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The first total synthesis of a monomeric phloroglucinol
[(1R*,2S*)-2-hydroxy-2-isobutyl-4,4,6,6-tetramethyl-3,5-dioxo-
cyclohexyl acetate] was achieved by stereoselective reduction
of a symmetrical α-ketol as a key step. The corresponding
cis-stereoisomer of the natural product was synthesized from
phloroglucinol via cis-dihydroxylation using OsO4. Comparison
of 1HNMR data for synthetic 1 and 2 confirmed the trans-
stereochemistry of the natural product.

2-Hydroxy-2-isobutyl-4,4,6,6-tetramethyl-3,5-dioxocyclo-
hexyl acetate (1) was isolated from the essential oil of Myrtus
communis which has been widely utilized as a traditional
medicine.1 The relative stereochemistry of 1 was proposed as
1R* and 2S*. The absolute stereochemistry has not been
determined yet. Natural product 1 and related natural products
3,2 4,1 and 53 are monomeric phloroglucinols4 and characterized
by the highly oxygenated 2,2,4,4-tetramethylcyclohexane-1,3-
dione framework with the vicinal diol moiety (Figure 1).
Although syntheses and biological activities of monomeric
phloroglucinol 6 and its analogs have been extensively
studied,1,5 those of 1, 3, 4, and 5 have been less studied except
for the total synthesis of 3.6 We herein report the stereoselective
synthesis of rac-1 bearing the trans-diol moiety and its cis-
isomer 2. The relative stereochemistry of the natural product 1
was confirmed as trans by NMR analyses of 1 and 2.

Retrosynthetic analysis of rac-1 featuring the diastereo-
selecive desymmetrization of 7 is depicted in Scheme 1. We
employed a hydroxy group-directing reduction of 7 to the
construction of the trans-diol moiety of 1. Ketol 7 could be
derived by oxidation of 8. Triketone 8 could originate from
phloroglucinol (9) via sequential introduction of the isobutyl
side chain and tetramethyl groups.

α-Ketol 7 was prepared from phloroglucinol (9) in seven
steps (Scheme 2). Treatment of 9 with isobutyryl chloride in the
presence of BF3¢OEt2 gave 10 in 89% yield.6 Tetramethylation
of 10 with an excess of MeI gave 11 in 71% yield. Chemo-
selective reduction of 11 with NaBH3CN7 gave ketone 8 in 39%
yield. Triketone 8 was converted to 12 in 75% yield over two
steps. The hydroxylation of 12 was achieved by epoxidation
with m-CPBA followed by an acidic hydrolysis to give ketol 7
in quantitative yield.

We next investigated the stereoselective reduction of 7.
Treatment of 7 with NaBH4 (1.0 equiv) in MeOH at 0 °C resulted
in a complex mixture of 13 and highly polar tri- and tetraols
(Scheme 3). To suppress the undesired over-reduction pathway,
NaBH(OAc)3 was employed as an alternative reagent. As
expected, the reduction smoothly took place without over-
reduction. However, a 4:1 mixture of the desired trans-diol 13
and unexpected cyclopentanone 14 which would arise from 13
by the ring constructive α-ketol rearrangement was obtained.8
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Figure 1. Structure of monomeric phloroglucinols.
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Scheme 1. Retrosynthetic analysis of 1.
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Scheme 2. Synthesis of symmetrical α-ketol 7.
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The stereochemistry of 13 was confirmed by comparison of the
NMR data of the corresponding acetate 1 with those of cis-2
which was prepared by the stereochemically defined synthetic
route via cis-dihydroxylation (Scheme 6 and Table 1). The
relative stereochemistry of cyclopentanone 14 was putatively
assigned as cis by NOESYexperiment (Supporting Information).

