Transition-metal-catalyzed regioselective aroyl- and trifluoro-acetylthiolation of alkynes using thioesters[†]

Yasunori Minami, Hitoshi Kuniyasu,* Kiyoshi Miyafuji and Nobuaki Kambe*

Received (in Cambridge, UK) 9th January 2009, Accepted 18th March 2009 First published as an Advance Article on the web 9th April 2009 DOI: 10.1039/b900492k

Intermolecular CO-retained carbothiolation of alkynes using thioesters took place to afford β -SR substituted enone derivatives; the choice of catalyst (Pd(dba)₂-dppe) and the introduction of a CF₃ group into the thioesters are the key to achieving the transformation.

The development of efficient transition-metal-catalyzed carbon-heteroatom bond-forming reactions has been one of the most important subjects in synthetic chemistry. An important example would be the addition reactions of carbon-heteroatom bonds across C-C unsaturated bonds that form new carbon-carbon bonds in a single procedure. A wide range of substrates having C-S, C-Se, C-N, C-Si, C-Sn and C-B bonds were employed for this purpose.¹

We have already reported the Pt(PPh₃)₄-catalyzed intermolecular regio- and stereoselective *decarbonylative arylthiolation* and *arylselenation* of alkynes HC \equiv CR (1) by R¹C(O)YR² (2, R¹ = aryl; Y = S, Se) (Scheme 1, left)^{1a,c} to produce vinylsulfides and selenides (3). Disclosed herein are the intermolecular regioselective *aroylthiolation* (R¹ = aryl; Y = S) and *trifluoroacetylthiolation* (R¹ = CF₃; Y = S) of 1 to afford enone derivatives (4) (Scheme 1, right).²

The attempted reaction of 1-octyne (1a; $R = n-C_6H_{13}$, 1.2 mmol) with $Ar^1C(O)SAr^2$ (2a; $Ar^1 = p$ -tolyl, $Ar^2 = p$ -MeOC₆H₄, 1.0 mmol) in the presence of Pd(PPh₃)₄ (0.05 mmol) under toluene reflux gave an aroylthiolation product ($Ar^1C(O)$)(H)C= $C(n-C_6H_{13})(SAr^2)$ (4a) in 10% yield (E/Z = 61/39) together with 50% of an Ar^1SAr^2 (5a)³ and 20% of a hydrothiolation product H₂C= $C(n-C_6H_{13})(SAr^2)$ (6a)⁴ (entry 1, Table 1). The effects of various ligands were examined with Pd(dba)₂ as a palladium(0) source. No reaction occurred without an additional ligand (entry 2, Table 1). The

Scheme 1 Decarbonylative *vs.* CO-retained carbothiolation of alkynes (1) by thioesters (2).

Table 1 The effects of ligands under the Pd-catalyzed reaction of 1a with $2a^{a}$

Entry	Ligand	3a (%)	4a (%) (<i>E</i> / <i>Z</i>)	5a (%)	6a (%)
1	PPh ₃ ^b	n.d.	10 (61/39)	50	20
2	None	n.d.	n.d.	n.d.	n.d.
3	$P(p-tolyl)_3$	n.d.	9 (65/35)	34	22
4	$P(o-tolyl)_3$	n.d.	n.d.	2	n.d.
5	$P(2-furyl)_3$	n.d.	n.d.	8	5
6	PCy ₃	n.d.	1 (100/0)	22	38
7	$P(n-Bu)_3$	n.d.	6 (50/50)	30	22
8	PMe ₂ Ph	n.d.	8 (50/50)	16	16
9	dppm	n.d.	6 (33/67)	17	6
10	dppe	n.d.	53 (67/33)	12	14
11 ^{cde}	dppe	n.d.	78 (61/39) ^f	n.d.	16
12^{cg}	dppe	n.d.	14 (0/100)	n.d.	n.d.
13	dppp	n.d.	16(61/39)	30	25
14	dppb	n.d.	15 (61/39)	36	35
15 ^{hi}	Pt(PPh_)	75 ^f	8 (0/100)	n d	n d

