Synthesis, Reactions and Antimicrobial Activity of 2-Cyano-N'-(4-(2-oxo-2phenylethoxy)benzylidene)acetohydrazide Derivatives

Nadia Hanafy Metwally,*¹ Fathy Mohamed Abdelrazek¹, and Salwa Magdy Eldaly¹

¹Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt

*E-mail: nhmmohamed@yahoo.com

ABSTRACT

Knövenagel condensation of the starting 2-cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acetohydrazide with different aromatic aldehydes produced the comparable arylidenes derivatives. Else way, 2-cyano-N'-(4-(2-oxo-2-phenylethoxy)-benzylidene)acetohydrazide condensed with o-hydroxybenzaldehydes affording the respective chromenes which latter underwent acid hydrolysis giving the oxo-chromenes analogues. Moreover, the reaction of 2-cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acetohydrazide with istain yielded the respective indeno[2,1-b] furan derivative that was converted to its oxo-analogue through acid hydrolysis. The treatment of 2-cyano-N'-(4-(2-oxo-2phenylethoxy)benzylidene)acetohydrazide with α -halocompounds produced the relevant 2-cyano-3-(dimethylamino)-N'-(4-(2-oxo-2-The thiazoles. enamine phenylethoxy)benzylidene)acrylohydrazide underwent nucleophilic substitution reaction with guanidine hydrochloride followed by heterocyclization to get the relative aminopyrimidine. Contrarily, the reaction with various 4-arylazo-3,5-diaminopyrazoles provided the relative

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jhet.4084

pyrazolo[1,5-*a*]pyrimidines. The antimicrobial investigation was carried out for some of the newly synthesized compounds using agar well diffusion method.

KEYWORDS: Cyanoacetic hydrazide, Chromenes, Aminopyrazoles, Aminopyrimidines, Pyrazolo[1,5-*a*]pyrimidines.

INTRODUCTION

In the last recent ten years, the research programs are aiming to develop new simple procedures and mechanisms for synthesis of some new heterocyclic ring systems with biological applications from available raw starting materials. Derivatives of cyanoacetic acid hydrazide are considered important intermediates and starting materials in the synthesis of many remarkable heterocyclic ring systems as they are highly reactive and polyfunctional compounds owing to having both nucleophilic and electrophilic. Additionally, they have received an excellent attention as pharmaceutical drugs [1,2] and as antibacterial agents [3]. Also, they are applicable within the industrial field in the production of dyes [4,5] and herbicides [6]. Moreover, a lot of heterocyclic ring systems were prepared through cyanoacetic acid hydrazide like pyrazoles [7,8], thiophenes [9-11], thiazoles [12,13], pyrazolopyrimidines [14], pyrimidines [15,16], pyridines [17-20], and others [21-23].

In the view of these observations and as a part of our ongoing research program aimed to the synthesis of biologically active heterocycles [24-35], we report herein the synthesis of some new heterocyclic compounds depending on 2-cyano-N-(4-(2-oxo-2-phenylethoxy)-benzylidene)acetohydrazide **2** as a starting compound that underwent reactions with usual chemical reagents delivering various species of heterocyclic compounds besides that antimicrobial activity assessment has been performed for some selected compounds as a biological application.

RESULTS AND DISCSSION

Chemistry. The synthesis of 2-cyano-N-(4-(2-oxo-2-phenylethoxy)-benzylidene)acetohydrazide **2** was achieved through the reaction of cyanoacetic acid hydrazide with 4-(2-oxo-2phenylethoxy)benzaldehyde **1** [which is prepared by the reaction of phenacyl bromide with *p*hydroxybenzaldehyde in refluxing dry acetone in the presence of potassium carbonate (Scheme 1)]. The structural formula of compound **2** was approved through spectroscopic data and elemental analyses. In IR spectrum of **2**, absorption bands appeared at v_{max} at 3436, 2261, 1712 and 1675 cm⁻¹ for the amide, cyano and carbonyl groups, respectively. Its ¹H-NMR spectrum showed singlet signals at $\delta = 4.16$ and 5.65 ppm attributed to two CH₂ protons in additionally a D_2O exchangeable signal at $\delta = 11.65$ ppm due to –NH- proton. Also, the ¹³C-NMR spectrum showed characteristic signals at $\delta = 194.1$, 164.5 and 126.6 for two CO and CN groups besides other expected signals. The mass spectrum of compound **2** showed a peak at m/z = 321 (M⁺, 13.7%) which is constituent to a molecular formula C₁₈H₁₅N₃O₃. The elemental analysis was in agreement with the supposed structure of **2**.

Scheme 1. Synthesis of 4-(2-oxo-2-phenylethoxy)benzaldehyde 1 and 2-cyano-*N*'-(4-(2-oxo-2-phenylethoxy)-benzylidene)acetohydrazide 2

Knövenagel condensation reaction between compound **2** and the aromatic aldehydes **3a-g** gave the corresponding arymethylene derivatives **4a-g**. The structural formula of these arylmethylenes **4a-g** was affirmed through the data obtained from the elemental and spectral analyses (Scheme 2). The IR spectrum of **4a** displayed bands at $v_{max} = 3423$, 2200 and 1689 cm⁻¹ due to the NH, CN and CO groups, respectively. In ¹H-NMR spectrum of **4a**, a D_2O exchangeable singlet appeared at $\delta = 10.45$ ppm owing to NH group along with expecting signals for vinylic and aryl protons. Also, characteristic signals at δ (ppm) = 116.6 (CN), 171.1 (CO) and 185.5 (CO) besides other expected signals appeared in the ¹³C-NMR spectrum for **4a**. The MS of **4a** demonstrated peak at m/z = 409 (M⁺, 2.8%) for the molecular formula C₂₅H₁₉N₃O₃ besides other peaks. The IR, ¹H-NMR, ¹³C-NMR and MS data with the elemental analyses supported the proposed structures **4a-g**.