We have reported that the α-ketol rearrangement of 3 was
accelerated in a protic solvent.6 It was postulated that a small
amount of AcOH or triacetoxyborane derived from NaBH-
(OAc)3 would participate as a catalyst in the α-ketol rearrange-
ment of 13.9 In line with this hypothesis, we carefully examined
the reaction conditions and established an improved protocol to
provide trans-diol 13 in an efficient manner. Treatment of 7 with
0.5 equiv of NaBH4, followed by quenching of the reaction
mixture with NaHCO3, extraction with AcOEt, and concen-
tration in vacuo gave crude 13 in 82% yield. 1HNMR data of
the crude material revealed the presence of 13 as a sole product
(Supporting Information). The total synthesis of rac-1 was
achieved by the successive acetylation without purification of 13
(Scheme 4). The 1H- and 13CNMR data for synthetic rac-1 was
identical to those of the reported data (Table 1 and Table SI-1).1

Interestingly, the carbonyl group at C4 of acetate 15 was
predominantly reduced to give 16 as a single isomer, when 15
was treated with 0.5 equiv of NaBH4 at 0 °C (Scheme 5, eq 1).10

This result clearly showed that the loss of the directing effect
remarkably influenced the regioselectivity. Based on this result,
we proposed a reaction mechanism for the stereoselective
reduction of 7 involving the hydroxy group-directing effect
(Scheme 5, eq 2). Reaction of ketol 7 with NaBH4 initially
provides a putative intermediate b. Stereoselective formation of
13 would be ascribed to the preferential intramolecular hydride
attack from the upper face in the intermediate b.

To confirm the relative stereochemistry of 1, the NMR data
for rac-1 and its cis-isomer 2 were compared. cis-Isomer 2 was

prepared from 12 in accordance with the previous synthetic
procedure for triumphalone (3) (Scheme 6).6 Enol ether 12 was
reduced with DIBAL, followed by hydrolysis under acidic
conditions to give α,β-unsaturated ketone 17. Oxidation of 17
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HO

O

HO O

NaBH4
(0.5 equiv) 

MeOH
5 °C, 1.0 h 

7 13

AcO

O

O O

15

NaBH4
(0.5 equiv) 

MeOH

5 °C, 0.5 h 

AcO

O

O OH

16

O

O

O

M
H

O

b

46 % 

+ 15 
recovery 21% 4

HO

O

O O

(eq. 1)

(eq. 2)

Scheme 5. Equation 1: Reduction of acetate 15; Equation 2:
Proposed reaction mechanism for the stereoselective reduction
of 7.
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Table 1. 1HNMR data of natural product 1, synthetic rac-1 and
rac-2
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Natural product 1a 1b 2b

C2¤¤-Me 0.89 (d) 0.82 (d) 0.70 (d)
C2¤¤-Me 0.90 (d) 0.84 (d) 0.85 (d)
C2¤¤-H 1.84 (m) 1.78 (m) 1.65 (m)
C2¤-CH2 1.43 (dd) 1.38 (dd) 1.18 (dd)

1.71 (dd) 1.64 (dd) 1.46 (dd)
C1-H 5.44 (s) 5.38 (s) 5.35 (s)
C4 and C6
4 ©Me

1.42 (s) 1.35 (s) 1.27 (s)
1.33 (s) 1.27 (s) 1.27 (s)
1.15 (s) 1.08 (s) 1.25 (s)
1.10 (s) 1.04 (s) 1.01 (s)

C(=O)CH3 1.58 (s) 1.53 (s) 1.59 (s)
OH 2.80 (s) 2.75 (s) 3.89 (s)
a400MHz (C6D6), ref 1. b600MHz (C6D6).
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using 1-Me-AZADO11 provided ketone 18 in 95% yield.
Treatment of 18 with a stoichiometric amount of OsO4 gave
cis-diol 19 which exerted mostly the same reactivity as 13 in
regard to the facile α-ketol rearrangement to 14.12 Therefore, the
crude 19 was successively acetylated without purification under
the mild conditions using DMAP as a weak base to furnish 2 in
43% yield.

1HNMR data of natural product 1,1 synthetic 1 and its cis-
isomer 2 in C6D6 are depicted in Table 1. 1HNMR data for cis-2
was not identical to naturally occurring 1 and synthetic 1. In
addition, 13CNMR data of 1 and 2 are distinctly distinguishable
(Table SI-1). There results suggest that the relative stereo-
chemistry of naturally occurring 1 is trans.

In summary, the first total synthesis of rac-1 in 9 steps
from 9 was achieved. The diastereoselective desymmetrization
of symmetrical ketone 7 streamlined the synthetic process. The
relative stereochemistry of 1 was confirmed by comparison of
the NMR data of rac-1 and its cis-isomer 2. Further application
to the total synthesis of highly oxidized monomeric phloroglu-
cinols is ongoing in our laboratory.
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