research papers

Received 1 May 2019 Accepted 11 May 2019

Edited by A. R. Kennedy, University of Strathclyde, Scotland

Keywords: synthesis; heterocyclic compounds; bipyrazoles; crystal structure; disorder; hydrogen bonding; supramolecular assembly.

CCDC references: 1915426; 1915425; 1915424; 1915423; 1915422; 1915421

Supporting information: this article has supporting information at journals.iucr.org/c

© 2019 International Union of Crystallography

Conversion of substituted 5-aryloxypyrazolecarbaldehydes into reduced 3,4'-bipyrazoles: synthesis and characterization, and the structures of four precursors and two products, and their supramolecular assembly in zero, one and two dimensions

Haruvegowda Kiran Kumar,^a Hemmige S. Yathirajan,^a Nagaraj Manju,^b Balakrishna Kalluraya,^b Ravindranath S. Rathore^c and Christopher Glidewell^d*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, ^cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824 236, India, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland. *Correspondence e-mail: cg@st-andrews.ac.uk

The reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with phenols under basic conditions yields the corresponding 5-aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones vields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N-acetylated reduced bipyrazoles. Structures are reported for three 5-aryloxycarbaldehydes and the 5-piperidino analogue, and for two reduced bipyrazole products. 5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde, C₁₇H₁₃ClN₂O₂, (II), which crystallizes with Z' = 2 in the space group $P\overline{1}$, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3-methyl-5-(4-nitrophenoxy)-1-phenyl-1H-pyrazole-4-carbaldehyde, C₁₇H₁₃N₃O₄, (IV), 3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1*H*-pyrazole-4carbaldehyde, $C_{21}H_{16}N_2O_2$, (V), and 3-methyl-1-phenyl-5-(piperidin-1-yl)-1*H*pyrazole-4-carbaldehyde, C₁₆H₁₉N₃O, (VI), (3RS)-2-acetyl-5-(4-azidophenyl)-5'-(2-chlorophenoxy)-3'-methyl-1'-phenyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazole] C₂₇H₂₂ClN₇O₂, (IX) and (3RS)-2-acetyl-5-(4-azidophenyl)-3'-methyl-5'-(naphthalen-2-yloxy)-1'-phenyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazole] C₃₁H₂₅N₇O₂, (X), has Z' = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, ¹H and ¹³C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C-H···N, C- $H \cdots \pi$ and $C - C I \cdots \pi$ interactions in (II), $C - H \cdots O$ and $C - H \cdots \pi$ hydrogen bonds in (V), and $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C-H···O and C-H··· π hydrogen bonds in (IV), and by two C-H··· π hydrogen bonds in (IX). A single $C-H \cdots N$ hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds.

1. Introduction

Pyrazole derivatives exhibit a wide variety of biological activity, including antibacterial and antifungal activity (Satheesha Rai *et al.*, 2008; Isloor *et al.*, 2009; Vijesh *et al.*, 2013) and analgesic and anti-inflammatory activity (Girisha *et al.*, 2010; Isloor *et al.*, 2010; Vijesh *et al.*, 2013). In addition, the *N*-phenylpyrazole fragment is present in a number of drugs (Kramer, 2015; Alam *et al.*, 2016). As part of our programme

on the synthesis and structural characterization of pyrazole derivatives with potential biological activity, we report here the synthesis and structures of several 5-substituted 1-phenyl-pyrazole-4-carbaldehydes which have been used as precursors for the synthesis of reduced 3,4'-bipyrazoles, approached *via* the intermediate chalcones. Thus, we report the synthesis of the precursors (II), (IV), (V) and (VI), the chalcone intermediates (VII) and (VIII), and the bipyrazole products (IX) and (X), together with the structures of compounds (II), (IV)–(VI), (IX) and (X) (Scheme 1 and Figs. 1–6), which we compare with the recently reported structures of the related precursors (I) (Shahani *et al.*, 2011), (III) (Vinutha *et al.*, 2014; Glidewell *et al.*, 2017), and with those of a related intermediate

chalcone and two reduced bipyridyl products (Cuartas *et al.*, 2017). The compounds were prepared by nucleophilic substitution of 5-chloro-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde with an amine or a phenol under basic conditions to yield the precursor carbaldehydes (I)–(VI); reaction of such a precursor with an acetyl compound produces chalcone intermediates (VII) and (VIII), cyclocondensation of which with hydrazine produces the reduced bipyrazole products (IX) and (X) (Scheme 1).

2. Experimental

2.1. Synthesis and crystallization

For the synthesis of the aryloxy derivatives (II), (IV) and (V), a mixture of 5-chloro-3-methyl-1-phenyl-1*H*-pyrazole-4carbaldehyde (1.0 g, 4.5 mmol), the appropriate phenol (6.8 mmol) and solid potassium hydroxide (0.38 g, 6.8 mmol) in dimethyl sulfoxide (10 ml) was heated at 333 K for 6 h. The mixtures were then cooled to ambient temperature and poured onto crushed ice, after which the resulting solids were collected by filtration, washed with water and dried in air. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethanol. Compound (II): yield 79%, m.p. 364–366 K. Compound (IV): yield 68%, m.p. 378–379 K. Compound (V): yield 80%, m.p. 408–410 K.

For the synthesis of compound (VI), potassium carbonate (0.94 g, 6.8 mmol) was added to a well-stirred solution of piperidine (0.58 g, 6.8 mmol) in ethanol (25 ml) and stirring was continued for 30 min at ambient temperature. To this suspension, 5-chloro-3-methyl-1-phenyl-1*H*-pyrazole-4-carbal-dehyde (1.0 g, 4.5 mmol) was added and the mixture was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the excess solvent was removed under reduced pressure. The resulting solid was washed with cold water and recrystallized from ethanol to give crystals suitable for single-crystal X-ray diffraction (yield 68%, m.p. 385–387 K).

For the synthesis of the bipyrazoles (IX) and (X), the appropriate precursor [(II) for (IX) or (V) for (X)] (6.2 mmol) was added to a well-stirred solution of 4-azidoacetophenone (1.0 g, 6.2 mmol) and potassium hydroxide (0.34 g, 6.2 mmol) in ethanol (20 ml), and stirring was continued at ambient temperature for 30 min. The resulting solids were collected by filtration, washed with cold water and recrystallized from ethanol-dimethylformamide (3:1 v/v) to give the intermediates 1-(4-azidophenyl)-3-[5-(2-chlorophenoxy)-3-methyl-1phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, (VII), and 1-(4azidophenyl)-3-[5-(naphthalen-2-yloxy)-3-methyl-1-phenyl-1Hpyrazol-4-yl]prop-2-en-1-one, (VIII), respectively. Despite repeated attempts using a wide variety of solvents, we have been unable to grow crystals of compounds (VII) and (VIII) suitable for single-crystal X-ray diffraction. Compound (VII): yield 77%, m.p. 435-438 K. Compound (VIII): yield 74%, m.p. 489-490 K.

A mixture containing one of these chalcones (10 mmol) and hydrazine hydrate (15 mmol) in acetic acid (15 ml) was stirred overnight at 353 K, poured onto crushed ice (50 g) and allowed to warm to ambient temperature. The resulting solids were collected by filtration, dried in air and crystallized from ethanol–dimethylformamide (3:1 ν/ν) to give the products (IX) and (X); crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples. Compound (IX): yield 72%, m.p. 412–414 K. Compound (X): yield, 68%, m.p. 452–453 K.

Full characterization data (analysis, IR, ${}^{1}H$ and ${}^{13}C$ NMR and mass spectrometry) are provided in the supporting information for compounds (II) and (IV)–(X).

Table 1

Experimental details.

Experiments were carried out at 296 K with Mo $K\alpha$ radiation using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (*SADABS*; Bruker, 2015). H-atom parameters were constrained.