Scheme 2. Synthesis of arylmethylene derivatives 4a-g of 2-cyano-*N*'-(4-(2-oxo-2-phenylethoxy)-benzylidene)acetohydrazide 2

Under the same conditions, brown colored products **7a,b** were obtained through refluxing compound **2** with *o*-hydroxybenzaldehydes **5a,b** in a mixture of absolute ethanol and few drops of piperidine. The imino chromenes **7a,b** were prepared through the non- isolable intermediate **6** that in turn underwent *in situ* heterocyclization to provide the final products (Scheme 3 and see exp.). The IR spectra of **7** revealed the absence of a band near $v_{max} \sim 2180-2300 \text{ cm}^{-1}$ ascribed to a CN function instead it showed the appearance of a band near $v_{max} \sim 3400 \text{ cm}^{-1}$ as a result, of the generation of a new imino group. Also, the IR spectrum of **7a** displayed bands at $v_{max} = 3338$ and 1658 cm⁻¹ equivalent to the NH and CO functions, consequently. The 1H-NMR spectrum of **7a** showed two D_2O exchangeable signals at $\delta = 9.98$ and 12.28 ppm assignable to the NH protons alongside another singlet signal at $\delta = 5.56$ ppm assigned to CH₂ group. In addition to, another expected signals for aryl protons were appeared. The supposed structure of the novel products was determined by the spectroscopic and elemental analyses. The acid hydrolysis of imino chromenes **7a,b** in dioxine/hydrochloric acid solution produced the oxo-analogues **8a,b**. The structure of the newly prepared series were approved by ways of physical properties (TLC and m.p) together with spectroscopic data (¹H-NMR, IR and MS).

Scheme 3. Preparation of chromene derivatives 7a,b and oxo-chromene analogues 8a,b

Furthermore, 2-imino-*N*⁻(4-(2-oxo-2-phenylethoxy)benzylidene)-2*H*-furo[2,3-*b*]indole-3-carbohydrazide **11** was produced from the treatment of compound **2** with isatin under the same reaction conditions (Scheme 4). The expected mechanism was proceeded through initial tautomerism step in the intermediate **9** affording the intermediate **10** that in turn underwent *in situ* heterocyclization to form the final product **11**. Also, the acid hydrolysis of compound **11** in dioxane/ hydrochloric acid gave the oxo-analogues **12**. The suggested structures of compound **11** and **12** were confirmed by spectroscopic tools (IR, ¹H-NMR and MS). As example, the IR spectrum of **11** displayed absorption bands at $v_{max} = 3428$ and 1668 cm⁻¹ due to imino (NH) and carbonyl (CO) functions while the absorption bands for NH and CO functions in compound **12** appeared bands at $v_{max} = 3405$, 1690 and 1634 cm⁻¹. Also, as compared between the ¹H-NMR spectra of **11** and **12**, it had been observed that in ¹H-NMR spectrum of **11**, two D_2O exchangeable signals were found at chemical shift (δ) = 10.54 and 11.83 ppm for NH protons, while the ¹H-NMR spectrum of **12** showed a D_2O exchangeable signal at $\delta = 10.74$ ppm for of NH proton. The elemental data is in agreement with the proposed structures **11** and **12**.

Scheme 4. 2-imino-*N*'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2*H*-furo[2,3-*b*]indole-3-carbo-hydrazide **11** and its oxo-analogous **12**

The reaction of 2-cyano-*N*⁻(4-(2-oxo-2-phenylethoxy)-benzylidene)acetohydrazide **2** with phenyl isothiocyanate in a mixture of dry *N*,*N*-dimethylformamide and solid potassium hydroxide at room temperature afforded the non-isolable potassium salt **13** followed by the addition of ethyl bromoacetate **14a** giving thiazole derivative **16a** instead of the expected thiophene **15**. The structure of **16a** was confirmed through spectroscopic and elemental tools. The IR spectrum of **16a** showed absorption bands at v_{max} 3425, 2203, 1695 and 1666 cm⁻¹ corresponding to the NH, CN and CO functional groups, respectively. Moreover, its ¹H-Nuclear magnetic resonance spectrum deduced signals at $\delta = 11.28$ and 4.10 ppm relative to NH and CH₂ protons of thiazole ring besides signals for aryl protons. In MS spectrum of **16a**, a peak was identified at m/z = 496 (M⁺, 67.7%) that was found to be consistent with the molecular formula C₂₇H₂₀N₄O₄S of the compound **16a** (Scheme 5).

Also, under the same conditions of the above reaction, compound **2** reacted with phenacyl chlorides **14b,c** to get the corresponding thiazoles **16b,c** rather than expected thiophenes **15**. The IR spectrum of **16c** revealed bands at v_{max} 3426, 2197 and 1688 cm⁻¹ referred to NH, CN and CO groups, respectively. It`s ¹H NMR displayed a D_2O exchangeable signal at $\delta = 11.26$ ppm due to the presence of NH proton and another signal at $\delta = 5.61$ ppm relative to CH₂ protons besides signals for aryl and CH protons. The representative spectroscopic data with elemental analysis together indicated the formation of thiazole **16** and ruled out the formation of thiophene **15** (Scheme 5 and see exp.).

Scheme 5. Synthesis of thiazoles derivatives 16a-c

Accepted Article

Compound 2 reacted with N,N-dimethylformamide/dimethylacetal (DMF/DMA) to afford the respective 2-cyano-3-(dimethylamino)-N'-(4-(2-oxo-2enamine phenylethoxy)benzylidene) acrylohydrazide 17 (Scheme 6). The IR spectrum of 17 exhibited absorption bands at v_{max} 3294, 2184, 1702 and 1658 cm⁻¹ assignable to NH, CN and CO groups, respectively. Its ¹H-NMR spectrum showed two new singlet signals at $\delta = 3.21$ and 3.30 ppm for two methyl protons of the amino group, additionally, it appeared signals at $\delta = 5.65$ ppm for CH₂ protons and multiplet signals at $\delta = 7.54 - 7.72$ ppm for aryl protons besides a D_2O exchangeable singlet signal at $\delta = 10.76$ ppm for amide proton. Additionally, it revealed signals at $\delta = 7.00$ and 8.01 ppm as doublet signal with J = 8.4 and 7.2 Hz, respectively for any protons. The reaction of compound 17 with guanidine hydrochloride gave the corresponding diaminopyrimidine 18. The structure of compound 18 was established by elemental analysis and spectroscopic data (Scheme 6). The IR spectrum of 18 showed disappearance of absorption band at $v_{max} = 2254 \text{ cm}^{-1}$ for CN group, instead it showed a broad band at v_{max} 3442 cm⁻¹ equivalent to NH₂ and NH groups. Also, its ¹H-NMR spectrum revealed absence of two singlet signals at $\delta = 3.21$ ppm of the two methyl protons of dimethylamino function in addition to three D_2O exchangeable signals at $\delta = 10.49$, 6.79 and 6.82 ppm respective to NH and two NH₂ protons. The suggested reaction mechanism was assumed to start out with initial displacement of dimethylamine moiety followed by nucleophilic addition of the NH₂ nitrogen atom to the nitrile function then tautomeric conversion of imino (=NH) group to the amino (NH₂) group to develop the target product 18 (Scheme 6 and see exp.).