^{*a*} Unless otherwise noted, the solution of **1a** (1.2 mmol), **2a** (1.0 mmol), Pd(dba)₂ (0.05 mmol), and ligand (0.12 mmol for entries 3–8, 0.06 mmol for entries 9–14) was stirred under toluene (0.5 mL) reflux for 12 h. Yields were determined by ¹H NMR spectroscopy. ^{*b*} Pd(PPh₃)₄ (0.05 mmol) as a catalyst. ^{*c*} Under benzene reflux. ^{*d*} 20 h. ^{*e*} The formation of Ar¹C(O)C≡CR was detected in 10% yield. ^{*f*} Isolated yield. ^{*g*} 1 h. ^{*h*} Pt(PPh₃)₄ (0.05 mmol) as a catalyst. ^{*i*} 13 h. dba = dibenzylideneacetone, tolyl = methylphenyl, Cy = cyclohexyl, dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, dppb = 1,4-bis(diphenylphosphino)butane.

reactions using other monodentate ligands such as $P(p-tolyl)_3$, $P(2-furyl)_3$, PCy_3 , $P(n-Bu)_3$ and PMe_2Ph also were not satisfactory: **5a** and **6a** were generated as major products (entries 3–8, Table 1). On the other hand, the reaction with dppe afforded **4a** in 53% (E/Z = 67/33) yield with 12% of **5a** and 14% of **6a** (entry 10, Table 1). Gratifyingly, when the reaction was carried out under benzene reflux, the formation of **5a** was suppressed and **4a** was obtained in 78% yield (E/Z = 61/39) with 10% of $Ar^1C(O)C \equiv CR$ after 20 h (entry 11, Table 1). When conducted for a short period of time (1 h), the reaction selectively provided Z-**4a** (14%), which indicated that *cis*-addition kinetically took place (entry 12, Table 1).^{5,6} The employment of other bidentate ligands such as dppm, dppp and dppb

Department of Applied Chemistry Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan. E-mail: kuni@chem.eng.osaka-u.ac.jp; Fax: +81 6 6879 7390; Tel: +81 6 6879 7389

[†] Electronic supplementary information (ESI) available: Typical experimental procedures, and analytical data for the products. See DOI: 10.1039/b900492k

 Table 2
 Pd-dppe-catalyzed aroylthiolation of 1 by 2^a

	SAr ² cat. Pd(dba) ₂ /dppe	Ar ¹ SAr ²
	benzene, reflux, 20 h	
$\label{eq:action} \begin{array}{l} \textbf{I} = n \cdot C_6 H_{13} \\ \textbf{Ib} \ (R = (CH_2)_4 Cl) \\ \textbf{Ic} \ (R = (CH_2)_3 CN) \\ \textbf{Id} \ (R = (CH_2)_3 CO_2 Me) \end{array}$	1e (R = $CH_2(c \cdot C_5H_9)$) 1f (R = (CH_2) ₂ $CHMe_2$) 1g (R = Ph)	4

Entry	1	2	Ar^1	Ar ²	4	$(\%) (E/Z)^b$
1	1a	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	4a	78 (61/39)
2	1a	2b	<i>p</i> -Tolyl	Ph	4b	53 (72/28)
3	1a	2c	<i>p</i> -Tolyl	p-FC ₆ H ₄	4c	46 (72/28)
4	1a	2d	<i>p</i> -Tolyl	p-NO ₂ C ₆ H ₄	4d	n.d.
5	1a	2e	Ph	Ph	4e	66 (74/26)
6	1a	2f	p-FC ₆ H ₄	p-Tolyl	4f	57 (74/26)
7	1a	2g	3-Pyridyl	<i>p</i> -Tolyl	4g	74 (72/28)
8	1a	2h	2-Furyl	<i>p</i> -Tolyl	4h	55 (75/25)
9	1a	2i	<i>p</i> -Tolyl	CH ₂ Ph	4 i	$10(74/26)^c$
10	1a	2j	t-Bu	p-MeOC ₆ H ₄	4j	n.d.
11	1b	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	4k	70 (67/33)
12	1c	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	41	50 (72/28)
13	1d	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	4m	80 (75/25)
14	1e	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	4n	66 (73/27)
15	1f	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	40	65 (53/47)
16	1g	2a	<i>p</i> -Tolyl	p-MeOC ₆ H ₄	4p	40 (25/75)
17	1a	2k	PhC(O)Sel	Ph	4q	$3(1/>99)^c$
a			0 1) D 1/	11) (0.05 1)		(0.06 1)