	(II)	(IV)	(V)
Crystal data			
Chemical formula	$C_{17}H_{13}CIN_2O_2$	$C_{17}H_{13}N_3O_4$	$C_{21}H_{16}N_2O_2$
$M_{\rm r}$	312.74	323.30	328.36
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$
a, b, c (Å)	10.3034 (4), 11.4856 (4), 14.4725 (5)	14.1163 (9), 11.7268 (7), 9.3982 (5)	7.7302 (6), 17.2550 (16), 13.1989 (11)
α, β, γ (°)	81.013 (2), 69.861 (2), 69.990 (2)	90, 94.259 (3), 90	90, 106.079 (2), 90
$V(\dot{A}^3)$	1509.47 (10)	1551.47 (16)	1691.7 (2)
Z	4	4	4
$\mu ({\rm mm}^{-1})$	0.26	0.10	0.08
Crystal size (mm)	$0.19 \times 0.16 \times 0.13$	$0.20\times0.15\times0.15$	$0.20\times0.16\times0.14$
Data collection			
T_{\min}, T_{\max}	0.902, 0.967	0.945, 0.985	0.954, 0.988
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	35720, 6296, 4051	28186, 3956, 2361	34394, 4311, 2711
R _{int}	0.042	0.037	0.049
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.629	0.672	0.672
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.112, 1.03	0.043, 0.121, 1.01	0.047, 0.130, 1.03
No. of reflections	6296	3956	4311
No. of parameters	425	219	227
No. of restraints	2	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.20, -0.26	0.19, -0.15	0.17, -0.25
	(VI)	(IX)	(X)
		()	()
Crystal data			
Chemical formula	$C_{16}H_{19}N_3O$	$C_{27}H_{22}CIN_7O_2$	$C_{31}H_{25}N_7O_2$
M _r	269.34	511.97	527.58
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, P1	Triclinic, P1
a, b, c (A)	8.9432 (7), 16.0546 (14),	10.8804 (4), 11.3363 (4),	10.4911 (11), 11.2048 (12),
	10.1155 (8)	11.5737 (4)	13.5943 (17)
$\alpha \beta \gamma (^{\circ})$			
<i>u</i> , <i>p</i> , <i>r</i> ()	90, 97.777 (2), 90	97.294 (2), 90.050 (2), 117.840 (2)	105.323 (3), 93.505 (3), 117.460 (3)
$V(A^3)$	90, 97.777 (2), 90 1439.0 (2)	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8)	105.323 (3), 93.505 (3), 117.460 (3) 1335.9 (3)
$V(A^3)$	90, 97.777 (2), 90 1439.0 (2) 4	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2	105.323 (3), 93.505 (3), 117.460 (3) 1335.9 (3) 2
$ \begin{array}{c} V(\dot{A}^3) \\ Z \\ \mu (\text{mm}^{-1}) \end{array} $	90, 97,777 (2), 90 1439.0 (2) 4 0.08	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19	105.323 (3), 93.505 (3), 117.460 (3) 1335.9 (3) 2 0.09
$ \begin{array}{l} & (\mu, \mu, \gamma) \\ V(\hat{A}^{3}) \\ Z \\ \mu \ (mm^{-1}) \\ Crystal size \ (mm) \end{array} $	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 × 0.17 × 0.14	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \end{array}$
$ \begin{array}{l} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 × 0.17 × 0.14	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \end{array}$
$ \begin{array}{l} & \mu & \mu \\ V\left(A^{3} \right) \\ Z \\ \mu & (mm^{-1}) \\ Crystal size (mm) \\ \end{array} $ Data collection T_{min}, T_{max}	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 $0.19 \times 0.17 \times 0.14$	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \end{array}$
$\begin{array}{l} \mu_{k}(\mu) = 0 \\ V(A^{3}) \\ Z \\ \mu_{k}(mm^{-1}) \\ Crystal size (mm) \end{array}$ Data collection T_{min}, T_{max} No. of measured, independent and observed [I > 2 $\sigma(I)$] reflections	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 0.20 \times 0.15 \times 0.10 0.950, 0.992 27358, 3000, 1869	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 $0.19 \times 0.17 \times 0.14$ 0.930, 0.973 31603, 5197, 3299	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, 0.990 \\ 16901, 5470, 2883 \\ 0.052 \end{array}$
$V(A^{3})$ Z $\mu (mm^{-1})$ Crystal size (mm) Data collection T_{min}, T_{max} No. of measured, independent and observed [I > 2\sigma(I)] reflections R_{int}	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, 0.990 \\ 16901, 5470, 2883 \\ 0.038 \\ \end{array}$
$\begin{array}{l} \mu_{k}, \mu_{k}, \gamma_{k} \\ V(\dot{A}^{3}) \\ Z \\ \mu_{k} (mm^{-1}) \\ Crystal size (mm) \\ \end{array}$ Data collection T_{min}, T_{max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections $R_{int} \\ (\sin \theta / \lambda)_{max} (\dot{A}^{-1}) \end{array}$	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047 0.629	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044 0.629	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, 0.990 \\ 16901, 5470, 2883 \\ 0.038 \\ 0.629 \end{array}$
$P_{L}(F_{n}) = P_{n}(F_{n})$ $Z = \mu \text{ (mm}^{-1)}$ Crystal size (mm) Data collection T_{min}, T_{max} No. of measured, independent and observed [I > 2\sigma(I)] reflections R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹) Refinement $P_{n}(F_{n}) = P_{n}(F_{n}) = P_{n}(F_{n}) = P_{n}(F_{n})$	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047 0.629	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044 0.629	$\begin{array}{c} 105.323 \ (3), \ 93.505 \ (3), \ 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, \ 0.990 \\ 16901, \ 5470, \ 2883 \\ 0.038 \\ 0.629 \end{array}$
$R_{int}^{(A, F_{2})}(Y) = \frac{1}{2} $	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047 0.629 0.047, 0.141, 1.05	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044 0.629	$\begin{array}{c} 105.323 \ (3), \ 93.505 \ (3), \ 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, \ 0.990 \\ 16901, \ 5470, \ 2883 \\ 0.038 \\ 0.629 \\ \end{array}$ $\begin{array}{c} 0.055, \ 0.178, \ 1.01 \\ 6470 \end{array}$
$R_{int}^{(a, b, c)} (f) = \frac{1}{2} \left(\frac{1}{2} \right)^{(a)} (f)^{(a)} $	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047 0.629 0.047, 0.141, 1.05 3000	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044 0.629 0.045, 0.126, 1.01 5197	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, 0.990 \\ 16901, 5470, 2883 \\ 0.038 \\ 0.629 \\ \end{array}$ $\begin{array}{c} 0.055, 0.178, 1.01 \\ 5470 \\ 2 \end{array}$
(a, μ_{i}^{2} , $f(\tau)$ (b) $V(\dot{A}^{3})$ (c) Z μ (mm ⁻¹) (c) μ (mm ⁻¹) (c) T_{min} , T_{max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹) Refinement $R[F^{2} > 2\sigma(F^{2})]$, $wR(F^{2})$, S No. of reflections No. of parameters No. of parameters	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047 0.629 0.047, 0.141, 1.05 3000 183	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044 0.629 0.045, 0.126, 1.01 5197 336	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, 0.990 \\ 16901, 5470, 2883 \\ 0.038 \\ 0.629 \\ \end{array}$ $\begin{array}{c} 0.055, 0.178, 1.01 \\ 5470 \\ 363 \\ \end{array}$
(a, μ , $f(\tau)$) Z μ (mm ⁻¹) Crystal size (mm) Data collection T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} (sin $\theta/\lambda)_{\max}$ (Å ⁻¹) Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters No. of restraints No. of restraints No. of restraints	90, 97, 777 (2), 90 1439.0 (2) 4 0.08 $0.20 \times 0.15 \times 0.10$ 0.950, 0.992 27358, 3000, 1869 0.047 0.629 0.047, 0.141, 1.05 3000 183 0 20, 0.10	97.294 (2), 90.050 (2), 117.840 (2) 1249.15 (8) 2 0.19 0.19 \times 0.17 \times 0.14 0.930, 0.973 31603, 5197, 3299 0.044 0.629 0.045, 0.126, 1.01 5197 336 0 2 0.045 (0.226)	$\begin{array}{c} 105.323 \ (3), 93.505 \ (3), 117.460 \ (3) \\ 1335.9 \ (3) \\ 2 \\ 0.09 \\ 0.15 \times 0.13 \times 0.12 \\ \end{array}$ $\begin{array}{c} 0.926, 0.990 \\ 16901, 5470, 2883 \\ 0.038 \\ 0.629 \\ \end{array}$ $\begin{array}{c} 0.055, 0.178, 1.01 \\ 5470 \\ 363 \\ 0 \\ 0 \\ \end{array}$

Computer programs: APEX2 (Bruker, 2015), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELX12014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps and they were then treated as riding atoms in geometrically idealized positions, with C-H = 0.93 (aromatic and formyl), 0.96 (CH₃), 0.97 (CH₂) or 0.98 Å (aliphatic), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. Small numbers of low-angle reflections which

had been attenuated by the beam stop [reflection 100 in each of (IV) and (IX), 010 in (II), 001 in (X) and 011 in (V)] were omitted from the final refinements. It was apparent from an early stage that in each of the two independent molecules of compound (II) the formyl group was disordered over two sets of atomic sites having unequal occupancies. For the minordisorder component of each molecule, the bonded distances and the 1,3 nonbonded distances were restrained to be the same as the corresponding distances in the major form, subject

Figure 1

The structures of the two independent molecules in compound (II), showing the atom-labelling scheme and the disorder of the carbaldehyde groups. The major disorder components are drawn using full lines and the minor components are drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for corresponding pairs of partial-occupancy formyl C-atom sites (C141/C341 and C241/C441) were constrained to be the same; subject to these conditions, the occupancies of the two sets of atomic sites refined to 0.682 (6) and 0.318 (6) in molecule 1, and to 0.536 (5) and 0.464 (5) in molecule 2.

3. Results and discussion

Compound (II) crystallizes with Z' = 2 in the space group $P\overline{1}$, but a search for possible additional symmetry revealed none; all of the other compounds discussed here crystallize with Z' =1. In addition, both molecules in compound (II) exhibit orientation disorder of the carbaldehyde units, where the two disorder components are related by a rotation of *ca* 180° about the exocyclic C–C bonds (Fig. 1); in the crystal selected for data collection, the occupancies of the disorder components are 0.682 (6) and 0.318 (6) in the type 1 molecule containing atom N11, and 0.536 (5) and 0.464 (5) in the type 2 molecule containing atom N21. By contrast, the molecules in all of the other compounds considered here are fully ordered.