Scheme 6. Synthetic route of 2,4-diamino pyrimidine derivative 18

The reaction of compound **17** with 4-arylazo-3,5-diaminopyrazoles **19a-c** afforded the relative pyrazolo[1,5-*a*]pyrimidine derivatives **22a-c**. The presumed structure for the products was proved by spectral and elemental data. The IR spectrum of compound **22a**, as a typical example of the prepared series, revealed absence of an absorption band at $v_{max} = 2254 \text{ cm}^{-1}$ relative to a cyano group and appearance of a broad absorption band at $v_{max} = 3400 \text{ cm}^{-1}$ for NH₂ and NH groups besides other bands for carbonyl groups at $v_{max} = 1668$ and 1658 cm^{-1} . The H¹-NMR spectrum of compound **22a** revealed two D_2O exchangeable broad signals for amino protons at $\delta = 6.35$ and 6.77 ppm, besides a D_2O exchangeable signal at $\delta = 10.89$ ppm for NH proton. The suggested structure of the newly obtained products **22a-c** was affirmed by their elemental analysis and physical properties (m.p. and TLC) together with the spectroscopic data. The suggested mechanism for the synthesis of **22** was proceeded through initial substitution of NMe₂ by a nucleophilic addition achieved by the amino group of the substrate **19** to yield non-isolable intermediate **20**, then followed by intramolecular heterocyclization producing the non-

isolable intermediate **21**. Finally, a tautomeric step was occurred giving the final product **22** (Scheme 7 and see exp.).

Scheme 7. Reaction pathway to afford the relative pyrazolo[1,5-a]pyrimidines 22a-c

The antimicrobial activity of some of the newly synthesized products was investigated against fungal strain (Candida *albicans*), Gram positive bacterial strain (Staphylococcus *aureus*) and Gram negative bacterial strain (Escherichia *coli* and Klebsiella *pneumonia*) using nutrient agar medium diffusion method [36]. Nystatin was used as a standard antifungal drug for Candida *albicans*, while Ampicilin and Gentamicin are used as standard antibiotics for Gram positive and Gram negative bacterial strains. The investigation's results varied form no antimicrobial activity for the tested compounds in most of the microbial strains to moderate or even very strong antimicrobial activity in specific microbial strains while most of the tested compounds showed no antifungal activity except few of them showed very strong activity (Table 1).

For Antifungal Activity: Most of the tested compounds have no activity against Candida *albicans* except compound **4b** which showed weak antifungal activity with the mean inhibition zone = 10.3 ± 0.5 mm while compounds **22c** and **4c** showed moderate activity with the mean inhibition zone = 16.3 ± 0.5 mm. The presence of 4-methoxyphenyl moiety in **4b**, 4-chlorophenyl moiety in **4c** and 4-phenyl azo pyrazolo[1,5-*a*]pyrimidine moiety in **22c** enhanced the antifungal activity for these compounds and the presence of electron withdrawing group in **4c** and **22c** increased the antifungal activity more than the presence of electron donating group in **4b**. In comparison with Nystatin, compounds **18** and **4d** showed very strong antifungal activity relative to that of nystatin = 21.0 ± 0.5 mm. The presence of aminopyrimidine moiety and 4-nitrophenyl moiety in compounds **18** and **4d** respectively, improved the antifungal activity against the Candida *albicans*.

For Antibacterial Activity:

In **Staphylococcus** *aureus:* all the tested compounds have no antibacterial activity against that strain.

In Escherichia *coli*: compounds **4f** and **7b** showed moderate activity with mean inhibition zone $= 12.3 \pm 0.5$ mm hence the standard drug gentamicin showed 27 ± 0.6 mm. The Antibacterial

activity for these compounds may be due to the presence of <u>pipronyl</u> moiety and hydroxychromene rings in **4f** and **7b**, respectively.

In Klebsiella *pneumonia*: the starting compounds **1** and **2** have moderate antibacterial activity with mean inhibition zone = 14.3 ± 0.5 mm compared with that of gentamicin = 25 ± 0.5 mm. Introducing indeno[2,1-*b*]furan and 4-chlorophenylthiazole moieties in compounds **11** and **16c**, respectively quietly decreased the antibacterial activity with mean inhibition zone = 10.3 ± 0.5 and 11.3 ± 0.5 mm, respectively.

Table 1: The antimicrobial results for the tested selected compounds against different strains

Antimicrobial strains	Staphylococcus aureus	Escherichia <i>coli</i>	Klebsiella pneumonia	Candida albican
St.	Ampicillin	Gentamicin	Gentamicin	Nystatin
Drug	$22 \pm 0.5 \text{ mm}$	$27 \pm 0.6 \text{ mm}$	$25 \pm 0.5 \text{ mm}$	$21 \pm 0.5 \text{ mm}$
1	NA	NA	14.3 ± 0.5	NA
2	NA	NA	14.3 ± 0.5	NA
4b	NA	NA	NA	10.3 ± 0.5
4c	NA	NA	NA	16.3 ± 0.5
4d	NA	NA	NA	20.3 ± 0.5
4 f	NA	12.3 ± 0.5	NA	NA
7a	NA	NA	NA	NA
7b	NA	12.3 ± 0.5	NA	NA
11	NA	NA	10.3 ± 0.5	NA

16 a	NA	NA	NA	NA
16b	NA	NA	NA	NA
16c	NA	NA	11.3 ± 0.5	NA
18	NA	NA	NA	20.6 ± 0.6
22c	NA	NA	NA	16.3 ± 0.5

EXPERIMENTAL SECTION

I. General chemistry.

Melting points were determined in (°C) on an electrothermal (9100) apparatus (Kleinfled, Gehrden, Germany) and are uncorrected. IR spectra were recorded as KBr pellets on a Nicolet 205 spectrophotometer (Nicolet, Madison, WI, USA). The ¹H-NMR (300 MHz) spectra and ¹³C-NMR spectra (75 MHz) were obtained on a Varian EM-300 MHz spectrometer and DMSO- d_6 is used to dissolve the tested compounds besides, tetramethylsilane as an internal standard sand the results are obtained as δ value (Varian Inc., Palo Alto, CA, USA). Mass spectra were taken on a Shimadzu GCMS-GB 1000 PX (Shimadzu, Kyoto, Japan; 70 eV). Elemental analyses and spectral measurements were carried out by the microanalytic center at Cairo University. The procedure for the synthesis of cyanoacetic acid hydrazide and **3g** were prepared according to literature [37, 38].

