expected. Its ¹H nmr spectrum showed two one-proton doublets (J = 19 Hz) at δ 2.46 and 3.60 ppm, characteristic of the C-2 protons in this system (cf. the corresponding decarbomethoxylation product from 7: δ 2.09 (d, 1H) and 3.35 ppm (d, 1H) (J = 20 Hz); the signal of the methyl ester protons appears at δ 3.21 ppm as a result of shielding of these protons by the phenyl group. This shielding is in accord with the exo configuration assigned at C-8 in 12 and 13, which is also based on analogy with the configuration established at this carbon in 7 (8). Ozonolysis of 13 in aqueous acetic acid followed by oxidative work-up (cf. ref. 21) gave the carboxylic acid 14, which was characterized as the diester 15. The ir spectrum of this had a single peak in the carbonylstretching region at 5.78 µm, and its ¹H nmr spectrum included two three-proton singlets at δ 3.67 and 3.71 ppm and two one-proton doublets at δ 2.34 and 3.62 ppm (J = 19 Hz). The exo configuration of 14 and 15 at C-2 follows from their formation from 13 and is corroborated by the synthesis of the C-2 epimer of 15 (vide infra).

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV OF MANCHESTER on 11/21/14 For personal use only.

A second route from 6 to 15 is shown in Scheme 3; this process involved homoconjugate addition to 6 and proceeded more expeditiously and in better yield than by the route of Scheme 2. Reaction of 6 with diethylaluminum cyanide in toluene gave the nitrile 16 (cf. ref. 22). The introduction of a nitrile group into the product was signalled by a band at

4.46 μ m in its ir spectrum and a singlet at δ 120.0 ppm in its sford ¹³C nmr spectrum. The presence of the enolized β -keto ester was vouchsafed by strong bands at 6.01 and 6.17 μ m in their spectrum of the product and a one-proton singlet at δ 10.52 ppm in its ¹H nmr spectrum. Attempts to convert 16 directly to 15 led to complex mixtures of products, and this transformation was therefore carried out in two steps. Decarboxylation as before gave 17 and treatment of this with boiling methanol containing sulfuric acid (cf. ref. 23) gave 15 as the major product, identical with the product obtained by the route in Scheme 2. A minor product was also formed in this reaction and is assigned structure 18 on the basis of its origin and its spectra. Its ir spectrum showed bands at 5.62 (m) and 5.79 (s) μ m assigned to the carbonyl-stretching vibrations of the five-membered cyclic imide and five-membered cyclic ketonic groups together with an N-H stretching band at 3.02 µm. Its ¹H nmr spectrum showed two one-proton doublets at δ 2.38 and 3.22 ppm (J = 19 Hz) indicating that the bicyclo[3.3.0]octan-3-one system was intact, and a broad oneproton singlet at δ 8.69 ppm (absent after D₂O treatment) confirming the presence of an NH group; this spectrum also revealed the absence of methoxyl protons. The conversion of 17 to 15 and 18 most probably occurs by the pathways shown in Scheme 4 (cf. ref. 24).

A third approach to 15 was undertaken in an entirely different fashion.⁵ Irradiation of the dienone 19, the precursor of 5 (8), with acetophenone as photosensitizer gave one major and two minor products (Scheme 5). The major product was identified by its spectra and further transformations (*vide infra*) as the di- π -methane rearrangement product 20. Its ir spectrum showed a single band in the carbonyl-stretching region at 5.77 µm. Its ¹H

⁵We thank Miss Shirley Stiver for suggesting this route.

CAN. J. CHEM. VOL. 60, 1982

SCHEME 4 ($E = CO_2Me$)

nmr spectrum (in deuteriochloroform) showed two two-proton multiplets at δ 3.5–3.7 and 5.7–6.0 ppm; the former is assigned to the C-2 and C-5 protons, and the latter to the olefinic protons. In

benzene-deuteriochloroform the higher field multiplet was resolved into a one-proton singlet at δ 3.62 ppm, assigned to the C-2 proton, and a one-proton doublet at δ 3.38 ppm (J = 2.5 Hz), assigned to the C-5 proton; the lower field multiplet was resolved into a one-proton doublet at δ 5.74 ppm (J = 5.5 Hz), assigned to C-7 and a one-proton doublet of doublets at δ 5.51 ppm (J = 5.5, 2.5 Hz), assigned to C-6. The observed coupling constants are in excellent agreement with those observed for a C-3 methylene analogue of 20 (25). One of the minor products is considered to arise by an oxa-di- π -methane rearrangement in analogous fashion to the formation of 6 and to have structure 21. Its ir and ¹H nmr spectra were similar to those of 20, the latter spectrum (in deuteriochloroform) showing two two-proton multiplets at δ 3.4–3.7 ppm and

828

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV OF MANCHESTER on 11/21/14 For personal use only.

5.6–5.95 ppm.⁶ We shall return subsequently to the proposed structure **22** of the other minor product.

Compound 19 is capable of giving four different di- π -methane rearrangement products, 20 and 24–26 (Schemes 6 and 7), and two different oxa-di- π -methane rearrangement products, 21 and 28 (Schemes 8 and 9) (26).

The preference of bicyclo[2.2.2]octadienone derivatives to undergo di- π -methane rather than oxa-di- π -methane rearrangements has been observed previously, but there has been little discussion concerning its origin. The suggestion has been made that this is due to preemptive homoconjugation of the diene moiety, based on the observation

that the $n \to \pi^*$ absorption band of **29** is lower in intensity than that of 30 (27). It may be noted that benzobicyclo[2.2.2]octadienone derivatives, which the homoconjugate interaction between the aromatic π system and the olefinic double bond is expected to be reduced relative to that in bicyclo[2.2.2] octadienone derivatives without the benzene ring, undergo oxa-di- π -methane rearrangement on triplet-sensitized irradiation (28). The regioselectivity of both the di- π -methane rearrangement of 19 leading to 20 and its oxa-di- π methane rearrangement leading to the minor product 21 may be interpreted in terms of the greater stabilization of diradicals 23 (Scheme 6) and 27 (Scheme 8) relative to the related diradicals that lead to other di- π -methane and oxa-di- π -methane rearrangement products, respectively. Similar directing influences have been proposed to account for the observed regioselectivity in di- π -methane rearrangements of 5,6-benzo-2-azabicyclo[2.2.2]-5,7-dien-3-one derivatives (29; cf. also ref. 25).