^{*a*} **1** (1.2 mmol), **2** (1.0 mmol), Pd(dba)₂ (0.05 mol) and dppe (0.06 mol) under benzene (0.5 mL) reflux for 20 h. ^{*b*} Isolated yield. ^{*c*} NMR yield.

significantly decreased the yield of **4a** (entries 9,13,14, Table 1).⁷ It must be noted that **3a**, the product of $Pt(PPh_3)_4$ -catalyzed decarbonylative arylthiolation (entry 15, Table 1), was not detected under Pd-catalysis (entries 1–14, Table 1). No formation of **4a** was confirmed with $Pt[(CH_2=CHSiMe_2)_2O]$, $Ni(cod)_2$ (cod = cyclooctadiene) or RhCl(cod)_2 in the presence of dppe.

The results of the Pd-dppe-catalyzed aroylthiolation of alkyne (1) by $Ar^{1}C(O)SAr^{2}$ (2) are summarized in Table 2. The reaction with **2a** ($Ar^2 = p$ -MeOC₆H₄) afforded a better yield of desired 4 (78% of 4a, entry 1, Table 2) compared to the reactions with **2b** ($Ar^2 = Ph$, 53% of **4b**, entry 2 Table 2) and 2c (Ar² = p-FC₆H₄, 46% of 4c, entry 3, Table 2). In sharp contrast to the Pt-catalyzed decarbonylative arylthiolation, no reaction took place when a thioester with $Ar^2 = p - NO_2C_6H_4$ (2d) was employed (entry 4, Table 2). Phenyl and p-FC₆H₄ groups at Ar¹ somewhat lowered the reactivity (entries 5-6 Table 2). Thioesters 2g (Ar¹ = 3-pyridyl) and 2h (Ar¹ = 2-furvl) reacted with **1a** to furnish the corresponding adducts 4g and 4h in 74% and 55% yields, respectively (entries 7 and 8, Table 2). On the other hand, a thioester with a benzyl group on sulfur (2i) gave a low yield of 4i (10%, entry 9, Table 2), and the reaction with t-BuC(O)SC₆H₄p-OMe (2j) did not produce 4j (entry 10, Table 2). Terminal alkynes having chlorine (1b), a cyano group (1c), a methoxy carbonyl group (1d), a cyclopentyl group (1e), $(CH_2)_2CHMe_2$ (1f) and a phenyl group (1g) all underwent an aroylthiolation by 2a to afford **4k-p** in moderate to good yields (entries 11–16, Table 2). The reactions of 1a with a selenoester (2k; PhC(O)SePh) took place to provide the aroylselenation product 4q, albeit in a very low yield (entry 17, Table 2).

Next, the reactions with CX_3 -substituted thioesters (7; $CX_3C(O)SAr$) were examined. The treatment of 1-octyne

Table 3Reaction of 1a with $7a^a$

────R R = <i>n</i> -C ₆ H ₁₃ 1a	+ $F_{3}C$ SAr O Ar = p -tolyl 7a	catalyst solvent, reflux 10 h	O R 8a
Entry	Catalyst	Solvent	8a (%) (E/Z)
1 ^b	$Pd(dba)_2-dppe^c$	Benzene	8 $(64/36)^d$
2	$Pd(dba)_2-dppe^c$	Xylene	$15(75/25)^{e}$
3	$Pt(PPh_3)_4$	Xylene	78 (82/18)
4	$Pt(PPh_3)_4$	Benzene	8 (82/18)
5	$Pt(PPh_3)_4$	Toluene	39 (79/21)
6^g	$Pt(PPh_3)_4$	Xylene	15 (41/59)
7	$Pd(PPh_3)_4$	Xylene	$7(72/28)^{h}$
8	$Ni(cod)_2 - PPh_3^i$	Xylene	n.d.

^{*a*} Unless otherwise noted, the solution of **1a** (0.75 mmol), **7a** (0.5 mmol), catalyst (0.025 mol) and solvent (0.5 mL) was stirred under reflux for 10 h. Yields were determined by ¹H NMR spectroscopy. ^{*b*} 20 h. ^{*c*} Pd(dba)₂ (0.025 mmol) and dppe (0.03 mmol). ^{*d*} (CH₃)(*p*-MeC₆H₄S)CC(H)(*n*-C₅H₁₁) (**9a**) was obtained in 16% yield. ^{*e*} **9a** was obtained in 31% yield. ^{*f*} Isolated yield. ^{*g*} 30 min. ^{*h*} **9a** was obtained in 52% yield. ^{*i*} Ni(cod)₂ (0.025 mmol) and PPh₃ (0.1 mmol).