Synthesis of 4-(2-oxo-2-phenylethoxy)benzaldehyde (1).

4-Hydroxybenzaldehyde (10 mmol) was added to phenacyl bromide (10 mmol) and potassium carbonate (10 mmol) in dry acetone (10 ml). The reaction mixture was heated to refluxing for 12 hrs in water bath at 30 °C. Yellowish brown solid was formed, filtered off, washed well with water, dried and recrystallized from ethanol.

Yellowish brown crystals, yield (60%), m.p 129-130 °C; IR (KBr) v/cm⁻¹: 2980 (HC=O), 1745 (C=O) and 1698 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.76$ (s, 2H, CH₂), 7.16 (d, 2H, J = 8.7 Hz, Ar), 7.56 (d, 2H, J = 7.2 Hz, Ar), 7.68 (d, 2H, J = 7.2 Hz, Ar), 7.85-8.05 (m, 3H, Ar), 9.87 (s, 1H, aldehydic H). ¹³C NMR (*DMSO-d*₆) $\delta = 70.3$, 115.1 (2C), 127.8 (2C), 128.8 (2C), 129.9 (2C), 131.6 (2C), 133.8, 134.1, 162.9, 191.2, 193.7. Anal. Calcd. for C₁₅H₁₂O₃: C, 74.99; H, 5.03. Found: C, 75.16; H, 5.22%.

Synthesis of 2-cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acetohydrazide (2)

Compound **1** (10 mmol) and cyanoacetic acid hydrazide (10 mmol) was heated in absolute ethanol (10 ml) for 4 hrs. The product was collected, filtered off and recrystallized from an ethanol/dioxane.

Yellowish brown crystals, yield (96%), m.p 215-217 °C; IR (KBr) v/cm⁻¹: 3436 (NH), 2261 (CN), 1712 (C=O) and 1675 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 4.16$ (s, 2H, CH₂), 5.65 (s, 2H, CH₂), 7.01 (d, 2H, J = 8.7 Hz, Ar), 7.55 (d, 2H, J = 7.2 Hz, Ar), 7.61-7.64 (m, 3H, Ar), 7.67 (d, 2H, J = 7.5 Hz, Ar), 7.94 (s, 1H, CH), 11.65 (s, 1H, NH); ¹³C NMR (*DMSO-d*₆) $\delta = 66.3$, 70.1, 114.9 (2C), 116.1, 126.6, 127.8 (2C), 128.5 (2C), 128.7, 128.8, 133.8, 134.2, 144.1, 159.5, 164.5, 194.1; MS: m/z = 322 (M⁺+1, 2.9%), 321 (M⁺, 13.7%), 313 (0.1%), 299 (0.1%), 281 (0.1%), 278 (0.1%), 254 (0.7%), 238 (0.8%), 224 (0.35%), 213 (0.23%), 203 (0.26%), 185 (0.27%), 167 (0.2%), 152 (0.4%), 133 (0.68%), 105 (100%), 91 (12.8%), 83 (3.4%), 77 (31.5%). Anal. Calcd. for C₁₈H₁₅N₃O₃: C, 67.28; H, 4.71; N, 13.08. Found: C, 67.47; H, 4.89; N, 13.32 %.

Synthesis of compounds 4a-g.

A mixture of compound **2** (10 mmol) and aromatic aldehydes **3a-g** (10 mmol) was heated in ethanol (10 ml) containing drops of piperdine for 4 hrs. The products **4a-g** was collected by filtration and recrystallized from acetic acid.

2-Cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-3-phenylacrylohydrazide (4a)

Yellow crystals, yield (89%), m.p 253-255 °C; IR (KBr) v/cm⁻¹: 3423 (NH), 2200 (CN) and 1689 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.48$ (s, 2H, CH₂), 6.91- 8.02 (m, 15H, Ar and CH), 8.45 (s, 1H, CH), 10.45 (s, 1H, NH); MS: m/z = 409 (M⁺, 2.8%), 395 (0.9%), 393 (1.5%), 367 (2.7%), 353 (1.4%), 342 (2.9%), 321 (8%), 304 (2.6%), 287 (35%), 275 (13%), 258 (3.3%), 239 (4.1%),

Accepted Article

230 (10.1%), 207 (4%), 187 (23.2%), 172 (3%), 146 (5.7%), 119 (15.1%), 105 (91%), 91 (99.7%), 77 (100%), 73 (16.7%), 69 (34.6%). Anal. Calcd. for $C_{25}H_{19}N_3O_3 : C, 73.34; H, 4.68; N, 10.26$. Found: C, 73.52; H, 4.85; N, 10.49 %.

2-Cyano-3-(4-methoxyphenyl)-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acrylohydrazide (4b)

Yellowish brown crystals, yield (76%), m.p 238-240 °C; IR (KBr) v/cm⁻¹: 3438 (NH), 2180 (CN) and 1688 (CO); ¹H NMR (*DMSO-d*₆); $\delta = 3.86$ (s, 3H, OCH₃), 5.42 (s, 2H, CH₂), 6.96 - 8.00 (m, 14H, Ar & CH), 8.43 (s, 1H, CH), 10.34 (s, 1H, NH). Anal. Calcd. for C₂₆H₂₁N₃O₄: C, 71.06; H, 4.82; N, 9.56. Found: C, 71.23; H, 5.01; N, 9.79 %.

3-(4-Chlorophenyl)-2-cyano-N'-(4-(2-oxo-2-phenylethoxy) benzylidene)acrylohydrazide (4c)

Yellowish brown crystals, yield (90%), m.p 260-261 °C; IR (KBr) v/cm⁻¹: 3423 (NH), 2361 (CN) and 1696 (CO); ¹H NMR (*DMSO-d*₆); $\delta = 5.61$ (s, 2H, CH₂), 7.43 – 8.33 (m, 15H, Ar and 2CH), 10.67 (s, 1H, NH); MS: m/z = 444 (M⁺+1, 24.5%), 443 (M⁺, 39.8%), 431 (12.5%), 429 (19.5%), 411 (10.7%), 402 (6.6%), 394 (6.1%), 376 (15.4%), 350 (6.1%), 344 (35.4%), 336 (12.5%), 321 (28.2%), 320 (97.8%), 303 (20.5%), 280 (3.5%), 263 (7.6%), 242 (3.3%), 224 (6.1%), 124 (6.4%), 88 (22.7%), 76 (100%), 68 (20.5%). Anal. Calcd. for C₂₅H₁₈ClN₃O₃: C, 67.65; H, 4.09; Cl, 7.99; N, 9.47. Found: C, 67.81; H, 4.26; N, 9.70 %.