The spectra of the other minor product did not correspond with expectation for any of the other possible primary products 24-26 and 28. Its ir spectrum showed bands at 5.81 (s) and 6.19 (w) μ m suggestive of an α,β -unsaturated carbonyl group. Its ¹H nmr spectrum showed a one-proton doublet (J = 2.5 Hz) at δ 6.83 ppm: this proton is coupled with a proton that gives rise to a doublet of doublets at δ 2.99 ppm (J = 2.5, 7.5 Hz), which is also coupled with a proton giving rise to a doublet at δ 2.69 ppm (J = 7.5 Hz); in addition a one-proton singlet appeared at δ 4.29 ppm. On the basis of these data this product is considered to have structure 22, with assignment of the proton signals referred to above to the C-3, C-2, C-1, and C-5

protons, respectively. This product may arise from a secondary photochemical reaction of the primary product **20** as shown in Scheme 10. A closely related thermal transformation has been reported (30).

We return now to the conversion of 20 to 15. This was effected by the route shown in Scheme 11. Reduction with lithium in liquid ammonia and ether cleaved the C-1—C-2 bond to give 31; the crude product was oxidized with sodium dichromate and sulfuric acid since some reduction of the ketonic group also occurred. The product was obtained as a single epimer at C-2, which is considered to be the

⁶This structure is preferred over structure **25** (vide infra), because the latter would be expected to give rise in its ¹H nmr spectrum to C-2 and C-5 proton signals with more widely separated chemical shifts, with the C-2 proton signal at higher field and the C-5 proton signal at lower field.

more stable *exo* epimer **31**. Its ir spectrum showed a carbonyl-stretching band at 5.78 μ m and its ¹H nmr spectrum showed two one-proton doublets (J = 18.5 Hz) at δ 2.20 and 3.02 ppm, characteristic of the C-8 protons in this system, and a two-proton multiplet at δ 5.8 ppm arising from the olefinic protons. Treatment of **31** with methanolic sodium methoxide gave the isomeric α , β -unsaturated ester **32**, whose ir spectrum included a strong band at

5.83 μ m and a weak band at 6.13 μ m. Its ¹H nmr spectrum showed a one-proton triplet (J = 2 Hz) at δ 6.89 ppm, assigned to the C-3 proton. Catalytic hydrogenation of 32 over palladium/carbon in methanol at atmospheric pressure gave exclusively 15, identical with the diester obtained by the routes in Schemes 2 and 3. Hydrogenation over platinum in cyclohexane gave mixtures of 15 and a new compound, assigned the C-2 epimeric structure 33.7 The reaction was exceedingly capricious and the product mixture had variable ratios of 33 and 15, ranging up to 19:1. The ir and ¹H nmr spectra of the two epimers were very similar; a critical difference in the latter spectra was that in the spectrum of 33 the lower field doublet of the two one-proton doublets (J = 19 Hz) at δ 2.14 and 3.18 ppm arising from the C-8 protons exhibited a further small coupling $(J \sim 1 \text{ Hz})$. This signal is assigned to the exo C-8 proton and the additional coupling is attributed to 4J long range coupling with the proton at C-2. Examination of molecular models shows that the "W" relationship between the exo C-8 and C-2 protons required for such 4J coupling (31) is possible only if the C-2 proton has the exo configuration, i.e., the ester group at C-2 has the endo configuration. Molecular models also show that delivery of hydrogen to 32 would be expected to occur from the less hindered exo face, leading to 33. The exclusive formation of 15 in some cases and its formation in variable amounts in others may be due to epimerization of 33 by adventitious acid or base or by the catalyst itself (32).

We have thus attained our objective of functionalization of the carbon designed to become exoC-12 in the cedranoid sesquiterpenes by three different methods. The last method has provided in

⁷This product was not entirely freed of **15** and was obtained as a solid with a wide melting range.

addition a potential route to *endo* C-12 functionalized cedranoid sesquiterpenes, which also have been obtained from natural sources.

Experimental

Melting points were determined on a Fisher–Johns apparatus and are uncorrected. The ir spectra were taken in CHCl₃ solution and the ¹H and ¹³C nmr spectra in CDCl₃ solution. Analytical thin layer chromatography was carried out on 0.25 mm silica gel Q6-F plates from Quantum Industries. Preparative thin layer chromatography was carried out on 20 × 20 cm plates coated with 0.5 mm, 1 mm, or 2 mm silica gel layers (Merck Kieselgel 60 PF₂₅₄ containing gypsum). Medium pressure liquid chromatography was carried out on a Merck silica gel 60 prepacked column (Size B) operated at a pressure of ~5 psi. Solutions were dried over magnesium sulfate and concentrated on a Büchi "Rotovapor < R >" rotary evaporator under water aspirator pressure. Solvents used for work-ups and chromatography were either distilled or were of ACS Reagent Grade quality.

Attempted homoconjugate addition of an alkenyl group to

dimethyl 6,6-dimethyl-7-oxotricyclo[3.2.1.0^{2,8}]octane-1,8dicarboxylate (6)⁸

(i). With lithium divinylcuprate reagents

A solution of vinyllithium in tetrahydrofuran (THF) (1.56 M); 0.70 mL, 1.09 mmol) was added to a cold (-45°C), stirred slurry of cuprous iodide (109 mg, 0.57 mmol) in ether (4 mL) containing isopropyl sulfide (260 µl, 212 mg, 1.79 mmol) under argon (33) The mixture was warmed to -15°C to -20°C for 15 min, and then rapidly cooled to -75°C, producing a light grey-green solution containing some black solid. A solution of 6 (8) (99 mg, 0.37 mmol) in ether (1 mL) was added. The mixture was stirred at -75°C for 10 min and at 4°C overnight, and then 50% saturated aqueous NH₄Cl (10 mL) was added. The layers were separated, and the aqueous phase was extracted with ether (2 × 10 mL). The combined organic solutions were washed with saturated aqueous NH₄Cl (10 mL), dried, and concentrated to give a yellow oil (68 mg). No vinyl proton signals were apparent in the 1H nmr spectrum of this material, which consisted mostly of unconsumed 6. Attempted reaction in tetrahydrofuran produced the same result.