None of the compounds exhibits any internal symmetry, so that all of them are conformationally chiral, but the space groups (Table 1) confirm that all have crystallized as racemic mixtures. The reference molecules were selected such that all have the same sign for the torsion angle Nx2-Nx1-Cx11-Cx12, where x is 1 or 2 for compound (II), and nul otherwise. In addition, compounds (IX) and (X) both contain a stereogenic centre at atom C43 (Figs. 5 and 6), and in the selected reference molecules, this atom has the *S* configuration. In each of the products (IX) and (X), the reduced pyrazole ring is very slightly puckered out of planarity, with ring-puckering amplitudes (Cremer & Pople, 1975) of 0.120 (3) Å in (IX) and

The molecular structure of compound (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

0.094(3) Å in (X), with ring conformations intermediate between the envelope and half-chair forms.

The two independent molecules of compound (II) are involved in entirely different types of hydrogen bonding (Table 2). Inversion-related pairs of type 1 molecules are linked by a pair of $C-H\cdots N$ hydrogen bonds to form a cyclic centrosymmetric dimer characterized by an $R_2^2(14)$ (Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) motif and centred at $(\frac{1}{2}, 0, 1)$. The type 2 molecules form a second type of centrosymmetric dimer containing inversion-related C- $H\cdots \pi$ (arene) hydrogen bonds and centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. These two hydrogen-bonded dimers are linked by a $C-Cl\cdots \pi$ (pyr-

The molecular structure of compound (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4

The molecular structure of compound (VI), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

(pyrazole) interaction, where the Cl···centroid distance of 3.4275 (11) Å is somewhat shorter than the typical value of 3.6 Å (Imai *et al.*, 2008) found for C–Cl··· π (arene) interactions. Propagation of these interactions by inversion and translation then generates a complex chain of rings running parallel to the [011] direction (Fig. 7).

The supramolecular assembly in compound (IV) takes the form of a complex sheet built from three independent C– $H\cdots O$ hydrogen bonds, together with a C– $H\cdots \pi$ (arene) hydrogen bond (Table 2), but the analysis of the assembly can be simplified by the identification of simple substructures (Ferguson *et al.*, 1998*a*,*b*; Gregson *et al.*, 2000). The hydrogen bond having atom C14 as the donor links molecules related by the 2₁ screw axis along $(\frac{1}{2}, y, \frac{1}{4})$ to form a C(14) chain running

 Table 2

 Hydrogen-bond parameters (Å, °).

Cg1 represents the centroid of the C211–C216 ring, Cg2 the centroid of the C11–C16 ring and Cg3 the centroid of the N1/N2/C3–C5 ring.

Compound	$D - \mathbf{H} \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
(II)	$C156-H156\cdots N12^{i}$	0.93	2.59	3.433 (3)	152
	$C255-H255\cdots Cg1^{ii}$	0.93	2.80	3.635 (3)	140
(III)	$C52-H52\cdots O41^{iii}$	0.93	2.59	3.509 (3)	171
	$C56-H56\cdots Cg2^{ii}$	0.93	2.64	3.483 (3)	152
(IV)	$C14-H14\cdots O412^{iv}$	0.93	2.57	3.330 (3)	139
	$C52-H52\cdots O41^{v}$	0.93	2.53	3.456 (2)	174
	$C55-H55\cdots O411^{vi}$	0.93	2.50	3.259 (3)	139
	$C53-H53\cdots Cg2^{vii}$	0.93	2.84	3.564 (2)	135
(V)	$C51 - H51 \cdots O41^{viii}$	0.93	2.50	3.386 (2)	160
	$C12-H12\cdots Cg3^{ii}$	0.93	2.96	3.4804 (17)	117
	$C53-H53\cdots Cg2^{ii}$	0.93	2.78	3.6477 (19)	155
(VI)	$C15-H15\cdots Cg3^{ix}$	0.93	2.97	3.848 (3)	159
	$C52-H52A\cdots Cg2^{x}$	0.97	2.96	3.761 (3)	140
(IX)	$C14-H14\cdots N451^{xi}$	0.93	2.58	3.378 (5)	144
	C55−H55···O421 ^{xii}	0.93	2.59	3.228 (4)	126
(X)	$C44 - H44A \cdots N2^{ii}$	0.97	2.60	3.397 (4)	139

Symmetry codes: (i) -x + 1, y, -z + 2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (v) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (vi) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (vii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (viii) x + 1, y, z; (ix) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (x) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (xi) -x + 1, -y + 1, -z; (xii) -x + 2, -y + 2, -z + 1.

parallel to the [010] direction, and that having atom C55 as the donor links molecules related by the 2_1 screw axis along $(\frac{1}{2}, y, \frac{3}{4})$ into a C(5) chain, also running parallel to [010]. In combination, these two motifs give rise to a sheet of $R_4^4(34)$ rings lying parallel to (100) and spanning the entire domain 0 < x < 1 (Fig. 8). A second sheet of this type, related to the first by inversion also spans the domain 0 < x < 1, so that these two sheets are interwoven. The two sheets are linked into a bilayer structure by a chain-of-rings motif built from $C-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds and running parallel to the [001] direction (Fig. 9); however, there are no direction-specific interactions between adjacent bilayers, so that the supramolecular assembly is strictly two-dimensional.

The molecules of compound (V) are linked into a ribbon in the form of a chain of rings by a combination of $C-H \cdots O$ and

Figure 5

The molecular structure of compound (IX), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6

The molecular structure of compound (X), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 7

Part of the crystal structure of compound (II), showing the formation of a chain running parallel to the $[01\overline{1}]$ direction and built from $C-H\cdots N$ and $C-H\cdots \pi$ (arene) hydrogen bonds and $C-Cl\cdots \pi$ (pyrazole) interactions. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Two $C-H\cdots\pi$ hydrogen bonds, one having the pyrazole ring as the acceptor and the other having the *N*-phenyl ring as the acceptor, link the molecules of compound (VI) into sheets whose formation is readily analysed in terms of two onedimensional (1D) substructures. Molecules related by the *n*-glide plane at $y = \frac{3}{4}$ are linked by the $C-H\cdots\pi(\text{pyrazole})$ hydrogen bond to form a chain running parallel to the [101] direction, and molecules related by the 2_1 screw axis along $(\frac{1}{4}, y, \frac{3}{4})$ are linked by the $C-H\cdots\pi(\text{arene})$ hydrogen bond to form a second chain, this time running parallel to the [010] direction. The combination of chains along [010] and [101] generates a sheet lying parallel to (101) (Fig. 11).

The structures of the reduced bipyrazoles (IX) and (X) contain no C-H··· π hydrogen bonds. In compound (IX), a combination of C-H···N and C-H···O hydrogen bonds (Table 2) links the molecules into a chain of rings running parallel to [111] in which $R_2^2(22)$ rings containing C-H···O hydrogen bonds and centred at $(n, n, n - \frac{1}{2})$ alternate with $R_2^2(32)$ rings containing C-H···N hydrogen bonds and centred at $(n + \frac{1}{2}, n + \frac{1}{2}, n)$, where *n* represents an integer in each case (Fig. 12). By contrast, the very simple supra-

Figure 8

Part of the crystal structure of compound (IV), showing the formation of a sheet lying parallel to (100) and built from $C-H\cdots O$ hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Part of the crystal structure of compound (IV), showing the formation of a chain of rings running parallel to [001] and built from $C-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

research papers

Figure 10

Part of the crystal structure of compound (V), showing the formation of a chain of rings running parallel to the [100] direction and built from C– $H \cdots O$ and C– $H \cdots \pi$ (arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

molecular assembly in compound (X) is based on a single hydrogen bond of $C-H\cdots N$ type which links inversion-related pairs of molecules into centrosymmetric $R_2^2(12)$ dimers (Fig. 13).

Overall, therefore, the supramolecular assembly is finite, or zero-dimensional (0D), in compound (X), 1D in each of compounds (II), (V) and (IX), and two-dimensional (2D) in compounds (IV) and (VI).

It is worthwhile briefly comparing the supramolecular assembly in the compounds reported here with that in the structures of some related compounds. In the starting material 5-chloro-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde, inversion-related pairs of molecules are linked by paired C– $H\cdots$ O hydrogen bonds to form $R_2^2(16)$ dimers, which are linked into sheets by a C– $H\cdots\pi$ (arene) hydrogen bond (Trilleras *et al.*, 2005). 3-Methyl-5-phenoxy-1-phenyl-1*H*-pyrazole-4-carbaldehyde, (I) (see Scheme 1), can be regarded as the unsubstituted parent compound for the substituted compounds (II)–(V). Both C– $H\cdots$ N and C– $H\cdots$ O hydrogen bonds are absent from the structure, but inversion-related pairs of molecules are linked into centrosymmetric dimers by C– $H\cdots\pi$ (arene) hydrogen bonds (Shahani *et al.*, 2011).