Table 4 Pt-catalyzed trifluoroacetylthiolation of 1 by 7^a

<u> </u>	F ₃ R +	C SR' 0 7	cat. [Pt(PPh ₃) ₄] xylene, reflux 10 h	F ₃ C	R 8
Entry	1	7		8	$(\%) (E/Z)^b$
1	1a	7a (R'	= p-tolyl)	8 a	78 (82/18)
2	1a	7d (R'	$= p - MeOC_6H_4)$	8d	64 (89/11)
3	1a	7e (R'	= Ph)	8e	82 (76/24)
4	1a	7f (R'	$= p - ClC_6H_4$	8f	69 (66/34)
5	1a	7g (R'	$= CH_2Ph)$	8g	51 (70/30)
6	1a	7h (R'	$= n \cdot C_{10} H_{21}$	8 h	41 (82/18)
7^c	1b	7e (R'	= Ph)	8i	83 (71/29)
8^c	1c	7e (R'	= Ph)	8i	79 (71/29)
9^c	1d	7e (R'	$= Ph\hat{)}$	8k	87 (74/26)
10	1e	7e (R'	= Ph)	81	70 (64/36)
a T T 1	.1		1 (0.75 1) =	(0.5	1) D ((DD 1))

^{*a*} Unless otherwise noted, **1** (0.75 mmol), **7** (0.5 mmol), $Pt(PPh_3)_4$ (0.025 mmol), and xylene (0.5 mL) under reflux for 10 h. ^{*b*} Isolated yield. ^{*c*} Xylene (2.0 mL).

(1a, 0.75 mmol) with $CF_3C(O)SC_6H_4p$ -Me (7a; X = F, 0.5 mmol) in the presence of Pd-dppe under benzene and xylene reflux both gave trifluoroacetylthiolation product 8a in low yields; $(CH_3)(p-MeC_6H_4S)C = C(H)(n-C_5H_{11})$ (9a) derived from 6a was generated as a major product (entries 1 and 2, Table 3). Intriguingly, the reaction using $Pt(PPh_3)_4$ as a catalyst under xylene reflux conditions remarkably improved the yield of 8a (78%, E/Z = 82/18),^{8,9} compared to benzene or toluene reflux conditions (entries 3-5, Table 3). Intercepting the reaction at the early stage (E/Z = 41/59 after 30 min) also indicates the involvement of cis-addition (Entry 6). Inferior catalyses were shown by Pd(PPh₃)₄ (entry 7, Table 3) and Ni(cod)₂-4PPh₃ (entry 8, Table 3). On the other hand, the reaction employing $CH_3C(O)SC_6H_4p$ -Me (7b; X = H) and $CCl_3C(O)SC_6H_4p$ -Me (7c; X = Cl) in the presence of $Pt(PPh_3)_4$ hardly produced the corresponding **8b** and **8c**.

Scheme 2 A plausible mechanism for the transition-metal-catalyzed aroyl- and trifluoroacetylthiolation of alkynes (1) by thioesters (2 and 7).

The results of Pt-catalyzed trifluoroacetylthiolation of alkyne (1) by $CF_3C(O)SR'$ are shown in Table 4. Some substituents in aryl-S groups (7d; $R' = p-MeOC_6H_4$, 7e; R' = Ph, 7f; $R' = p-ClC_6H_4$) hardly interfered with the addition reactions (entries 2–4, Table 4). Unlike the case of the reaction with 2, thioesters possessing an sp³-carbon substituent such as benzyl (7g) and *n*-decyl groups (7h) on sulfur also reacted with 1a to produce 8g and 8h in 51% and 41% yields, respectively (entries 5 and 6, Table 4). Addition of 7e to alkynes 1b–1e proceeded to afford the product 8i–1 in good yields (entries 7–10, Table 4). Contrary to the case of Pt-catalyzed decarbonylative carbothiolation, the products of decarbonylative trifluoromethylthiolation were not detected in all cases even with the same catalyst.