The following reagents (34) also failed to effect homoconjugate addition of a vinyl group to 6: LiCu(CH=CH₂) in ether or THF, LiCu(CH=CH₂)₂ in ether or THF/(CH₃)₂S, LiCu-(CH=CH₂)₂ in ether/(n-C₄H₉)₃P, LiCu(CH=CH₂)₂·P(n-C₄H₉)₃ in ether or THF/pentane, LiCu[C=CC(CH₃)₂OCH₃](CH= CH₂) in ether or THF, LiCu[C=CCH₂N(CH₃)₂](CH=CH₂) in triethylamine, LiCu(CH₃)(CH=CH₂) in ether or THF, CH₂= CHMgBr/CuI in THF, (CH₂=CH)₄(CH₃)Cu₃Mg₂Br₂ in THF.

(ii). With lithium diisobutylhex-1-enylmethylalanate

A solution of diisobutylaluminum hydride in toluene (25% by weight; 265 μ L, 0.42 mmol) was added to a stirred solution of 1-hexyne (48 μ L, 34 mg, 0.41 mmol) in toluene (5.0 mL) under nitrogen at room temperature. The resulting solution was warmed to 40–60°C for 45 min and then cooled to 0°C. A solution of methyllithium – lithium bromide complex in ether (1.33 *M*; 310 μ L, 0.41 mmol) was added, producing a white gelatinous precipitate and a colorless solution. The mixture was stirred at 0°C for 20 min and was then allowed to warm to room temperature. A solution of 6 (100 mg, 0.38 mmol) in toluene (10 mL) was added, and the mixture was stirred at room temperature for 22 h. Ice (~15 g) was added, followed by aqueous 10% HC1 (10 mL). The mixture was stirred for 1 h, the layers were

⁸These experiments were conducted under rigorously anhydrous conditions under a positive pressure of argon or nitrogen.

separated, and the aqueous phase was extracted with ether $(2 \times 10 \text{ mL})$. The organic phases were combined, washed with saturated aqueous NaCl (10 mL), dried, and concentrated to give a yellow oil (97 mg), which was found to be **6** almost exclusively.

Reaction of 6 with titanium tetrachloride. Formation of

dimethyl exo-8-chloro-3-hydroxy-4,4-dimethyl-cisbicyclo [3.3.0]oct-2-ene-1,2-dicarboxylate (9)⁸

Titanium tetrachloride (100 μ L, 0.91 mmol) was added to a stirred solution of 6 (202 mg, 0.76 mmol) in dichloromethane (4.0 mL) under nitrogen. The solution was stirred for 30 min, remaining homogeneous but gradually turning deep red. Saturated aqueous NH₄Cl (10 mL) was added, and the resulting mixture was extracted with ether (2 × 10 mL). The combined ethereal extracts were dried and concentrated to give 9 (212 mg, 0.70 mmol, 92%) as a pale yellow powder. Crystallization from pentanes gave large, white crystals, mp 102–104°C; ir λ_{max} : 5.80, 6.06, 6.21 μ m; 'H nmr & 1.08 (s, 3H), 1.12 (s, 3H), 1.2–2.3 (m, 4H), 2.7–3.1 (m, 1H), 3.65 (s, 3H), 3.75 (s, 3H), 4.2–4.5 (m, 1H), 11.93 (s, 1H); ms *m/e*: 304 (3), 303 (*M* + 1; 3), 302 (8). *Anal.* calcd. for C₁₄H₁₉O₅Cl: C 55.54, H6.33, Cl 11.71; found: C 55.70, H 6.44, Cl 11.72.

Treatment of 6 with allyltrimethylsilane and titanium tetrachloride in dichloromethane (14) gave 9 in good yield as the only product.

Reaction of 6 with phenylethynylmagnesium bromide. Formation of 10 and 11a or 11b⁸

A solution of ethylmagnesium bromide in ether $(1.75 M; 240 \mu L, 0.42 \text{ mmol})$ was added to a stirred solution of phenylacetylene (46 μ L, 0.42 mmol) in ether (2.0 mL) under nitrogen. The clear homogeneous solution was stirred at room temperature for 30 min and then cooled to 2°C. A solution of 6 (100 mg, 0.38 mmol) in ether (1.0 mL) was added, producing a large amount of white precipitate. The mixture was stirred for 1 h at 2°C, after which aqueous 10% HCl (10 mL) was added. The resulting mixture was shaken with ether (20 mL), and the ethereal layer was washed with saturated aqueous NaCl (10 mL), dried, and concentrated to give a yellow oil (122 mg). The ¹H nmr spectrum of this oil showed it to contain phenylacetylene and a ~1:1 mixture of 10 and 11a or 11b (vide infra).

Reaction of 6 with hydrogen bromide. Formation of dimethyl exo-8-bromo-3-hydroxy-4,4-dimethyl-cis-bicyclo[3.3.0]oct-2-ene-1,2-dicarboxylate (10)

Anhydrous hydrogen bromide was bubbled slowly into a cold (0°C), stirred solution of 6 (419 mg, 1.58 mmol) in dichloromethane (20 mL). After 2.5 h analytical thin layer chromatography indicated that no 6 remained. The solution was poured onto ice $(\sim 40 \text{ g})$. When all the ice had melted the layers were separated, and the aqueous phase was extracted with dichloromethane (2 \times 10 mL). The combined organic solutions were washed with water (10 mL), saturated aqueous NaHCO₃ (10 mL), and saturated aqueous NaCl (10 mL). They were dried and concentrated to give a white powder (508 mg). Crystallization from pentanes - ethyl acetate (2:1 v/v) gave 10 (397 mg, 1.14 mmol, 72%) as white crystals, mp 112.5–115.5°C; ir λ_{max} : 5.80, 6.06, 6.19 μm; ¹H nmr δ: 1.12 (s, 3H), 1.16 (s, 3H), 1.3–2.5 (m, 4H), 2.75-3.15 (m, 1H), 3.74 (s, 3H), 3.83 (s, 3H), 4.25-4.60 (m, 1H), 11.02 (s, 1H); ¹³C nmr δ: 19.9 (q), 27.4 (t), 27.9 (q), 38.1 (t), 44.3 (s), 51.3 (q), 52.0 (q), 55.1 (d), 56.6 (d), 65.3 (s), 99.4 (s), 170.8 (s), 173.7 (s), 182.4 (s); ms m/e: 348 (1), 346 (1). Anal. calcd. for $C_{14}H_{19}O_5Br$: C 48.43, H 5.52, Br 23.01; found: C 48.41, H 5.52, Br 23.01.