The structure of 5-(4-chlorophenoxy)-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde, (III), has been reported recently (Vinutha *et al.*, 2014), but the structure description given was both sparse and incomplete. We have now taken the opportunity to redetermine this structure, using a rather larger data

Figure 11

Part of the crystal structure of compound (VI), showing the formation of a sheet lying parallel to $(10\overline{1})$ and built from $C-H\cdots\pi(pyrazole)$ and $C-H\cdots\pi(arene)$ hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Figure 12

Part of the crystal structure of compound (IX), showing the formation of a chain of rings running parallel to the [111] direction and built from C– $H \cdots O$ and C– $H \cdots N$ hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Part of the crystal structure of compound (X), showing the formation of a cyclic dimer. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).

set and it is this determination to which we now refer (Glidewell *et al.*, 2019). A combination of $C-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds links the molecules of (III) into a chain of rings running parallel to the [010] direction, in which centrosymmetric dimers built from $C-H\cdots \pi$ (arene) hydrogen bonds and centred at $(\frac{1}{2}, n + \frac{1}{2}, \frac{1}{2})$ alternate with centrosymmetric rings containing four hydrogen bonds, two each of

Figure 14

Part of the crystal structure of compound (III), showing the formation of a chain of rings running parallel to the [010] direction and built from C– $H \cdots O$ and C– $H \cdots \pi$ (arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Part of the crystal structure of compound (III), showing the formation of a chain parallel to the [100] direction and built from $C-Cl\cdots\pi(pyrazole)$ interactions. The $Cl\cdots(ring \text{ centroid})$ contacts are drawn as tapered lines and, for the sake of clarity, H atoms have all been omitted.

C-H··· π (arene) and C-H···O types and centred at $(\frac{1}{2}, n, \frac{1}{2})$, where *n* represents an integer in each case (Fig. 14). In addition, molecules related by translation along [100] are linked into chains (Fig. 15) by a C-Cl··· π (pyrazole) interaction, with geometric parameters Cl··· $Cg^i = 3.5143$ (11) Å and C-Cl··· $Cg^i = 112.54$ (8)° [*Cg* represents the centroid of the pyrazole ring; symmetry code: (i) x - 1, y, z]. The combination of the chains along [100] and [010] generates a sheet lying parallel to (001).

The molecules of compound (XI) are linked by a single C– H···O hydrogen bond to form chains (Sunitha *et al.*, 2016), and those of compound (XII) are linked into a chain of rings by a combination of C–H···N and C–H··· π (arene) hydrogen bonds (Cuartas *et al.*, 2017). Two reduced 3,4'-bipyrazoles derived from compound (XII) are linked, respectively, into a chain of rings and a sheet (Cuartas *et al.*, 2017).

In summary, $C-H \cdots N$ hydrogen bonds are present in the structures of compounds (I), (II), (IX), (X) and (XII), $C-H \cdots O$ hydrogen bonds are present in (III) (V), (IX) and (XI), $C-H \cdots \pi$ hydrogen bonds are present in (I)–(VI) and (XII), but $C-Cl \cdots \pi$ interactions are present only in (II). Thus, quite modest changes in molecular constitution can give rise to significant changes in the spectrum of direction-specific intermolecular interactions and hence in the patterns of supramolecular assembly.

Acknowledgements

HKK is grateful to the University of Mysore for research facilities. RSR thanks SAIF, IIT, Madras, for provision of the X-ray facility. HKK is grateful to the UGC–BSR for a stipend.

HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

- Alam, R., Wahi, D., Singh, R., Sinha, D., Tandon, V., Grover, A. & Rahisuddin (2016). *Bioorg. Chem.* **69**, 77–90.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Cuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). *Acta Cryst.* C73, 784–790.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). *Eur. J. Med. Chem.* **45**, 4640–4644.
- Glidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). *CSD communication* (deposition number 1897876). CCDC, Cambridge, England.

- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.
- Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.
- Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). *Eur. J. Med. Chem.* 44, 3784–3787.
- Isloor, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830.
- Kramer, C. S. (2015). Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation (RSC Drug Discovery Series), pp. 4–8. Cambridge: Royal Society of Chemistry.
- Satheesha Rai, N., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.
- Shahani, T., Fun, H.-K., Shetty, S. & Kalluraya, B. (2011). *Acta Cryst.* E67, o2646.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sunitha, V. M., Manju, N., Naveen, S., Kalluraya, B., Lokanath, N. K. & Manjunath, H. R. (2016). *IUCrData*, 1, x161593.
- Trilleras, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). *Acta Cryst.* E61, o1055–o1057.
- Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415.
- Vinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, 0560.

Acta Cryst. (2019). C75, 768-776 [https://doi.org/10.1107/S2053229619006752]

Conversion of substituted 5-aryloxypyrazolecarbaldehydes into reduced 3,4'-bipyrazoles: synthesis and characterization, and the structures of four precursors and two products, and their supramolecular assembly in zero, one and two dimensions

Haruvegowda Kiran Kumar, Hemmige S. Yathirajan, Nagaraj Manju, Balakrishna Kalluraya, Ravindranath S. Rathore and Christopher Glidewell

Computing details

For all structures, data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2009).

5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde (II)

Crystal data

C₁₇H₁₃CIN₂O₂ $M_r = 312.74$ Triclinic, $P\overline{1}$ a = 10.3034 (4) Å b = 11.4856 (4) Å c = 14.4725 (5) Å a = 81.013 (2)° $\beta = 69.861$ (2)° $\gamma = 69.990$ (2)° V = 1509.47 (10) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine focus sealed tube Graphite monochromator Detector resolution: 0.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2015) $T_{min} = 0.902, T_{max} = 0.967$ Z = 4 F(000) = 648 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7620 reflections $\theta = 1.5-28.5^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.19 \times 0.16 \times 0.13 \text{ mm}$

35720 measured reflections 6296 independent reflections 4051 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.6^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2 + 0.7109P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
6296 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
425 parameters	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Characterisation data for compounds (II) and (IV) - (X).

Compound (II). . IR (KBr, cm⁻¹) 1717 (C=O), 1566 (C=N). NMR (CDCl₃) δ (¹H) 2.56 (s, 3H, CH₃), 6.92 (dd, 1H, J=0.80 Hz, J= 6.44 Hz, H2 of 2-chlorophenyl), 7.09 (m, 1H, 2-chlorophenyl), 7.17 (m, 1H, 2-chlorophenyl), 7.34 (t, 1H, 2-chlorophenyl), 7.43 (t, 3H, H3,H4,H5 of N-phenyl), 7.69 (d, 2H, J=6.40 Hz, H2, H6 of N-phenyl), 9.54 (s, 1H, aldehyde); δ (¹³C) 14.60 (CH₃), 108.77, 117.17, 122.87, 122.87, 123.58, 125.79, 128.12, 128.27, 129.28, 131.25, 136.80, 150.86, 151.88, 152.21, 182.73 (aldehyde). MS (m/z) 313/315 (M⁺ + 1). Analysis: found C 65.3, H 4.3, N 8.9%; C₁₇H₁₃ClN₂O₂ requires C 65.3, H 4.2, N 9.0%.

Compound (IV). IR (KBr, cm⁻¹) 1667 (C=O), 1610 (C=N), 1545 (NO₂), 1340 (NO₂). NMR (CDCl₃) δ (¹H) 2.61 (s, 3H, CH₃), 7.12 (d, 2H, J= 4.44 Hz, H2,H6 of N-phenyl), 7.43-7.46 (m, 3H, H3,H4,H5 of N-phenyl), 7.59 (d, 2H, J=7.42 Hz) and 8.23 (d, 2H, J= 7.42 Hz) (AB, 4-nitrophenyl), 9.78 (s, 1H, aldehyde); δ (¹³C) 13.96 (CH₃), 109.36, 116.17, 122.85, 126.25, 128.62, 129.50, 136.34, 144.16, 149.16, 151.30, 160.70, 182.43 (aldehyde). MS (m/z) 324 (M⁺ + 1). Analysis: found C 63.3, H 4.0, N 12.7%; C₁₇H₁₃N₃O₄ requires C 63.2, H 4.1, N 13.0%.

Compound (V). IR (KBr, cm⁻¹) 1719 (C=O), 1555 (C=N). NMR (CDCl₃) δ (¹H) 2.31 (s, 3H, CH₃), 7.28 (m, 3H, Ar-H), 7.40 (m, 4H, Ar-H), 7.68 (d, 2H, J=6.80 Hz, Ar-H), 7.71 (d, 1H, J=6.40 Hz, Ar-H), 7.83 (d, 1H, J=6.40 Hz, Ar-H), 7.85 (d, 1H, J=7.20 Hz, Ar-H), 9.65 (s, 1H, aldehyde); δ (¹³C) 14.62 (CH₃), 109.09, 111.60, 116.87, 122.77, 125.57, 127.25, 127.32, 127.86, 128.07, 129.29, 130.61, 130.77, 133.90, 136.92, 150.93, 152.39, 154.88, 183.09 (aldehyde). MS (m/z) 329 (M⁺ + 1). Analysis: found C 76.8, H 5.0, N 8.6%; C₂₁H₁₆N₂O₂ requires C 76.8, H 4.9, N 8.5%.