2-Cyano-3-(4-nitrophenyl)-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acrylohydrazide (4d)

Brown crystals, yield (87%), m.p 266-270 °C; IR (KBr) v/cm⁻¹: 3423 (NH), 2197 (CN) and 1678 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.34$ (s, 2H, CH₂), 7.42-8.38 (m, 15H, Ar and 2CH), 10.81 (s, 1H, NH); MS: m/z = 454 (M⁺, 0.4%), 416 (0.7%), 395 (0.8%), 368 (7.4%), 353 (2.5%), 339 (1.33%), 313 (2.8%), 299 (1.5%), 285 (1.9%), 271 (2.1%), 261 (5.4%), 251 (6.8%), 236 (2.5%), 213 (3.1%), 183 (4.9%), 161 (3.4%), 139 (3.6%), 129 (7.9%), 111 (13.4%), 97 (25.0%), 84 (45.9%), 71 (40.1%), 67 (25.2%), 57 (100%), 55 (81.2%). Anal. Calcd. for C₂₅H₁₈N₄O₅: C, 66.08; H, 3.99; N, 12.33. Found: C, 66.25; H, 4.18; N, 12.56 %.

2-Cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-3-(thiophen-2-yl)acrylohydrazide (4e)

Brown crystals, yield (96%), m.p 240-242 °C; IR (KBr) v/cm⁻¹: 3417 (NH), 2223 (CN) and 1670 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.55$ (s, 2H, CH₂), 7.21-8.40 (m, 14H, Ar and 2CH), 10.73 (s,

1H, NH); MS: m/z = 415 (M⁺, 18.3%), 410 (9.05%), 399 (16.8%), 388 (14.07%), 381 (10.7%), 373 (26.9%), 360 (23.1%), 337 (7.7%), 321 (10.3%), 308 (11.1%), 303 (11.3%), 292 (100%), 280 (10.7%), 270 (8.9%), 240 (1.8%), 106 (9.9%), 104 (36.4%), 90 (13.1%), 83 (19.5%), 76 (79%). Anal. Calcd. for $C_{23}H_{17}N_3O_3S$: C, 66.49; H, 4.12; N, 10.11; S, 7.72. Found: C, 66.67; H, 4.28; N, 10.34; S, 7.90 %.

3-(Benzo[d][1,3]dioxol-5-yl)-2-cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acrylohydrazide (4f)

Brown crystals, yield (89%), m.p 279-280 °C; IR (KBr) v/cm⁻¹: 3406 (NH), 2204 (CN) and 1696 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.49$ (s, 2H, CH₂), 6.27 (s, 2H, CH₂), 7.67-8.21 (m, 13H, Ar and CH), 8.46 (s, 1H, CH), 10.48 (s, 1H, NH). Anal. Calcd. for C₂₆H₁₉N₃O₅: C, 68.87; H, 4.22; N, 9.27. Found: C, 69.25; H, 4.39; N, 9.48%.

3-(4-(4-Chlorophenyl)-1-phenyl-1H-pyrazol-3-yl)-2-cyano-N'-(4-(2-oxo-2-phenyl-ethoxy)benzylidene)acrylohydrazide (4g)

Yellow crystals, yield (59%), m.p 266-268 °C; IR (KBr) v/cm⁻¹: 3424 (NH), 2300 (CN) and 1648 (C=O); ¹H NMR (*DMSO-d*₆); δ = 5.58 (s, 2H, CH₂), 7.33-7.87 (m, 19H, Ar and CH), 8.62 (s, 1H, CH), 9.28 (s, 1H, CH), 10.52 (s, 1H, NH). Anal. Calcd. for C₃₄H₂₄ClN₅O₃: C, 69.68; H, 4.13; Cl, 6.05; N, 11.95. Found: C, 69.84; H, 4.31; N, 12.18 %.

Synthesis of compounds 7a,b.

Compound 2 (10 mmol) was reacted with *o*-hydroybenzaldehyde derivatives **5a,b** (10 mmol) in ethanol (10 ml) containing few drops of piperdine for 4 hrs. The products **7a,b** were collected by filtration, dried and recrystallized from *N*,*N*-dimethylformamide.

2-Imino-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2H-chromene-3-carbohydrazide (7a)

Brown crystals, yield (67%), m.p 248-250 °C; IR (KBr) v/cm⁻¹: 3338 (NH) and 1658 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.56$ (s, 2H, CH₂), 6.95-8.01 (m, 13H, Ar), 8.44 (s, 1H, CH), 8.64 (s, 1H, CH), 9.98 (s, 1H, NH), 12.28 (s, 1H, NH); MS: m/z = 425 (M⁺, 16.4%), 421 (24.4%), 410 (17.3%), 395 (9.6%), 393 (10.8%), 369 (10.1%), 358 (41.9%), 355 (15.9%), 342 (10.2%), 341 (26.1%), 328 (21.5%), 313 (21.72%), 303 (46.6%), 287 (10.6%), 246 (7.74%), 104 (47.4%), 83

(46.1%), 76 (100%), 71 (41.6%). Anal. Calcd. for C₂₅H₁₉N₃O₄: C, 70.58; H, 4.50; N, 9.88. Found: C, 70.71; H, 4.65; N, 10.12 %.