Reaction of 6 with bis(phenylethynyl)magnesium. Formation of 11a or 11b⁸

Dioxane (0.8 mL, 9.38 mmol) was added to a solution of phenylethynylmagnesium bromide prepared by the reaction of a

solution of ethylmagnesium bromide in ether (0.81 M; 11.2 mL, 9.07 mmol) with a solution of phenylacetylene (1.0 mL, 9.11 mmol) in ether (20 mL) under nitrogen. After 30 min the mixture was filtered under nitrogen through a sintered glass frit. The filtrate was titrated as 0.09 M in bis(phenylethynyl)magnesium.

A solution of 6 (50 mg, 0.19 mmol) was added with stirring to this solution (2.5 mL, 0.23 mmol), cooled to 4°C under nitrogen. After 4 h aqueous 10% HCl (10 mL) was added, and the resulting mixture was washed with ether (20 mL). The organic layer was washed with saturated aqueous NaCl (10 mL), dried, and concentrated to give a yellow oil (65 mg). This contained only a small amount of phenylacetylene, little or no 6, and a single major product tentatively identified as 11*a* or 11*b*; ir λ_{max} : 3.07 (m), 5.79 µm; ¹H nmr δ : 0.94 (s, 3H), 1.39 (s, 3H), 3.67 (s, 3H), 6.85–7.64 (m, > 10H).

Methyl 4,4-dimethyl-3-oxo-exo-8-phenyl-cis-bicyclo [3.3.0]octane-1-carboxylate (13)

A solution of phenyllithium in ether-benzene (30:70 v/v) (1.9 M; 12.0 mL, 22.8 mmol) was added over ~ 20 min to a cold (5°C), stirred slurry of cuprous iodide (2.18g, 11.4 mmol) in ether (20 mL) under argon.⁸ Stirring for 1h at 0-5°C gave a homogeneous dark green solution of lithium diphenylcuprate. A solution of 6 (1.00 g, 3.76 mmol) in ether (15 mL) was added and stirring was continued for 4h. Aqueous 10% HCl (25 mL) was added to the cold solution, and the resulting mixture was stirred for a further 30 min and then suction-filtered. The layers of the filtrate were separated and the aqueous phase was extracted with ether $(3 \times 10 \text{ mL})$. The organic phases were combined and washed with saturated aqueous NaHCO₃ (10 mL), 1 M aqueous Na₂S₂O₃ (10 mL), and saturated aqueous NH₄Cl (10 mL) made slightly basic by the addition of concentrated aqueous NH₃. The organic solution was dried and concentrated to give a yellow oil (1.76g). The ¹H nmr spectrum of this material included two singlets at δ 11.2 and 11.4 ppm, in a ratio of ~2:1, which are assigned to the enolic protons of 12a and 12b, respectively. This spectrum also showed a singlet at δ 3.18 ppm, assigned to the C-1 carbomethoxy groups of both 12a and 12b, a singlet at δ 3.78 ppm, assigned to the C-2 carbomethoxy group of 12a, and a quartet (J = 7 Hz) at δ 4.25 ppm, assigned to the carboethoxy group of 12b. The ir spectrum of this crude product showed strong bands at 5.83, 6.09, and 6.25 µm.

This material was stirred and heated (96°C) in dimethyl sulfoxide (8 mL) containing water (500 μ L, ~27.8 mmol) and sodium chloride (413 mg, 7.1 mmol) for 6h. The mixture was allowed to cool to room temperature and was then diluted with water (20 mL). The resulting solution was extracted with ether $(4 \times 10 \text{ mL})$. The ethereal extracts were combined, washed with water (5 \times 10 mL), dried, and concentrated to leave a yellow solid (1.22g). Crystallization from ether gave 13 (521 mg); medium pressure liquid chromatography of the mother liquors with hexanes – ethyl acetate (7:1 v/v) as eluent gave a further quantity of 13 (175 mg; total: 696 mg, 2.43 mmol, 65% from 6). Further recrystallizations from 10% ethyl acetate - pentanes gave 13, mp 125–127°C; ir λ_{max} : 5.80 µm; ¹H nmr & 1.02 (s, 3H), 1.08 (s, 3H), 1.2–2.5 (m, 5H), 2.46 (d, J = 19 Hz, 1H), 2.8–3.2 (m, 1H), 3.21 (s, 3H), 3.60 (d, J = 19 Hz, 1H), 7.21 (s, 5H); ¹³C nmr δ: 18.9 (q), 27.3 (q), 29.7 (t), 31.3 (t), 46.4 (t), 49.0 (s), 51.7 (q), 57.2 (s), 57.8 (d), 59.9 (d), 127.0 (d), 127.6 (d), 128.1 (d), 139.6 (s), 175.8 (s), 219.9 (s); ms m/e: 286 (62). Anal. calcd. for C₁₈H₂₂O₃: C 75.50, H 7.74; found: C 75.27, H 7.77.

Dimethyl 6,6-dimethyl-7-oxo-cis-bicyclo[3.3.0]octane-1, exo-2dicarboxylate (15)

Ozonized oxygen was bubbled through a solution of 13 (207 mg, 0.72 mmol) in glacial acetic acid (21.5 mL) and water (3.5 mL) for 3 h at room temperature. The solution eventually acquired a very faint blue color. It was allowed to stand at room

temperature for 2h, treated with 30% hydrogen peroxide (0.5 mL), and then allowed to stand at room temperature overnight. The solvents were removed by distillation (0.5 Torr) at room temperature, and the residue was dissolved in a mixture of ether (20 mL) and ethyl acetate (10 mL). The solution was extracted with saturated aqueous NaHCO₃ (3 \times 10 mL). The basic extracts were combined, and made strongly acidic by the addition of concentrated H₂SO₄, and extracted with ethyl acetate (3×10 mL). The latter extracts were combined, washed with saturated aqueous NaCl, dried, and concentrated to give a colorless oil (130 mg). Molecular distillation (100°C/0.1 Torr) gave 14 (85 mg, 0.33 mol, ~46%) as a colorless oil containing trace impurities; ir λ_{max} : 2.7–4.0 (br), 5.73 μ m; ¹H nmr δ : 1.02 (s, 3H), 1.08 (s, 3H), 1.6–3.0 (m, 6H), 2.35 (d, J = 19.5 Hz, 1H), $3.59 (d, J = 19.5 Hz, 1H), 3.70 (s, 3H), 10.80 (br s, 1H); {}^{13}C nmr$ δ: 19.6 (q), 27.3 (q), 28.9 (t), 29.2 (t), 46.1 (t), 48.6 (s), 52.5 (q), 54.2 (s), 57.5 (d), 58.5 (d), 176.0 (s), 178.5 (s), 220.2 (s).