Compound (VI). IR (KBr, cm⁻¹) 1722 (C=O), 1534 (C=N). NMR (CDCl₃) δ (¹H) 2.32 (s, 3H, CH₃), 2.98-3.67 (m, 10H, piperidine), 6.97 (d, 2H, J= 7.87 Hz, H2,H6 of N-phenyl), 7.24 (m, 3H, H3,H4,H5 of N-phenyl), 9.70 (s, 1H, aldehyde); δ (¹³C) 12.97 (CH₃), 45.65 (CH₂), 57.51(CH₂), 125.76, 126.8,127.43, 128.69, 129.86, 136.43, 145.39, 148.21, 151.27, 183.43 (aldehyde). MS (m/z) 270 (M⁺ + 1). Analysis: found C 71.4, H 7.0, N 15.5%; C₁₆H₁₉N₃O requires C 71.3, H 7.1, N 15.6%.

Compound (VII). IR (KBr, cm⁻¹) 2359 (azide), 1650 (C=O), 1592 (C=N). NMR (CDCl₃) δ ⁽¹H) 2.52 (s, 3H, CH₃), 6.62 (d, 1H, Ar-H), 6.90 (d, 1H, J= 15.80 Hz, oalkenic H), 6.98 (d, 2H, J=8.64 Hz, H2, H6 of azidophenyl), 7.03 (m, 2H, Ar-H), 7.28 (d, 2H, J= 8.64 Hz, H3,H5 of azidophenyl), 7.36 (m, 2H, Ar-H), 7.55 (d, 1H, J=15.80 Hz, alkenic H), 7.60 (m, 4H, Ar-H). MS (m/z) 456 (M⁺ + 1) for C₂₅H₁₈³⁵ClN₅O₂. Analysis: found C 66.0, H 4.0, N 15.5%; C₂₅H₁₈ClN₅O₂ requires C 65.9, H 4.0, N 15.4%.

Compound (VIII). IR (KBr, cm⁻¹) 2354 (azide), 1676 (C=O), 1565 (C=N). NMR (CDCl₃) δ (¹H) : 2.56 (s, 3H, CH₃), 6.67 (m, 2H, Ar-H), 6.96 (d, 1H, J= 15.80 Hz, alkenic H), 7.06 (d, 2H, J=8.58 Hz, H2,H6 of azidophenyl), 7.10 (m, 3H, Ar-H), 7.26 (d, 2H, J= 8.64 Hz, H3,H5 of azidophenyl), 7.43 (m, 2H, Ar-H), 7.58 (d, 1H, J=15.80 Hz, alkenic H), 7.60 (m, 5H, Ar-H). MS (m/z) 472 (M⁺ + 1). Analysis: found C 74.0, H 4.4, N 14.7%; C₂₉H₂₁N₅O₂ requires C 73.9, H 6.5, N 14.9%. Compound (IX). IR (KBr, cm⁻¹) 2359 (azide), 1650 (C=O), 1592 (C=N). NMR (CDCl₃) δ (¹H) 2.02 (s, 3H, acyl CH₃), 2.42 (s, 3H, CH₃), 3.26 (dd, J=5.1 Hz & 17.4 Hz, 1H, -CH₂), 3.57 (dd, J=12.3 Hz and 17.4 Hz, 1H, -CH₂), 5.37 (dd, J=5.1

Hz and 12.3 Hz, 1H, -CH), 6.62 (d, J=8.1 Hz, 1H, Ar-H), 7.18 (d, J= 7.8 Hz, 2H, H2 and H6 of azidophenyl), 7.32 (m, 4H, Ar-H), 7.38 (m, 4H, Ar-H), 7.44(d, J= 7.8 Hz, 2H, H3 and H5 of azidophenyl); *δ*(¹³C) 12.93 (CH₃, acetyl), 22.46 (CH₃, pyrazole), 52.18 (CH₂, pyrazoline), 54.91 (-CH, pyrazoline), 109.09, 111.60, 116.87, 122.77, 125.57, 127.25, 127.32, 127.86, 128.07, 129.29, 130.61, 130.77, 131.28 133.90, 136.92, 138.54, 150.93, 152.39, 155.87, 158.92, 171.24 (C=O). MS (m/z) 512/514 (M⁺ + 1). Analysis: found C 63.4, H 4.3, N 19.2%; C₂₇H₂₂ClN₇O₂ requires C 63.3, H 4.4, N 19.2%.

Compound (X). IR (KBr, cm⁻¹) 2365 (azide), 1698 (C=O),1587 (C=N). NMR (CDCl₃) δ (¹H) 2.12 (s, 3H, acyl CH₃), 2.42 (s, 3H, CH₃), 3.27 (dd, J=5.2 Hz and 17.1 Hz, 1H, -CH₂), 3.53 (dd, J=12.4 Hz and 17.1 Hz, 1H, -CH₂), 5.33 (dd, J=5.0 Hz and 12.4 Hz, 1H, -CH), 6.62 (m, 3H, Ar-H), 7.13 (d, J=7.7 Hz, 2H, H2,H6 of azidophenyl), 7.28 (m, 4H, Ar-H), 7.39 (m, 5H, Ar-H), 7.40 (d, J=7.6 Hz, 2H, H3,H5 of azidophenyl); δ (¹³C) 12.28 (CH₃ acetyl), 22.40 (CH₃, pyrazole), 51.12 (CH₂, pyrazoline), 53.78 (-CH, pyrazoline), 108.13, 111.60, 117.85, 121.77, 127.56, 127.88, 128.42, 128.68, 128.97, 129.39, 130.68, 131.54, 132.23, 132.69, 133.77, 134.28 135.87, 136.72, 137.54, 149.93, 152.22, 155.86, 157.92, 172.30 (C=O). MS (m/z) 528 (M⁺ + 1). Analysis: found C 70.4, H 4.6, N 18.8%; C₃₁H₂₅N₇O₂ requires C 70.6, H 4.8, N 18.6%. **Geometry**. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