A plausible reaction mechanism of the present regioselective CO-retained addition of thioesters (2 or 7; $R^1C(O)SR^2$ $(\mathbf{R}^1 = \text{aryl or } \mathbf{CF}_3))$ to alkynes (1; $\mathbf{HC} \equiv \mathbf{CR})$ was depicted in Scheme 2. The oxidative addition of 2 or 7 to $M(0)L_n$ $(ML_n = Pd(dppe) \text{ or } Pt(PPh_3)_n)$ complex triggers the reaction to afford $ML_n[C(O)R^1](SR^2)$ (10).¹⁰ Subsequent regio- and stereoselective insertion of alkyne 1 into the S-M bond of 10 generates $ML_n[C(O)R^1][(Z)-CH=C(SR^2)(R)]$ (11),¹¹ which can react with another 1 to produce 6 and $Ar^{1}C(O)C \equiv CR$ as by-products. Finally, the C-C bond-forming reductive elimination of Z-4 or Z-8 from 11 with regeneration of $M(0)L_n$ completes the catalytic cycle. Z-to-E isomerisation of the product can be explained as follows: the oxidative addition of a vinyl C–S bond of Z-isomer to a $M(0)L_n$ complex to produce $ML_n[(Z)-C(R)=C(H)\{C(O)R^1\}](SR^2)$ (Z-12),¹² Z-to-E isomerization of 12^{13} and the reductive elimination of E-4 and E-8 from E-12.

In conclusion, the present study substantiated that the decarbonylative arylthiolation of alkynes by thioesters is converted into CO-retained, atom-economical, regioselective carbothiolation simply by changing the catalysts from $Pt(PPh_3)_4$ to $Pd(dba)_2$ -dppe or by employing $CF_3C(O)$ as a carbon functionality of thioesters even under $Pt(PPh_3)_4$ -catalyzed conditions. Our efforts will continue to focus on the extension of the present CO-retained carbothiolation to other addition systems.

Notes and references

1 For a review of carbochalcogenation of alkynes, see: (*a*) H. Kuniyasu and N. Kambe, *Chem. Lett.*, 2006, **35**, 1320; For recent examples, see: (*b*) R. Hua, H. Takeda, S. Onozawa, Y. Abe and M. Tanaka, *Org. Lett.*, 2007, **9**, 263; (*c*) F. Yamashita, H. Kuniyasu, J. Terao and N. Kambe, Org. Lett., 2008, 10, 101; (d) M. Toyofuku, S. Fujiwara, T. Shin-ike, H. Kuniyasu and N. Kambe, J. Am. Chem. Soc., 2008, 130, 10504; (e) V. P. Ananikov, N. V. Orlov, M. A. Kabeshov, I. P. Beletskaya and Z. A. Starikova, Organometallics, 2008, 27, 4056; (f) K. Yamashita, H. Takeda, T. Kashiwabara, R. Hua, S. Shimada and M. Tanaka, Tetrahedron Lett., 2007, 48, 6655; (g) M. Toyofuku, E. Murase, S. Fujiwara, T. Shin-ike, H. Kuniyasu and N. Kambe, Org. Lett., 2008, 10, 3957; (h) Y. Kajita, S. Matsubara and T. Kurahashi, J. Am. Chem. Soc., 2008, 130, 6058; (i) Y. Nakao, J. Satoh, E. Shirakawa and T. Hiyama, Angew. Chem., Int. Ed., 2006, 45, 2271; (j) Y. Shi, S. M. Peterson, W. W. Haberaccker III and S. A. Blum, J. Am. Chem. Soc., 2008, 130, 2168; (k) M. Suginome, A. Yamamoto and M. Murakami, Angew. Chem., Int. Ed., 2005, 44, 2380; (l) M. Suginome, M. Shirakura and A. Yamamoto, J. Am. Chem. Soc., 2006, 128, 14438.