7-Hydroxy-2-imino-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2H-chromene-3carbohydrazide (7b)

Brown crystals, yield (75%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3422 (OH and NH) and 1653 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.27$ (s, 2H, CH₂), 6.93-8.01 (m, 12H, Ar), 8.41 (s, 1H, CH), 8.62 (s, 1H, CH), 10.48 (s, 1H, NH), 10.56 (s, 1H, OH), 11.78 (s, 1H, NH); MS: m/z = 442 (M⁺+1, 0.25%), 441 (M⁺, 0.3%), 431 (0.37%), 411 (0.35%), 401 (1.75%), 368 (1.8%), 353 (0.7%), 331 (0.57%), 316 (1.1%), 305 (0.8%), 291 (0.8%), 271 (1.1%), 256 (1.26%), 237 (1.45%), 221 (1.0%), 213 (1.59%), 193 (1.44%), 165 (2.58%), 149 (4.3%), 137 (5.0%), 111 (17.8%), 95 (21.4%), 83 (36.2%), 69 (52.3%), 57 (100%), 55 (66.4%). Anal. Calcd. for C₂₅H₁₉N₃O₅: C, 68.02; H, 4.34; N, 9.52. Found: C, 68.18; H, 4.53; N, 9.75 %.

Synthesis of ompounds 8a,b.

Compounds **7a,b** (10 mmol) were heated for 3 hrs in a mixture of dioxane (5 ml) and concentrated hydrochloric acid (5 drops) (1:1). The formed solids were collected, filtrated off, dried and recrystallized from N,N-dimethylformamide.

2-Oxo-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2H-chromene-3-carbohydrazide (8a)

Brown crystals, yield (56%), m.p 270-275 °C; IR (KBr) v/cm⁻¹: 3277 (NH) 1700 (C=O) and 1645 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.44$ (s, 2H, CH₂), 7.38-8.47 (m, 14H, Ar and CH), 8.54 (s, 1H, CH), 10.67 (s, 1H, NH); MS: m/z = 426 (M⁺, 6.33%), 425 (16.47%), 421(24.49%), 409 (17.72%), 393 (10.86%), 369 (10.12%), 358 (41.98%), 341 (26.15%), 328 (21.50%), 313 (21.72%), 303 (46.67%), 287 (10.66%), 246 (7.74%), 104 (47.47%), 83 (46.19%), 76 (100%). Anal. Calcd. for C₂₅H₁₈N₂O₅: C, 70.42; H, 4.25; N, 6.57. Found: C, 70.63; H, 4.44; N, 6.79 %.

7-Hydroxy-2-oxo-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2H-chromene-3-carbohydrazide (8b)

Brown crystals, yield (70%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3389 (OH and NH), 1679 (C=O) and 1643 (C=O); ¹H NMR (*DMSO-d*₆); δ = 5.56 (s, 2H, CH₂), 7.48 – 8.45 (m, 13H, Ar and CH),

9.07 (s, 1H, CH), 10.53 (s, 1H, OH), 10.73 (s, 1H, NH). Anal. Calcd. for C₂₅H₁₈N₂O₆: C, 67.87; H, 4.10; N, 6.33. Found: C, 68.04; H, 4.26; N, 6.56 %.

Synthesis of 2-imino-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2H-furo[2,3-b]indole-3carbohydrazide (11)

Compound 2 (10 mmol) was heated with isatin (10 mmol) in absolute ethanol (10 ml) in presence of few drops of piperidine for 3 hrs. The solid product was collected by filtration and recrystallized from N,N-dimethylformamide.

Brown crystals, yield (54%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3428 (NH) and 1668 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.66$ (s, 2H, CH₂), 7.68-8.42 (m, 13H, Ar and CH), 8.60 (s, 1H, CH), 10.54 (s, 1H, NH), 11.83 (s, 1H, NH). Anal. Calcd. for C₂₆H₁₈N₄O₄: C, 69.33; H, 4.03; N, 12.44. Found: C, 69.48; H, 4.20; N, 12.62 %.

Synthesis of 2-oxo-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-2H-furo[2,3-b]indole-3-carbohydrazide (12) the same procedure for synthesis of (8a,b)

Compounds **7a,b** (10 mmol) were heated for 3 hrs in a mixture of dioxane (5 ml) and concentrated hydrochloric acid (5 drops) (1:1). The formed solids were collected, filtrated off, dried and recrystallized from N,N-dimethylformamide.

Brown crystals, yield (60%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3405 (NH), 1690 (CO) and 1634 (C=O); ¹H NMR (*DMSO-d*₆); δ = 5.41 (s, 2H, CH₂), 7.16-7.69 (m, 12H, Ar), 8.48 (s, 1H, CH), 8.52 (s, 1H, CH), 10.74 (s, 1H, NH). Anal. Calcd. for C₂₆H₁₇N₃O₅: C, 69.18; H, 3.80; N, 9.31. Found: C, 69.34; H, 3.97; N, 9.54 %.

Synthesis of compounds 16a-c.

Dissolved compound 2 (10 mmol) in *N*,*N*-dimethylformamide (DMF) (10 ml), then add potassium hydroxide (10 mmol). The mixture was stirred at room temperature till complete dissolution of potassium hydroxide then phenyl isothiocyanate (10 mmol) was added with completing the stirring for 3 hrs. The α -haloketones **14a-c** (10 mmol) were added with stirring for overnight. Then, it was quenched into water and acidified with 10% hydrochloric acid and obtained products **16a-c** were collected by filtration and recrystallized from acetic acid.

2-oxo-2-phenylethoxy)benzylidene)-2-(4-oxo-3-phenylthiazolidin-2-ylidene)acetohydrazide (16a)

Brown crystals, yield (89%), m.p 258-260 °C; IR (KBr) v/cm⁻¹: 3425 (NH), 2203 (CN), 1695 (C=O) and 1666 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 4.10$ (s, 2H, CH₂), 5.66 (s, 2H, CH₂), 7.05 (d, 2H, J = 7.2 Hz, Ar), 7.38 – 7.70 (m, 12H, Ar), 8.62 (s, 1H, CH), 11.28 (s, 1H, NH); MS: m/z = 496 (M⁺, 67.7%), 416 (59%), 410 (57.9%), 374 (100%), 300 (61.7%), 238 (100%), 236 (83.6%), 203 (96.7%), 198 (60.1%), 173 (97.2%), 121 (70.4%), 61 (100%). Anal. Calcd. for C₂₇H₂₀N₄O₄S: C, 65.31; H, 4.06; N, 11.28; S, 6.46. Found: C, 65.49; H, 4.23; N, 11.49; S, 6.64 %.

2-Cyano-2-(3,4-diphenylthiazol-2(3H)-ylidene)-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acetohydrazide (16b)

Brown crystals, yield (52%), m.p 276-278 °C; IR (KBr) v/cm⁻¹: 3418 (NH), 2226 (CN) and 1675 (C=O); ¹H NMR (*DMSO-d*₆); δ = 5.67 (s, 2H, CH₂), 7.04-8.03 (m, 20H, Ar and CH), 8.50 (s, 1H, CH), 11.76 (s, 1H, NH). Anal. Calcd. for C₃₃H₂₄N₄O₃S: C, 71.21; H, 4.35; N, 10.07; S, 5.76. Found: C, 71.44; H, 4.54; N, 10.31; S, 5.93 %.