					0 (1)
	x	УУ	Z	$U_{\rm iso} * / U_{\rm eq}$	Occ. (<1)
N11	0.46537 (19)	0.20203 (16)	0.97485 (11)	0.0428 (4)	
N12	0.4865 (2)	0.14789 (18)	1.06314 (12)	0.0481 (5)	
C13	0.6283 (3)	0.1122 (2)	1.04671 (15)	0.0471 (5)	
C14	0.7027 (2)	0.1431 (2)	0.94887 (15)	0.0478 (5)	
C15	0.5939 (2)	0.1991 (2)	0.90689 (14)	0.0436 (5)	
C111	0.3208 (2)	0.2481 (2)	0.96916 (14)	0.0427 (5)	
C112	0.2864 (3)	0.3315 (3)	0.8960 (2)	0.0814 (9)	
H112	0.3575	0.3598	0.8483	0.098*	
C113	0.1451 (3)	0.3729 (4)	0.8937 (2)	0.1052 (13)	
H113	0.1222	0.4283	0.8432	0.126*	
C114	0.0389 (3)	0.3349 (3)	0.9633 (2)	0.0826 (9)	
H114	-0.0562	0.3641	0.9612	0.099*	
C115	0.0738 (3)	0.2535 (3)	1.0363 (2)	0.0741 (8)	
H115	0.0016	0.2271	1.0847	0.089*	
C116	0.2138 (3)	0.2094 (2)	1.03989 (17)	0.0596 (7)	
H116	0.2360	0.1534	1.0903	0.072*	
C131	0.6907 (3)	0.0485 (3)	1.12701 (17)	0.0652 (7)	
H13A	0.6134	0.0426	1.1862	0.098*	
H13B	0.7447	0.0952	1.1386	0.098*	
H13C	0.7541	-0.0332	1.1079	0.098*	
0151	0.60317 (16)	0.24826 (13)	0.81410 (10)	0.0502 (4)	
C151	0.6655 (2)	0.1640 (2)	0.73937 (14)	0.0392 (5)	
C152	0.7316 (2)	0.2059 (2)	0.64638 (15)	0.0437 (5)	
Cl12	0.74176 (7)	0.35534 (6)	0.62745 (5)	0.0646 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C153	0.7915 (3)	0.1277(3)	0.56909 (17)	0.0627 (7)	
H153	0.8371	0.1554	0.5063	0.075*	
C154	0.7838 (3)	0.0093 (3)	0.5845 (2)	0.0704 (8)	
H154	0.8236	-0.0431	0 5322	0.085*	
C155	0.7176 (3)	-0.0324(2)	0.6772(2)	0.0604 (7)	
H155	0 7133	-0.1132	0.6875	0.072*	
C156	0.6578(2)	0.0449(2)	0 75491 (17)	0.072 0.0486 (5)	
H156	0.6123	0.0169	0.8176	0.058*	
C141	0.8530 (8)	0.1221 (15)	0.9098(7)	0.056(2)	0.682 (6)
H141	0.9112	0.0811	0.9492	0.067*	0.682(6)
0141	0.9129(3)	0.1571 (3)	0.8223(2)	0.0759(12)	0.682(6)
C341	0.9129(3) 0.865(2)	0.1371(5) 0.133(4)	0.8223(2)	0.0759(12)	0.002(0) 0.318(6)
H341	0.8920	0.1666	0.8217	0.067*	0.318(6)
0341	0.9538 (8)	0.0736 (8)	0.9322 (6)	0.108 (3)	0.318(0) 0.318(6)
N21	0.35991(17)	0.30621 (16)	0.36519(12)	0.100(3)	0.510(0)
N22	0.33331(17) 0.25244(19)	0.36825(17)	0.30317(12) 0.32225(13)	0.0333 (4) 0.0464 (4)	
C23	0.23244(17) 0.3205(2)	0.30025(17) 0.4062(2)	0.32223(15) 0.23383(16)	0.0466(5)	
C24	0.5205(2) 0.4720(2)	0.4002(2) 0.3700(2)	0.21647 (16)	0.0400(5)	
C25	0.4720(2) 0.4906(2)	0.3700(2) 0.30728(19)	0.21047(10) 0.30224(16)	0.0470(5)	
C211	0.4900(2) 0.3173(2)	0.30720(19) 0.25752(19)	0.30224(10) 0.46428(15)	0.0412(5)	
C212	0.5175(2) 0.4180(3)	0.23732(17) 0.1774(2)	0.50657 (19)	0.0414(3) 0.0653(7)	
H212	0.5163	0.1524	0.4705	0.078*	
C213	0.3710(3)	0.1321 0.1348(3)	0.6031(2)	0.0796 (9)	
H213	0.4389	0.0821	0.6320	0.096*	
C214	0.2275(3)	0.1683 (3)	0.65666 (19)	0.090	
H214	0.1974	0.1383	0.7214	0.082*	
C215	0.1287(3)	0.2464(3)	0.61408 (18)	0.0627 (7)	
H215	0.0303	0.2693	0.6502	0.075*	
C216	0.1720(2)	0.2920 (2)	0.51849(17)	0.0525 (6)	
H216	0.1034	0.3459	0.4906	0.063*	
C231	0.2365 (3)	0.4796 (3)	0.16684 (19)	0.0674 (7)	
H23A	0.2393	0.5633	0.1593	0.101*	
H23B	0.1374	0.4795	0.1944	0.101*	
H23C	0.2787	0.4432	0.1037	0.101*	
0251	0.61405 (15)	0.24538 (14)	0.32537 (12)	0.0525 (4)	
C251	0.6978 (2)	0.3141 (2)	0.33282 (15)	0.0417 (5)	
C252	0.8440 (2)	0.2532 (2)	0.31538 (14)	0.0414 (5)	
C122	0.91523 (7)	0.10054 (6)	0.28375 (5)	0.06481 (19)	
C253	0.9323 (2)	0.3149 (2)	0.32515 (16)	0.0532 (6)	
H253	1.0313	0.2744	0.3131	0.064*	
C254	0.8744 (3)	0.4354 (2)	0.35251 (18)	0.0579 (6)	
H254	0.9342	0.4764	0.3593	0.070*	
C255	0.7287 (3)	0.4961 (2)	0.36995 (19)	0.0615 (7)	
H255	0.6899	0.5782	0.3882	0.074*	
C256	0.6397 (3)	0.4354 (2)	0.36030 (18)	0.0551 (6)	
H256	0.5408	0.4762	0.3723	0.066*	
C241	0.5717 (19)	0.386 (3)	0.1239 (9)	0.056 (2)	0.536 (5)
H241	0.5400	0.4223	0.0703	0.067*	0.536 (5)
					- (-)

O241	0.7078 (4)	0.3480 (4)	0.1156 (3)	0.0786 (15)	0.536 (5)
C441	0.599 (2)	0.392 (3)	0.1335 (10)	0.056 (2)	0.464 (5)
H441	0.6916	0.3673	0.1403	0.067*	0.464 (5)
O441	0.5767 (6)	0.4465 (6)	0.0535 (4)	0.113 (2)	0.464 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	0.0443 (10)	0.0524 (11)	0.0300 (9)	-0.0158 (9)	-0.0112 (8)	0.0035 (8)
N12	0.0519 (12)	0.0614 (12)	0.0318 (9)	-0.0195 (10)	-0.0155 (8)	0.0057 (8)
C13	0.0515 (14)	0.0541 (14)	0.0388 (12)	-0.0170 (11)	-0.0174 (10)	-0.0015 (10)
C14	0.0457 (13)	0.0535 (14)	0.0423 (12)	-0.0145 (11)	-0.0118 (10)	-0.0034 (10)
C15	0.0487 (13)	0.0452 (13)	0.0325 (11)	-0.0145 (10)	-0.0077 (10)	-0.0011 (9)
C111	0.0422 (12)	0.0479 (13)	0.0356 (11)	-0.0110 (10)	-0.0129 (9)	-0.0005 (9)
C112	0.0538 (16)	0.103 (2)	0.0669 (18)	-0.0174 (16)	-0.0176 (14)	0.0357 (16)
C113	0.064 (2)	0.143 (3)	0.078 (2)	-0.012 (2)	-0.0293 (17)	0.050(2)
C114	0.0500 (16)	0.113 (3)	0.0722 (19)	-0.0116 (16)	-0.0251 (15)	0.0127 (18)
C115	0.0460 (15)	0.102 (2)	0.0664 (17)	-0.0250 (15)	-0.0129 (13)	0.0129 (16)
C116	0.0484 (14)	0.0775 (18)	0.0460 (13)	-0.0194 (13)	-0.0133 (11)	0.0129 (12)
C131	0.0687 (17)	0.0828 (19)	0.0498 (14)	-0.0209 (15)	-0.0307 (13)	0.0031 (13)
O151	0.0590 (10)	0.0459 (9)	0.0311 (7)	-0.0088(7)	-0.0052 (7)	0.0018 (6)
C151	0.0341 (11)	0.0475 (13)	0.0320 (10)	-0.0079 (9)	-0.0111 (9)	0.0005 (9)
C152	0.0381 (12)	0.0499 (13)	0.0367 (11)	-0.0085 (10)	-0.0112 (9)	0.0032 (9)
Cl12	0.0620 (4)	0.0567 (4)	0.0602 (4)	-0.0174 (3)	-0.0106 (3)	0.0168 (3)
C153	0.0635 (16)	0.080(2)	0.0361 (13)	-0.0148 (14)	-0.0116 (11)	-0.0040 (12)
C154	0.0738 (19)	0.077 (2)	0.0599 (17)	-0.0080 (15)	-0.0254 (14)	-0.0264 (15)
C155	0.0668 (17)	0.0510 (15)	0.0746 (18)	-0.0167 (13)	-0.0360 (14)	-0.0057 (13)
C156	0.0488 (13)	0.0539 (14)	0.0459 (12)	-0.0179 (11)	-0.0192 (11)	0.0044 (11)
C141	0.048 (2)	0.072 (4)	0.042 (6)	-0.021 (2)	-0.009(3)	0.008 (4)
O141	0.0554 (18)	0.098 (2)	0.059 (2)	-0.0294 (16)	0.0018 (14)	0.0044 (16)
C341	0.048 (2)	0.072 (4)	0.042 (6)	-0.021 (2)	-0.009 (3)	0.008 (4)
O341	0.059 (5)	0.133 (7)	0.128 (7)	-0.015 (4)	-0.039 (4)	-0.006 (5)
N21	0.0334 (9)	0.0457 (10)	0.0446 (10)	-0.0131 (8)	-0.0175 (8)	0.0005 (8)
N22	0.0387 (10)	0.0550 (12)	0.0527 (11)	-0.0157 (9)	-0.0249 (9)	0.0045 (9)
C23	0.0479 (13)	0.0491 (13)	0.0492 (13)	-0.0172 (11)	-0.0216 (11)	0.0000 (10)
C24	0.0467 (13)	0.0522 (14)	0.0446 (12)	-0.0192 (11)	-0.0142 (10)	-0.0010 (10)
C25	0.0333 (11)	0.0424 (12)	0.0511 (12)	-0.0118 (9)	-0.0153 (10)	-0.0062 (10)
C211	0.0394 (12)	0.0421 (12)	0.0467 (12)	-0.0150 (10)	-0.0168 (10)	-0.0004 (9)
C212	0.0447 (14)	0.0747 (18)	0.0599 (15)	-0.0051 (13)	-0.0168 (12)	0.0132 (13)
C213	0.0627 (18)	0.089 (2)	0.0703 (18)	-0.0095 (16)	-0.0279 (15)	0.0285 (16)
C214	0.0727 (19)	0.0770 (19)	0.0540 (15)	-0.0289 (15)	-0.0204 (14)	0.0171 (13)
C215	0.0492 (15)	0.0786 (19)	0.0573 (15)	-0.0269 (14)	-0.0099 (12)	0.0060 (13)
C216	0.0411 (13)	0.0624 (15)	0.0563 (14)	-0.0176 (11)	-0.0192 (11)	0.0036 (11)
C231	0.0672 (17)	0.0818 (19)	0.0606 (16)	-0.0228 (15)	-0.0361 (14)	0.0128 (14)
O251	0.0354 (8)	0.0493 (9)	0.0780 (11)	-0.0147 (7)	-0.0248 (8)	0.0028 (8)
C251	0.0347 (11)	0.0538 (14)	0.0396 (11)	-0.0187 (10)	-0.0134 (9)	0.0049 (10)
C252	0.0334 (11)	0.0525 (13)	0.0358 (11)	-0.0128 (10)	-0.0105 (9)	0.0031 (9)
Cl22	0.0488 (4)	0.0603 (4)	0.0825 (5)	-0.0051 (3)	-0.0261 (3)	-0.0094 (3)