Ethereal diazomethane was added to a cold (0°C) stirred solution of crude 14 (72 mg, ~0.28 mmol) in methanol (5 mL) until the yellow color of the reagent persisted. The solution was allowed to stand at room temperature until all the diazomethane had evaporated. Concentration of this solution gave 15 (76 mg, ~ 0.28 mmol, $\sim 100\%$). Preparative thin layer chromatography with elution with 2:1 cyclohexane – ethyl acetate (R_f 0.46), followed by sublimation (70°C/0.05 Torr), and crystallization from ethyl acetate - pentanes gave 15 as a white solid, mp 63-65°C; ir λ_{max}: 5.78 μm; ¹H nmr δ: 1.04 (s, 3H), 1.09 (s, 3H), 1.3-2.4 (m, 4H), 2.34 (d, J = 19 Hz, 1H), 2.4-3.0 (m, 2H), 3.62 $(d, J = 19 \text{ Hz}, 1\text{H}), 3.67 (s, 3\text{H}), 3.71 (s, 3\text{H}); {}^{13}\text{C} \text{ nmr} \delta: 19.6 (q),$ 27.3 (q), 29.0 (t), 29.4 (t), 46.2 (t), 48.5 (s), 51.8 (s), 52.4 (q), 54.1 (s), 57.7 (d), 58.4 (d), 172.7 (s), 176.0 (s), 219.6 (s); ms m/e: 268 (13). Anal. calcd. for C₁₄H₂₀O₅: C 62.67, H 7.51; found: C 62.85, H 7.59.

Dimethyl exo-8-cyano-3-hydroxy-4,4-dimethyl-cis-bicyclo-[3.3.0]oct-2-ene-1,2-dicarboxylate (16)⁸

A solution of diethylaluminum cyanide in toluene (1.57 M; 4.8)mL, 7.54 mmol) was added by means of a syringe equipped with a wide bore needle to 6 (995 mg, 3.74 mmol) in a round-bottomed flask equipped with a magnetic stirring bar, septum, and nitrogen inlet. The resulting solution was stirred at room temperature for exactly 2h. It was then poured cautiously into a mixture of aqueous 10% HCl (50 mL) and ice (50g). The resulting mixture was stirred for 1 h and extracted with ether (3 \times 20 mL). The combined organic extracts were washed with saturated aqueous NaCl (10 mL), dried, and concentrated to give a white powder. Crystallization from ethyl acetate gave 16 (609 mg, 2.08 mmol, 56%). Further recrystallization gave white crystals, mp 135–137.5°C; ir λ_{max} : 4.46 (w), 6.01, 6.17 µm; ¹H nmr δ : 1.12 (s, 3H), 1.17 (s, 3H), 1.30–3.05 (m, 6H), 3.79 (s, 3H), 3.83 (s, 3H), 10.52 (s, 1H); ¹³C nmr δ: 19.7 (q), 28.2 (q), 29.1 (t), 32.6 (t), 40.1 (d), 44.4 (s), 51.4 (q), 52.5 (q), 58.6 (d), 61.8 (s), 100.2 (s), 120.0 (s), 169.7 (s), 173.9 (s), 181.0 (s); ms m/e: 294 (M + 1; 7), 293 (9). Anal. calcd. for C15H19O5N: C 61.42, H 6.53, N 4.78; found: C 61.32, H 6.49, N 4.69.

Methyl exo-8-cyano-4,4-dimethyl-3-oxo-cis-bicyclo [3.3.0]octane-1-carboxylate (17)

A mixture of 16 (303 mg, 1.03 mmol) and NaCl (86 mg, 1.47 mmol) in dimethyl sulfoxide containing water (175 μ L, 9.72 mmol) was stirred and heated (94°C) under nitrogen for 5 h. After cooling, the mixture was extracted with ether (30 mL), and the extract was washed with water (4 × 10 mL). The ethereal solution was dried and concentrated. The residual oil was molecularly distilled (107°C/0.025 Torr) to give 17 (166 mg, 0.71 mmol, 69%) as a colorless, viscous oil; ir λ_{max} : 4.46 (w), 5.85 μ m; ¹H nmr & 1.06 (s, 6H), 1.25–2.35 (m, 4H), 2.25 (d, J = 19.5 Hz, 1H), 2.55–3.1 (m, 2H), 3.62 (d, J = 19.5 Hz, 1H), 3.91 (s, 3H);

¹³C nmr δ ; 19.3 (q), 26.9 (q), 29.7 (t), 32.1 (t), 42.0 (d), 45.0 (t), 48.6 (s), 53.2 (q), 55.5 (s), 57.6 (d), 119.1 (s), 174.2 (s), 217.6 (s); ms *m*/*e*: 235 (16). *Anal*. calcd. for C₁₃H₁₇O₃N: C 66.36, H 7.28, N 5.95; found: C 66.18, H 7.19, N 5.97.