2-(4-(4-Chlorophenyl)-3-phenylthiazol-2(3H)-ylidene)-2-cyano-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acetohydrazide (16c)

Yellowish brown crystals, yield (55%), m.p 278-280 °C; IR (KBr) v/cm⁻¹: 3426 (NH), 2197 (CN) and 1688 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.61$ (s, 2H, CH₂), 6.64-8.01 (m, 19H, Ar and CH), 8.58 (s, 1H, CH), 11.26 (s, 1H, NH). Anal. Calcd. for C₃₃H₂₃ClN₄O₃S: C, 67.06; H, 3.92; Cl, 6.00; N, 9.48; S, 5.42. Found: C, 67.22; H, 4.06; N, 9.70; S, 5.61%.

Synthesis of 2-cyano-3-(dimethylamino)-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)acrylohydrazide (17)

Compound **2** (10 mmol) was reacted with (DMF-DMA) (10 mmol) in dry dioxane (10 ml) for 6 hrs. The product was collected by filtration, dried and recrystallized from an ethanol/dioxane.

Brown crystals, yield (86%), m.p 224-226 °C; IR (KBr) v/cm⁻¹: 3294 (NH), 2184 (CN), 1702 (C= O) and 1658 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 3.21$ (s, 3H, CH₃), 3.30 (s, 3H, CH₃), 5.65 (s,

2H, CH₂), 7.00 (d, 2H, J = 8.4 Hz, Ar), 7.54-7.72 (m, 5H, Ar), 7.81 (s, 1H, CH), 8.01 (d, 2H, J = 7.2 Hz, Ar), 8.27 (s, 1H, CH), 10.76 (s, 1H, NH). Anal. Calcd. for C₂₁H₂₀N₄O₃ : C, 67.01; H, 5.36; N, 14.88. Found: C, 67.24; H, 5.54; N, 15.12 %.

Synthesis of 2,4-diamino-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)pyrimidine-5-carbohydrazide (18)

Compound **17** (10 mmol) was mixed with guanidine hydrochloride (10 mmol) and sodium carbonate (10 mmol) in *N*,*N*-dimethylformamide (10 ml). The reaction mixture was heated for 6 hrs. The product was collected by filtration, washed off with water and ethanol and recrystallized from *N*,*N*-dimethylformamide.

Brown crystals, yield (53%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3442 (NH₂ and NH), 1681 (C=O) and 1642 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.47$ (s, 2H, CH₂), 6.79 (broad, 2H, NH₂), 6.82 (broad, 2H, NH₂), 7.41-8.17 (m, 9H, Ar), 8.46 (s, 1H, CH), 9.23 (s, 1H, CH), 10.49 (s, 1H, NH). Anal. Calcd. for C₂₀H₁₈N₆O₃: C, 61.53; H, 4.65; N, 21.53. Found: C, 61.68; H, 4.81; N, 21.77%.

Synthesis of compounds 22a-c.

Compound **17** (10 mmol) was reacted with compounds **22a-c** (10 mmol) in N,N-dimethylformamide (10 ml) containing few drops of piperidine (3 drops), and heated for 6 hrs. The solid products **17a-c** were collected by filletration, washed with ethanol, dried and recrystallized from N,N-dimethylformamide.

2,7-Diamino-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)-3-(phenyldiazenyl)pyrazolo[1,5-a]pyrimidine-6-carbohydrazide (22a)

Brownish orange crystals, yield (56%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3400 (NH), 1668 (C=O) and 1658 (C=O); ¹H NMR (*DMSO-d*₆); $\delta = 5.60$ (s, 2H, CH₂), 6.35 (broad, 2H, NH₂), 6.77 (broad, 2H, NH₂), 7.34-8.26 (m, 15H, Ar and CH), 8.54 (s, 1H, CH), 10.89 (s, 1H, NH). Anal. Calcd. for C₂₈H₂₃N₉O₃: C, 63.03; H, 4.35; N, 23.63. Found: C, 63.15; H, 4.53; N, 23.87 %.

2,7-Diamino-3-((4-methoxyphenyl)diazenyl)-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)pyrazolo[1,5-a]pyrimidine-6-carb-hydrazide (22b) Brown crystals, yield (56%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3412 (NH₂ and NH), 1670 (C=O) and 1644 (C=O); ¹H NMR (*DMSO-d*₆); δ = 3.86 (s, 3H, OCH₃), 5.68 (s, 2H, CH₂), 6.73 (broad, 2H, NH₂), 7.24 (broad, 2H, NH₂), 7.33-8.18 (m, 13H, Ar), 8.44 (s, 1H, CH), 8.50 (s, 1H, CH), 10.58 (s, 1H, NH). Anal. Calcd. for C₂₉H₂₅N₉O₄: C, 61.80; H, 4.47; N, 22.37. Found: C, 61.96; H, 4.64; N, 22.62 %.

2,7-Diamino-3-((2-chlorophenyl)diazenyl)-N'-(4-(2-oxo-2-phenylethoxy)benzylidene)pyrazolo[1,5-a]pyrimidine-6-carbohydrazide (22c)

Brown crystals, yield (89%), m.p > 300 °C; IR (KBr) v/cm⁻¹: 3396 (NH), 1676 (C=O) and 1638 (C=O); ¹H NMR (*DMSO-d*₆); δ = 5.62 (s, 2H, CH₂), 6.72 (broad, 2H, NH₂), 6.99 (broad, 2H, NH₂), 7.19-8.03 (m, 13H, Ar), 8.16 (s, 1H, CH), 8.35 (s, 1H, CH), 11.05 (s, 1H, NH). Calcd. Anal. for C₂₈H₂₂ClN₉O₃: C, 59.21; H, 3.90; Cl, 6.24; N, 22.19. Found: C, 59.39; H, 4.06; N, 22.42%.