C253	0.0371 (12)	0.0729 (18)	0.0538 (14)	-0.0200 (12)	-0.0199 (11)	0.0049 (12)	
C254	0.0547 (15)	0.0691 (18)	0.0645 (16)	-0.0314 (14)	-0.0263 (13)	0.0019 (13)	
C255	0.0649 (17)	0.0568 (16)	0.0699 (17)	-0.0198 (13)	-0.0263 (13)	-0.0094 (13)	
C256	0.0394 (13)	0.0600 (16)	0.0645 (15)	-0.0101 (11)	-0.0181 (11)	-0.0068 (12)	
C241	0.045 (6)	0.081 (3)	0.053 (3)	-0.031 (5)	-0.022 (3)	0.004 (3)	
O241	0.045 (2)	0.109 (3)	0.073 (2)	-0.032 (2)	-0.0038 (18)	0.003 (2)	
C441	0.045 (6)	0.081 (3)	0.053 (3)	-0.031 (5)	-0.022 (3)	0.004 (3)	
O441	0.110 (4)	0.153 (5)	0.066 (3)	-0.057 (4)	-0.020 (3)	0.044 (3)	

Geometric parameters (Å, °)

N11—C15	1.344 (3)	N21—C25	1.344 (3)
N11—N12	1.385 (2)	N21—N22	1.384 (2)
N11—C111	1.428 (3)	N21—C211	1.430 (3)
N12—C13	1.319 (3)	N22—C23	1.318 (3)
C13—C14	1.414 (3)	C23—C24	1.411 (3)
C13—C131	1.492 (3)	C23—C231	1.491 (3)
C14—C15	1.375 (3)	C24—C25	1.374 (3)
C14—C141	1.400 (8)	C24—C241	1.410 (11)
C14—C341	1.58 (2)	C24—C441	1.508 (13)
C15—O151	1.357 (2)	C25—O251	1.354 (2)
C111—C112	1.368 (3)	C211—C216	1.377 (3)
C111—C116	1.370 (3)	C211—C212	1.380 (3)
C112—C113	1.378 (4)	C212—C213	1.381 (3)
C112—H112	0.9300	C212—H212	0.9300
C113—C114	1.354 (4)	C213—C214	1.360 (4)
С113—Н113	0.9300	C213—H213	0.9300
C114—C115	1.357 (4)	C214—C215	1.363 (3)
C114—H114	0.9300	C214—H214	0.9300
C115—C116	1.372 (3)	C215—C216	1.377 (3)
C115—H115	0.9300	C215—H215	0.9300
C116—H116	0.9300	C216—H216	0.9300
C131—H13A	0.9600	C231—H23A	0.9600
C131—H13B	0.9600	C231—H23B	0.9600
C131—H13C	0.9600	C231—H23C	0.9600
O151—C151	1.394 (2)	O251—C251	1.392 (2)
C151—C156	1.376 (3)	C251—C252	1.376 (3)
C151—C152	1.378 (3)	C251—C256	1.376 (3)
C152—C153	1.378 (3)	C252—C253	1.383 (3)
C152—C112	1.728 (2)	C252—C122	1.721 (2)
C153—C154	1.369 (4)	C253—C254	1.368 (3)
С153—Н153	0.9300	С253—Н253	0.9300
C154—C155	1.374 (4)	C254—C255	1.372 (3)
C154—H154	0.9300	C254—H254	0.9300
C155—C156	1.376 (3)	C255—C256	1.379 (3)
С155—Н155	0.9300	С255—Н255	0.9300
C156—H156	0.9300	С256—Н256	0.9300
C141—O141	1.272 (10)	C241—O241	1.286 (17)

C141—H141	0.9300	C241—H241	0.9300
C341—O341	1.271 (13)	C441—O441	1.283 (17)
C341—H341	0.9300	C441—H441	0.9300
C15—N11—N12	109.92 (17)	C25—N21—N22	109.99 (16)
C15—N11—C111	131.34 (17)	C25—N21—C211	131.70 (17)
N12—N11—C111	118.73 (16)	N22—N21—C211	118.27 (16)
C13—N12—N11	105.69 (16)	C23—N22—N21	105.52 (17)
N12—C13—C14	111.49 (19)	N22—C23—C24	111.66 (18)
N12—C13—C131	120.3 (2)	N22—C23—C231	120.1 (2)
C14—C13—C131	128.3 (2)	C24—C23—C231	128.2 (2)
C15—C14—C141	130.6 (4)	C25—C24—C241	132.2 (9)
C15—C14—C13	104.06 (19)	C25—C24—C23	104.14 (18)
C141—C14—C13	125.3 (4)	C241—C24—C23	123.1 (8)
C15—C14—C341	119.0 (8)	C25—C24—C441	120.9 (9)
C13—C14—C341	136.8 (8)	C23—C24—C441	134.9 (9)
N11—C15—O151	121.68 (19)	N21—C25—O251	120.89 (18)
N11—C15—C14	108.84 (18)	N21—C25—C24	108.69 (18)
O151—C15—C14	129.5 (2)	O251—C25—C24	130.25 (19)
C112—C111—C116	119.5 (2)	C216—C211—C212	119.5 (2)
C112—C111—N11	121.6 (2)	C216—C211—N21	118.85 (18)
C116—C111—N11	118.93 (18)	C212—C211—N21	121.68 (19)
C111—C112—C113	119.3 (3)	C211—C212—C213	119.2 (2)
C111—C112—H112	120.4	C211—C212—H212	120.4
C113—C112—H112	120.4	C213—C212—H212	120.4
C114—C113—C112	121.5 (3)	C214—C213—C212	121.4 (2)
C114—C113—H113	119.2	C214—C213—H213	119.3
C112—C113—H113	119.2	C212—C213—H213	119.3
C113—C114—C115	118.7 (3)	C213—C214—C215	119.0 (2)
C113—C114—H114	120.7	C213—C214—H214	120.5
C115—C114—H114	120.7	C215—C214—H214	120.5
C114—C115—C116	121.1 (3)	C214—C215—C216	121.1 (2)
C114—C115—H115	119.4	C214—C215—H215	119.5
C116—C115—H115	119.4	C216—C215—H215	119.5
C111—C116—C115	119.9 (2)	C215—C216—C211	119.8 (2)
C111—C116—H116	120.1	C215—C216—H216	120.1
C115—C116—H116	120.1	C211—C216—H216	120.1
C13—C131—H13A	109.5	C23—C231—H23A	109.5
C13—C131—H13B	109.5	C23—C231—H23B	109.5
H13A—C131—H13B	109.5	H23A—C231—H23B	109.5
C13—C131—H13C	109.5	C23—C231—H23C	109.5
H13A—C131—H13C	109.5	H23A—C231—H23C	109.5
H13B—C131—H13C	109.5	H23B—C231—H23C	109.5
C15—O151—C151	116.19 (16)	C25—O251—C251	117.88 (16)
C156—C151—C152	120.2 (2)	C252—C251—C256	120.3 (2)
C156—C151—O151	122.55 (18)	C252—C251—O251	116.61 (19)
C152—C151—O151	117.18 (19)	C256—C251—O251	123.02 (19)
C151—C152—C153	119.7 (2)	C251—C252—C253	119.5 (2)
			· ·