98/C

Reaction of 17 with methanol and concentrated sulfuric acid. Formation of 15 and 18

A mixture of 17 (197 mg, 0.84 mmol), methanol (16 mL), and concentrated H₂SO₄ (5.4 mL) was stirred and heated (90°C) for 26h under nitrogen. After the mixture had cooled to room temperature, water (20 mL) was added and the methanol was removed by distillation at reduced pressure (15 Torr). The residue was extracted with ether (5 \times 10 mL). The combined ethereal extracts were washed with saturated aqueous NaHCO3 (10 mL) and saturated aqueous NaCl (10 mL), dried, and concentrated to give a colorless oil (136 mg). Repeated extraction of the aqueous phases with ether gave an additional quantity of crude product (31 mg). Crystallization from a mixture of toluene and pentanes gave crude 18 (19 mg, 0.09 mmol, 11%). Further crystallization gave pure 18, mp 153.5–154.5°C; ir λ_{max} : $3.02 \text{ (m)}, 5.62 \text{ (m)}, 5.79, 7.46 \text{ (m)}, 8.61 \text{ (m)} \mu \text{m}; {}^{1}\text{H} \text{nmr} \delta: 1.06 \text{ (s}, 1.06 \text{ (s})$ 3H), 1.29 (s, 3H), 1.6–2.3 (m, 4H), 2.38 (d, J = 19 Hz, 1H), 2.5-3.1 (m, 2H), 3.22 (d, J = 19 Hz, 1H), 8.69 (br s, 1H); ms m/e:221 (45). Mol. Wt. calcd. for C12H15O3N: 221.1052; found (ms): 221.1048.

Concentration of the original mother liquor followed by molecular distillation (90°C/0.05 Torr) gave 15 (92 mg, 0.34 mmol, 41%), mp 63-65°C, whose spectra were identical with those of the sample of 15 prepared from 13 (vide supra).

Sensitized photolysis of **19**. Formation of dimethyl 4,4-dimethyl-3-oxotricyclo [3.2.1.0^{2,8} Joct-6-ene-1,8-dicarboxylate (**20**), **21**, and **22**

A solution of 19 (1.10g, 4.17 mmol) in acetophenone (freshly distilled; 110 mL) was degassed with nitrogen for 3 h. The solution was then irradiated in a Rayonet–Srinivasan–Griffin Photochemical Reactor equipped with eleven low pressure 350 nm RPR lamps for 34 h. The solvent was removed by distillation at 0.25 Torr. The oily residue was chromatographed (medium pressure liquid chromatography with hexanes – ethyl acetate (5:1 v/v) as eluent; fraction size ~ 10 mL) to give:

fraction 24 21 (20 mg, 0.08 mmol, 2%) 25 20 and 21

26-30 20 (540 mg, 2.05 mmol, 49%)

31-33 20 and 22

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV OF MANCHESTER on 11/21/14 For personal use only.

34-37 22 (52 mg, 0.20 mmol, 5%)

Samples of compounds 20-22 for analysis were recrystallized from ethyl acetate – hexanes.

Compound **20**, mp 84–85°C; ir λ_{max} : 5.77 µm; ¹H nmr δ : 0.95 (s, 3H), 1.27 (s, 3H), 3.5–3.7 (m, 2H), 3.80 (s, 6H), 5.7–6.0 (m, 2H); δ (C₆H₆/CDCl₃): 0.78 (s, 3H), 1.12 (s, 3H), 3.38 (d, J = 2.5 Hz, 1H), 3.48 and 3.50 (two s, 6H), 3.62 (s, 1H), 5.51 (dd, J = 5.5, 2.5 Hz, 1H), 5.74 (d, J = 5.5 Hz, 1H); ¹³C nmr δ : 17.9 (q), 25.4 (q), 47.7 (d), 52.6 (q), 52.8 (q), 53.7 (s), 56.4 (s), 58.0 (d), 62.6 (s), 127.4 (d), 136.5 (d), 167.1 (s), 168.3 (s), 209.0 (s); ms *m/e*: 264 (5). *Anal*. calcd. for C₁₄H₁₆O₅: C 63.63, H 6.10; found: C 63.50, H 6.25.

Compound **21**, mp 71–72.5°C; ir λ_{max} : 5.76 µm; ¹H nmr δ : 0.97 (s, 3H), 1.35 (s, 3H), 3.4–3.7 (m, 2H), 3.73 (s, 3H), 3.76 (s, 3H), 5.6–5.95 (m, 2H); ¹³C nmr δ : 17.7 (q), 24.8 (q), 46.5 (d), 52.5 (q), 52.9 (q), 56.0 (s), 56.3 (d), 56.5 (s), 64.4 (s), 127.0 (d), 136.7 (d), 165.7 (s), 169.0 (s), 206.1 (s); ms *m/e*: 264 (7). *Anal*. calcd. for C₁₄H₁₆O₅: C 63.63, H 6.10; found: C 63.49, H 6.13.

Compound 22, mp 88.5–89.5°C; ir λ_{max} : 5.75, 5.81, 6.19 (w) μ m; ¹H nmr δ : 1.21 (s, 3H), 1.23 (s, 3H), 2.69 (d, J = 7.5 Hz, 1H), 2.99 (dd, J = 7.5, 2.5 Hz, 1H), 3.74 (s, 3H), 3.76 (s, 3H), 4.29 (s, 1H), 6.83 (d, J = 2.5 Hz, 1H); ¹³C nmr δ : 25.8 (q), 29.2 (q), 43.7

(d), 46.1 (d), 48.4 (s), 50.1 (s), 51.8 (q), 52.1 (q), 57.4 (d), 134.0 (s), 141.7 (d), 161.9 (s), 170.8 (s), 210.0 (s); ms m/e: 264 (1). Anal. calcd. for C₁₄H₁₆O₅: C 63.63, H 6.10; found: C 63.57, H 6.13.