Antimicrobial activity investigation:

Agar well diffusion method

The sterilized media were poured into the sterilized petri dishes (20-25 ml, each petri dish) and allowed to solidify at room temperature. The microbial suspension was prepared in sterilized saline equivalent to McFarland 0.5 standard solution (1.5 x 105 CFU ml-1) and its turbidity was adjusted to OD = 0.13 using spectrophotometer at 625 nm. After 15 min, a sterile cotton swab was dipped into the adjusted suspension and was flooded on the dried agar surface then allowed to dry for 15 min with lid in place. With a sterile borer, wells of 6 mm diameter were made in the solidified media. 100 µl of the solution of the tested compound was added to each well with the help of micropipette. The plates were incubated at 37 °C for 24 hrs in case of antibacterial activity and the experiment was carried out three times and the inhibition zones were measured in mm scale.

Supporting information:

Supplementary file

REFERENCES

[1] Gilman, A. G.; Goodman, L. S. Pharmaceutical Basis of Therapeutics. Macmillan: New York. 1985, 1109.

[2] Shaker, S. A.; Marzouk, M. I. Molecules, 2016, 21(2), 155.

[3] De Marinis, R. M.; Hoover, J. R. E.; Dunn, G. L.; Actor, P.; Uri, J. V.; Weisbach, J. A. J. Antibiot. 1975, 28, 463.

[4] Fahmy, S. M.; Badran, A. H.; Elnagdi, M. H. Chem. Tech. 1980, 30, 390.

[5] Fahmy, S. M.; El-Hosami, M.; Elgamal, S.; Elnagdi, M. H. J. Chem. Technol. Biotechnol. 1982, 32, 1042.

[6] Cosales, M. J.; Kleschick, W. A.; Her, R. J.; Wiemer, M. R. US Patent. 1998, 792, 587;Chem. Abstr. 1998, 128, 67792k.

[7] Vosrova, L. M.; Grenad`orova, M. V.; Klad`ko, L. G. UK. Khim. Zh. 2004, 70, 115; Chem. Abstr., 2004, 142, 392328.

[8] Gorolets, N. Y.; Yousefi, B. H.; Belaj, F.; Kappe, C. O. Tetrahedron 2004, 60, 8633.

[9] Nitsche, C.; Steuer, C.; Klein, C. D.Bioorg. & Med. Chem.. 2011, 19,7318.

[10] Khalil, M. A.; Sayed, S. M.; Raslan, M. A. Am. J. Org. Chem. 2012, 2, 161.

[11] Behbehani, H.; Ibrahim, H. M.; Makhseed, S.; Mahmoud, H. Eur. J. Med. Chem. 2011, 46,

[12] Mohareb, R. M.; Aziz, S. I.; Abdel-Sayed, N. I.; El-Banna, A. H. J. Chem. Res. Synop..1999, 10.

[13] Fahmy, H. T. Y.; Rostom, S. A. F.; Bekhit, A. A. Arch. Pharm. Med. Chem. 2002, 5, 213.1813.

[14] Mohareb, R. M.; Sherif, S. M. Sulfur Lett., 1992, 15, 91; Chem. Abstr., 1993, 118, 80892k.

[15] Elgemeie, G. E. H.; El-Ezbawy, S. R.; Ali, H. A. Synth. Commun. 2001, 31, 3459.

[16] Metwally, N. H.; Abdelrazek, F. M. J. Prakt. Chem. Chem-Ztg., 1998, 340, 676; Chem.Abstr., 1999, 130, 13960r.

[17] El-gemeie, G. H.; El-Ezbawy, S. R.; Ramiz, M. M.; Mansour, O. A. Org. Prep. Proced. Int., 1991, 23, 654.

[18] Baliciki, R. Pol. J. Chem., 1984, 58, 85.

[19] Abdelrazek, F. M.; Metwally, N. H. Afindad. 2003, 61, 134.

[20] El-Rady, E. A.; Khalil, M. A. J. Chin. Chem. Soc.. 2004, 51, 799; Chem. Abstr.. 2004, 142, 219224.

[21] Mekheimer, R. A.; Shaker, R. M. J. Chem. Res. Synop., 1999, 76.

[22] Demirbas, N.; Demirbas, A.; Sancak, K. Turk. J. Chem., 2002, 26, 801.

[23] Golovko, T. V.; Solov`eva, N. P.; Anisimova, O. S.; Granik, V. G. Chem. Heterocycl. Compound., 2003, 39, 344.

[24] Elgemeie, G. E. H.; Mansour, O. A.; Metwally, N. H. Nucleosides and Nucleotides. 1999, 18, 113-123.

[25] Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Arch. Pharm Chem Life Sci.. 2006, 339, 456-460.

[26] Metwally, N. H. Phosphorus, Sulfur, Silicon and Related Elements. 2008, 183, 34-43.

[27] Abdelrazek, F. M.; Metwally, N. H.; Sobhy, N. A. Afinidad. 2008, 63, 522-525.

[28] Mosselhi, M. A.; Abdallah, M. A.; Metwally, N. H.; El-Desoky, I. A.; Break, L. M. Arkivoc. 2009, xiv, 53-63.

[29] Metwally, N. H.; Abdallah, M. A.; Mosselhi, M. A.; El-Desoky, E. A. Carbohydrate Research. 2010, 345, 1135–1141.

[30] Metwally, N. H.; Badway, M. A.; Okpy, D. S. Chem Pharm Bull. 2015, 63, 495-503.

[31] Metwally, N. H.; Abdelrazek, F. M.; Eldaly, S. M. Res Chem Intemed., 2016, 42, 1071-1089.

[32] Metwally, N. H.; Deeb, E. A. Bioorg. Chem., 2018, 77, 203-214.

[37] Gorolets, N. Y.; Yousefi, B. H.; Belaj, F.; Kappe, C. Tetrahedron, 2004, 60, 8633.

[35] Metwally, N. H.; Mohamed, M. S.; Ragab, E. A. Bioorg. Chem., 2019, 88, 102929.

[38] Kira, M. A.; Abdel-Rahman, M. O.; Gadalla, K. Z., Tetrahedron Letters, 1969, 10(2), 109-110.

[33] Metwally, N. H.; Abdelrazek, F. M.; Eldaly, S. M. J. Heter. Chem., 2018, 45, 2668-2682.

[34] Metwally, N. H.; Radwan, El-Serwy, W. S.; Mohamed, M. A. Bioorg. Chem. 2019, 84, 456-

467.

Chem.Abstr., 1966, 64, p. 6634.

^[36] Aspelund, H.; Sjoblom, L. Acta Acad. Aboensis, Math. Phys., 1964, 24(2), 22, (Ger.),