- 2 For related transition-metal-catalyzed CO-retained additions, see: (a) R. Hua, H. Takeda, S. Onozawa, Y. Abe and M. Tanaka, J. Am. Chem. Soc., 2001, **123**, 2899; (b) ref. 1g; (c) T. Kashiwabara, K. Kataoka, R. Hua, S. Shimada and M. Tanaka, Org. Lett., 2005, 7, 2241; (d) R. Hua, S. Onozawa and M. Tanaka, Chem.-Eur. J., 2005, **11**, 3621; (e) T. Kashiwabara, K. Fuse, R. Hua and M. Tanaka, Org. Lett., 2008, **10**, 5469; (f) E. Shirakawa, K. Yamasaki, H. Yoshida and T. Hiyama, J. Am. Chem. Soc., 1999, **121**, 2899.
- For catalytic decarbonylation of thioesters, see: (a) K. Osakada, T. Yamamoto and A. Yamamoto, *Tetrahedron Lett.*, 1987, 28, 6321; (b) T. Kato, H. Kuniyasu, T. Kajiura, Y. Minami, A. Ohtaka, M. Kinomoto, J. Terao, H. Kurosawa and N. Kambe, *Chem. Commun.*, 2006, 868.
- 4 For Pd- and Pt-catalyzed hydrothiolation of alkynes, see: (a) H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Kambe and N. Sonoda, J. Am. Chem. Soc., 1992, 114, 5902; (b) J.-E. Bäckvall and A. Ericcson, J. Org. Chem., 1994, 59, 5850; (c) A. Ogawa, T. Ikeda, K. Kimura and T. Hirao, J. Am. Chem. Soc., 1999, 121, 5108.
- 5 The stereochemistry of *E*-4a and *Z*-4a was determined by NOE experiments between vinyl and allyl protons.
- 6 The treatment of isolated Z-4a with 2a and a catalytic amount of $Pd(dba)_2$ (5 mol%), dppe (6 mol%) and 1.6 equivalents of 1a led to Z-to-*E* isomerization (E/Z = 61/39), while no isomerization took place without 1a under otherwise identical conditions. This result suggests that alkyne-coordinated Pd-complex induce the Z-to-*E* isomerization.
- 7 While Pd(0)-dppp and Pd(0)-dppb catalyzed the decarbonylation of 2a to provide 5a in 12% and 36% yield, respectively, the decarbonylation hardly took place with Pd(0)-dppe (4%). On the other hand, the reaction between *p*-MeC₆H₄I and NaSC₆H₄*p*-OMe catalyzed by Pd(dba)₂ (5 mol%)-dppe (6 mol%) produced 5a in 83% yield. These facts indicated that dppe suppresses the decarbonylation from thiocarbonyl complex, see: G. P. C. M. Dekker, C. J. Elsevier, K. Vrieze and P. W. N. M. Leeuwen, *Organometallics*, 1992, 11, 1598.
- 8 The stereochemistry of *E*-**8a** and *Z*-**8a** was determined by NOE experiments between vinyl and allyl protons, and the regiochemistry of *E*-**8a** was determined by ¹H-¹³C HMBC experiments.
- 9 See the ESI for further details.
- 10 For the oxidative addition of thioesters to platinum(0) complexes, see: Y. Minami, T. Kato, H. Kuniyasu, J. Terao and N. Kambe, Organometallics, 2006, 25, 2949, and references therein.
- For stoichiometric insertion of alkynes into the S-M bond, see:
 (a) K. Sugoh, H. Kuniyasu and H. Kurosawa, *Chem. Lett.*, 2002,
 31, 106; (b) H. Kuniyasu, F. Yamishita, J. Terao and N. Kambe, *Angew. Chem., Int. Ed.*, 2007, 46, 5929; (c) H. Kuniyasu,
 K. Takekawa, F. Yamashita, K. Miyafuji, S. Asano, Y. Takai,
 A. Ohtaka, A. Tanaka, K. Sugoh, H. Kurosawa and N. Kambe, *Organometallics*, 2008, 27, 4788.
- 12 We have reported that an anion stabilizing group on the β-carbon of the C–S bond of vinylsulfide promotes the oxidative addition to Pt(0), see: (a) H. Kuniyasu, A. Ohtaka, T. Nakazono, M. Kinomoto and H. Kurosawa, J. Am. Chem. Soc., 2000, 122, 2375; (b) ref. 1d.
- For isomerization of the alkenyl transition metal complexes, see:
 (a) K. A. Brady and T. A. Nile, J. Organomet. Chem., 1981, 206, 299;
 (b) I. Ojima, N. Clos, R. J. Donovan and P. Ingallina, Organometallics, 1990, 9, 3127;
 (c) M. Murakami, T. Yoshida, S. Kawanami and Y. Ito, J. Am. Chem. Soc., 1995, 117, 6408.