Dimethyl 6,6-dimethyl-7-oxo-cis-bicyclo [3.3.0 Joct-3-ene-

I, exo-2-dicarboxylate (31)8

Lithium wire (37 mg, 5.33 mmol) was added to a stirred solution of 20 (282 mg, 1.07 mmol) in ether (5 mL) and liquid ammonia (10 mL) under nitrogen. After ~40 min, all the lithium appeared to have reacted, and after a further 20 min, solid ammonium chloride was added. The ammonia was allowed to evaporate at room temperature, after which water (10 mL) was added. The phases were separated and the aqueous layer was extracted with ether (3 \times 10 mL). The combined ethereal solutions were washed with saturated aqueous NaCl, dried, and concentrated to leave a colorless oil (217 mg). This was dissolved in benzene (5 mL), and the solution was stirred for 6 h with 10 mL of a solution of sodium dichromate dihydrate (1.2 g, 4.03 mmol) in acetic acid (5 mL), concentrated H₂SO₄ (6 mL), and water (19 mL). The phases were separated and the aqueous phase was extracted with ether (3 \times 10 mL). The combined organic solutions were washed with water (10 mL), saturated aqueous NaHCO₃ (2×10 mL), and saturated aqueous NaCl (10 mL), dried, and concentrated to give 31 (92 mg, 0.35 mmol, 33%) as a colorless oil, which crystallized on standing. Recrystallization from ethyl acetate - hexanes gave white crystals, mp 72–73°C; ir λ_{max} ; 5.78 µm; ¹H nmr δ : 1.06 (s, 3H), 1.09 (s, 3H), 2.20 (d, J = 18.5 Hz, 1H), 3.02 (d, J = 18.5 Hz, 1H), 3.3–3.5 (m, 1H), 3.69 (s, 3H), 3.81 (s, 3H), 4.3-4.5 (m, 1H), 5.6-6.0 (m, 2H); ¹³C nmr δ: 22.1 (q), 26.3 (q), 41.5 (t), 47.9 (s), 52.0 (q), 52.9 (q), 55.2(s), 58.4(d), 65.2(d), 128.4(d), 131.4(d), 171.6(s), 175.7(s). 218.7 (s); ms m/e: 266 (5). Anal. calcd. for C14H18O5: C 63.15, H 6.81; found: C 62.96, H 6.85.

Dimethyl 6,6-dimethyl-7-oxo-cis-bicyclo[3.3.0]oct-2-ene-1,2dicarboxylate (32)⁸

Compound 31 (68 mg, 0.26 mmol) ws stirred at room temperature under nitrogen for 1 h in a solution prepared by the reaction of sodium (15 mg, 0.65 mg atom) with methanol (2 mL). The resulting solution was poured into water (10 mL), and the mixture was extracted with ether $(3 \times 10 \text{ mL})$. The ethereal extracts were combined, washed with saturated aqueous NaCl (10 mL), dried, and concentrated to give 32 (56 mg, 0.21 mmol, 81%) as a colorless oil, which crystallized on standing. Purification by preparative thin layer chromatography with elution with cyclohexane – ethyl acetate (2:1 v/v) gave 32 (R_f 0.41), which crystallized from ethyl acetate - pentanes (~1:10 v/v) to give white needles, mp 84–85°C; ir λ_{max} : 5.78, 5.83, 6.13 (w) μ m; ¹H nmr δ : 1.06 (s, 3H), 1.11 (s, 3H), 2.39 (d, J = 20 Hz, 1H), 2.4–3.2 (m, 2H), 3.56 (d, J = 20 Hz, 1H), 3.77 (s, 3H), 6.89 (t, J = 2 Hz, 1H); ¹³C nmr δ: 20.6 (q), 26.6 (q), 34.5 (t), 42.9 (t), 48.8 (s), 51.8 (q), 52.9 (q), 57.0 (d), 58.1 (s), 138.8 (s), 145.2 (d), 163.9 (s), 174.5 (s), 219.3 (s); ms m/e: 266 (6). Anal. calcd. for C14H18O5: C 63.14, H 6.81; found: C 62.86, H 6.83.

Catalytic hydrogenation of 32. Formation of dimethyl 6,6dimethyl-7-oxo-cis-bicyclo [3.3.0 Joctane-1-endo-2dicarboxylate (33) and 15

Compound 32 (17 mg, 0.06 mmol) was hydrogenated at atmospheric pressure over platinum (22 mg) in cyclohexane (3 mL) for 3 h at room temperature. The catalyst was filtered off and the filtrate was concentrated to give a colorless oil (9 mg) which solidified on standing. Sublimation (< 90°C/0.1 Torr) gave 33 (8 mg, 0.03 mmol, 50%) as a white solid, which was crystallized from pentanes – ethyl acetate;⁷ ir λ_{max} : 5.78 µm; ¹H nmr δ : 1.03 (s, 3H), 1.06 (s, 3H), 1.5–2.2 (m, 4H), 2.14 (d, J = 19 Hz, 1H), 2.4–3.0 (m, 2H), 3.18 (dd, $J = 19, \sim 1$ Hz, 1H), 3.69 (s, 3H); ms *mle*: 268 (16).

Similar hydrogenation of **32** (12 mg) over 10% palladium/carbon (5.5 mg) in methanol (4 mL) gave a product (11 mg) whose ¹H nmr spectrum showed it to be **15**; the presence of **33** could not be detected.

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada for support of this work and Messrs. Baldev Gambhir and Nick Plavac for assistance in obtaining the ¹³C nmr spectra.

- 1. K. E. STEVENS and P. YATES. J. Chem. Soc. Chem. Commun. 990 (1980).
- G. STORK and R. BRESLOW. J. Am. Chem. Soc. 75, 3291 (1953); P. A. PLATTNER, A. A. ESCHENMOSER, W. KELLER, H. KLÄUI, S. MEYER, and M. ROSNER. Helv. Chim. Acta, 36, 1875 (1953); P. A. PLATTNER, A. FÜRST, S. MEYER, and W. KELLER. Helv. Chim. Acta, 37, 266 (1954); J. SIMONSEN and D. H. R. BARTON. The terpenes. Vol. III. 2nd ed. Cambridge University Press. 1952. pp. 75-88; P. YATES. Structure determination. W. A. Benjamin, New York. 1967. pp. 1-37.
- 3. J. MEINWALD and Y. C. MEINWALD. Adv. Alicyclic Chem. 1, 1 (1966).
- A. N. SINGH, A. B. UPADHYE, M. S. WADIA, V. V. MHASKAR, and SUKH DEV. Tetrahedron, 25, 3855 (1969).
- P. YATES and G. F. FIELD. J. Am. Chem. Soc. 82, 5764 (1960); Tetrahedron, 26, 3135 (1970); P. YATES, P. M. BURKE, and G. F. FIELD. Tetrahedron, 26, 3159 (1970).
- G. STORK and F. H. CLARKE, JR. J. Am. Chem. Soc. 77, 1072 (1955); J. Am. Chem. Soc. 83, 3114 (1961).
- E. J. COREY, N. N. GIROTRA, and C. J. MATHEW. J. Am. Chem. Soc. 91, 1557 (1969); T. G. CRANDALL and R. G. LAWTON, J. Am. Chem. Soc. 91, 2127 (1969); E. DEMOLE, P. ENGGIST, and C. BORER. Helv. Chim. Acta, 54, 1845 (1971); E. J. COREY and R. D. BALANSON. Tetrahedron Lett. 3153 (1973); E. G. BREITHOLLE and A. G. FALLIS. Can. J. Chem. 54, 1991 (1976); J. Org. Chem. 43, 1964 (1978).
- 8. P. YATES and K. E. STEVENS. Tetrahedron. In press.
- 9. S. DANISHEFSKY. Acc. Chem. Res. 12, 66 (1979).
- F. M. WALLISER and P. YATES. J. Chem. Soc. Chem. Commun. 1025 (1979); P. YATES and F. M. WINNIK. Can. J. Chem. 59, 1641 (1981).
- 11. R. E. IRELAND and G. PFISTER. Tetrahedron Lett. 2145 (1969); D. C. MUCHMORE. Org. Synth. 52, 109 (1972); T. AKIYAMA, D. PEDDER, J. V. SILVERTON, J. I. SEEMAN, and H. ZIFFER. J. Org. Chem. 49, 3675 (1975).
- K. F. BERNADY, M. B. FLOYD, J. F. POLETTO, and M. J. WEISS. J. Org. Chem. 44, 1438 (1979); K. F. BERNADY, J. F. POLETTO, and M. J. WEISS. Tetrahedron Lett. 765 (1975).
- M. E. KUEHNE and R. HAFTER. J. Org. Chem. 43, 3702 (1978).
- A. HOSOMI and H. SAKURAI. J. Am. Chem. Soc. 99, 1673 (1977).
- 15. I. FLEMING. Chem. Ind. London, 449 (1975).
- 16. (a) T. LIVINGHOUSE and R. V. STEVENS. J. Chem. Soc.

Chem. Commun. 754 (1978); (b) R. V. STEVENS, G. S. BISSACHI, L. GOLDSMITH, and C. E. STROUSE. J. Org. Chem. 45, 2708 (1980).

- W. SCHLENK and W. SCHLENK, JR. Chem. Ber. 62, 920 (1929); C. R. NOLLER and W. R. WHITE, J. Am. Chem. Soc. 59, 1354 (1937); E. C. ASHBY. Bull. Soc. Chim. Fr. 2133 (1972).
- R. B. BATES, L. M. KROPOSKI, and D. E. POTTER. J. Org. Chem. 37, 560 (1972).
- 19. H. O. HOUSE and J. M. WILKINS. J. Org. Chem. 43, 2443 (1978).
- 20. A. P. KRAPCHO and A. J. LOVEY. Tetrahedron Lett. 957 (1973).
- G. FRONZA, C. FUGANTI, and P. GRASSELLI. Tetrahedron Lett. 2941 (1978); G. CRIEGEE and H. HOVER. Chem. Ber. 93, 2521 (1960).
- 22. W. NAGATA and M. YOSHIOKA. Org. React. 25, 255 (1977).
- R. ADAMS and A. F. THOL. Org. Synth. Coll. Vol. I, 270 (1932); cf. F. L. JAMES and W. H. BRYAN. J. Org. Chem. 23, 1225 (1958).
- 24. P. L. COMPAGNON and M. MIOCQUE. Ann. Chim. Paris, [14] 5, 23 (1970) and references quoted therein.
- 25. R. T. LUIBRAND and E. M. FUJINARI. J. Org. Chem. 45, 958 (1980).
- S. S. HIXSON, P. S. MARIANO, and H. E. ZIMMERMAN. Chem. Rev. 73, 531 (1973); W. G. DAUBEN, G. LODDER, and J. IPAKTSCHI. Topics Curr. Chem. 54, 73 (1975); K. N. HOUK. Chem. Rev. 76, 1 (1976).
- H.-D. BECKER, B. RUGE, B. W. SKELTON, and A. H. WHITE. Aust. J. Chem. 32, 1687 (1979); H.-D. BECKER and B. RUGE. J. Org. Chem. 45, 2189 (1980).
- L. N. DOMELSMITH, P. D. MOLLERE, K. N. HOUK, R. C. HAHN, and R. P. JOHNSON. J. Am. Chem. Soc. 100, 2959 (1978).
- L. A. PAQUETTE and R. H. MEISINGER. Tetrahedron Lett. 1479 (1970); M. KUZUYA, M. ISHIKAWA, T. OKUDA, and H. HART. Tetrahedron Lett. 523 (1979); H. HART and G. M. LOVE. J. Am. Chem. Soc. 95, 4592 (1973).
- H. PRINZBACH, H. HAGEMANN, J. H. HARTENSTEIN, and R. KITZING. Chem. Ber. 98, 2201 (1965).
- 31. M. BARFIELD and B. CHAKRABARTI. Chem. Rev. 69, 757 (1969).
- P. N. RYLANDER. Organic synthesis with noble metal catalysts. Academic Press, New York, NY. 1973. Chapt. 5.
- R. D. CLARK and C. H. HEATHCOCK. Tetrahedron Lett. 1713 (1974).
- H. O. HOUSE, C. CHU, J. M. WILKINS, and M. J. UMEN. J. Org. Chem. 40, 1460 (1975); O. P. VIG, J. C. KAPUR, and S. D. SHARMA. J. Indian Chem. Soc. 45, 734 (1968); E. J. COREY and R. L. CARNEY. J. Am. Chem. Soc. 93, 7318 (1971); R. L. CARGILL, D. F. BUSHEY, P. D. ELLIS, S. WOLFF, and W. C. AGOSTA. J. Org. Chem. 39, 573 (1974); J. HOOZ and R. B. LAYTON. Can. J. Chem. 48, 1626 (1970); E. J. COREY, D. FLOYD, and B. H. LIPSHUTZ. J. Org. Chem. 43, 3418 (1978); D. B. LEDLIE and G. MILLER. J. Org. Chem. 44, 1006 (1979); G. H. POSNER, C. E. WHITTEN, J. J. STERLING, and D. J. BRUNELLE. Tetrahedron Lett. 2591 (1974); P. M. WEGE, R. D. CLARK, and C. H. HEATHCOCK. J. Org. Chem. 41, 3144 (1976); F. LEYENDECKER, J. DROUIN, and J.-M. CONIA. NOUV. J. Chim. 2, 271 (1978).