C151—C152—C112	119.99 (17)	C251—C252—Cl22	120.09 (17)
C153—C152—C112	120.30 (18)	C253—C252—Cl22	120.40 (17)
C154—C153—C152	120.1 (2)	C254—C253—C252	120.1 (2)
C154—C153—H153	120.0	C254—C253—H253	119.9
C152—C153—H153	120.0	C252—C253—H253	119.9
C153—C154—C155	120.2 (2)	C253—C254—C255	120.3 (2)
C153—C154—H154	119.9	C253—C254—H254	119.8
C155—C154—H154	119.9	C255—C254—H254	119.8
C154—C155—C156	120.2 (2)	C254—C255—C256	119.9 (2)
С154—С155—Н155	119.9	C254—C255—H255	120.0
C156—C155—H155	119.9	C256—C255—H255	120.0
C151—C156—C155	119.6 (2)	C251—C256—C255	119.8 (2)
C151—C156—H156	120.2	C251—C256—H256	120.1
C155—C156—H156	120.2	C255—C256—H256	120.1
O141—C141—C14	122.4 (5)	O241—C241—C24	118.2 (12)
0141—C141—H141	118.8	O241—C241—H241	120.9
C14—C141—H141	118.8	C24—C241—H241	120.9
0341 - C341 - C14	112.0 (19)	0441—C441—C24	118.2 (15)
O341—C341—H341	124.0	O441—C441—H441	120.9
C14—C341—H341	124.0	C24—C441—H441	120.9
	12 110		12019
C15—N11—N12—C13	-0.5(2)	C25—N21—N22—C23	-0.2(2)
C111—N11—N12—C13	178.80 (18)	C211—N21—N22—C23	177.93 (18)
N11—N12—C13—C14	0.8 (3)	N21—N22—C23—C24	0.3 (2)
N11—N12—C13—C131	-179.6(2)	N21—N22—C23—C231	-178.8(2)
N12—C13—C14—C15	-0.8(3)	N22—C23—C24—C25	-0.4(3)
C131—C13—C14—C15	179.6 (2)	C231—C23—C24—C25	178.7 (2)
N12—C13—C14—C141	177.3 (9)	N22—C23—C24—C241	172.2 (13)
C131—C13—C14—C141	-2.3(10)	C231—C23—C24—C241	-8.8 (14)
N12—C13—C14—C341	176 (2)	N22—C23—C24—C441	-176.2 (17)
C131—C13—C14—C341	-3 (2)	C231—C23—C24—C441	2.9 (17)
N12—N11—C15—O151	-178.96 (18)	N22—N21—C25—O251	-175.75 (17)
C111—N11—C15—O151	1.9 (3)	C211—N21—C25—O251	6.5 (3)
N12—N11—C15—C14	0.0 (2)	N22—N21—C25—C24	0.0 (2)
C111—N11—C15—C14	-179.2 (2)	C211—N21—C25—C24	-177.8 (2)
C141—C14—C15—N11	-177.5 (10)	C241—C24—C25—N21	-171.4 (14)
C13—C14—C15—N11	0.5 (2)	C23—C24—C25—N21	0.2 (2)
C341—C14—C15—N11	-177.4 (18)	C441—C24—C25—N21	176.8 (15)
C141—C14—C15—O151	1.3 (11)	C241—C24—C25—O251	3.8 (14)
C13—C14—C15—O151	179.3 (2)	C23—C24—C25—O251	175.4 (2)
C341—C14—C15—O151	1.4 (19)	C441—C24—C25—O251	-8.0 (15)
C15—N11—C111—C112	-19.3 (4)	C25—N21—C211—C216	166.6 (2)
N12—N11—C111—C112	161.6 (2)	N22—N21—C211—C216	-11.1 (3)
C15—N11—C111—C116	161.9 (2)	C25—N21—C211—C212	-13.3 (3)
N12—N11—C111—C116	-17.2 (3)	N22—N21—C211—C212	169.0 (2)
C116—C111—C112—C113	-1.4 (5)	C216—C211—C212—C213	-0.9 (4)
N11—C111—C112—C113	179.9 (3)	N21—C211—C212—C213	178.9 (2)
C111—C112—C113—C114	1.3 (6)	C211—C212—C213—C214	1.3 (5)

C112—C113—C114—C115	-0.4 (6)	C212—C213—C214—C215	-0.6(5)
C113—C114—C115—C116	-0.3 (5)	C213—C214—C215—C216	-0.4 (4)
C112—C111—C116—C115	0.6 (4)	C214—C215—C216—C211	0.6 (4)
N11—C111—C116—C115	179.4 (2)	C212—C211—C216—C215	0.0 (4)
C114—C115—C116—C111	0.2 (5)	N21-C211-C216-C215	-179.9 (2)
N11—C15—O151—C151	-110.9 (2)	N21—C25—O251—C251	-117.7 (2)
C14—C15—O151—C151	70.4 (3)	C24—C25—O251—C251	67.6 (3)
C15—O151—C151—C156	29.1 (3)	C25—O251—C251—C252	-153.77 (19)
C15—O151—C151—C152	-153.42 (19)	C25—O251—C251—C256	29.0 (3)
C156—C151—C152—C153	-0.7 (3)	C256—C251—C252—C253	-0.3 (3)
O151—C151—C152—C153	-178.17 (19)	O251—C251—C252—C253	-177.63 (18)
C156—C151—C152—Cl12	-179.69 (16)	C256—C251—C252—Cl22	178.53 (17)
O151—C151—C152—Cl12	2.8 (3)	O251—C251—C252—Cl22	1.3 (2)
C151—C152—C153—C154	0.6 (4)	C251—C252—C253—C254	0.4 (3)
Cl12—C152—C153—C154	179.7 (2)	Cl22—C252—C253—C254	-178.51 (17)
C152—C153—C154—C155	-0.5 (4)	C252—C253—C254—C255	-0.3 (4)
C153—C154—C155—C156	0.4 (4)	C253—C254—C255—C256	0.3 (4)
C152—C151—C156—C155	0.6 (3)	C252—C251—C256—C255	0.3 (3)
O151—C151—C156—C155	177.94 (19)	O251—C251—C256—C255	177.4 (2)
C154—C155—C156—C151	-0.5 (4)	C254—C255—C256—C251	-0.3 (4)
C15—C14—C141—O141	1 (2)	C25—C24—C241—O241	-9 (3)
C13—C14—C141—O141	-176.7 (9)	C23—C24—C241—O241	-179.1 (12)
C341—C14—C141—O141	0 (10)	C441—C24—C241—O241	35 (8)
C15—C14—C341—O341	-176.6 (18)	C25—C24—C441—O441	177.0 (16)
C141—C14—C341—O341	3 (9)	C241—C24—C441—O441	34 (8)
C13—C14—C341—O341	6 (4)	C23—C24—C441—O441	-8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
C156—H156…N12 ⁱ	0.93	2.59	3.433 (3)	152
C255—H255…Cg3 ⁱⁱ	0.93	2.80	3.635 (3)	140

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.

3-Methyl-5-(4-nitrophenoxy)-1-phenyl-1H-pyrazole-4-carbaldehyde (IV)

Crystal data

 $C_{17}H_{13}N_3O_4$ $M_r = 323.30$ Monoclinic, $P2_1/c$ a = 14.1163 (9) Å b = 11.7268 (7) Å c = 9.3982 (5) Å $\beta = 94.259$ (3)° V = 1551.47 (16) Å³ Z = 4 F(000) = 672 $D_x = 1.384 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4821 reflections $\theta = 1.4-30.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.20 \times 0.15 \times 0.15 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine focus sealed tube Graphite monochromator Detector resolution: 0.3333 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2015) $T_{min} = 0.945, T_{max} = 0.985$	28186 measured reflections 3956 independent reflections 2361 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 28.6^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -18 \rightarrow 18$ $k = -15 \rightarrow 15$ $l = -12 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.121$ S = 1.01 3956 reflections 219 parameters 0 restraints Primary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0385P)^2 + 0.5804P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å ⁻³ $\Delta\rho_{min} = -0.15$ e Å ⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0064 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.86994 (10)	0.04307 (11)	0.28782 (14)	0.0439 (3)	
N2	0.96335 (10)	0.07594 (12)	0.28157 (15)	0.0467 (4)	
C3	0.98509 (13)	0.12942 (14)	0.40292 (19)	0.0463 (4)	
C4	0.90857 (13)	0.13138 (14)	0.49144 (18)	0.0471 (4)	
C5	0.83639 (13)	0.07652 (14)	0.41151 (18)	0.0457 (4)	
C11	0.82349 (12)	-0.01374 (14)	0.16813 (18)	0.0442 (4)	
C12	0.75167 (13)	-0.09122 (16)	0.1842 (2)	0.0552 (5)	
H12	0.7326	-0.1081	0.2745	0.066*	
C13	0.70832 (15)	-0.14363 (18)	0.0648 (2)	0.0674 (6)	
H13	0.6590	-0.1950	0.0747	0.081*	
C14	0.73745 (17)	-0.1204 (2)	-0.0681 (2)	0.0711 (6)	
H14	0.7083	-0.1564	-0.1479	0.085*	
C15	0.80937 (17)	-0.04447 (18)	-0.0831 (2)	0.0680 (6)	
H15	0.8290	-0.0291	-0.1735	0.082*	
C16	0.85318 (15)	0.00968 (16)	0.03427 (19)	0.0561 (5)	
H16	0.9021	0.0614	0.0235	0.067*	
C31	1.08136 (14)	0.18030 (18)	0.4311 (2)	0.0648 (5)	
H31A	1.1212	0.1570	0.3580	0.097*	

H31B	1.1086	0.1548	0.5223	0.097*
H31C	1.0763	0.2619	0.4314	0.097*
C41	0.91097 (17)	0.17425 (17)	0.6348 (2)	0.0625 (5)
H41	0.9677	0.2070	0.6710	0.075*
O41	0.84724 (12)	0.17227 (14)	0.71320 (15)	0.0781 (5)
051	0.74717 (9)	0.04733 (10)	0.43900 (14)	0.0592 (4)
C51	0.68931 (12)	0.12862 (15)	0.49678 (18)	0.0463 (4)
C52	0.69553 (13)	0.24277 (15)	0.46518 (18)	0.0496 (4)
H52	0.7389	0.2687	0.4028	0.060*
C53	0.63630 (13)	0.31763 (15)	0.52768 (19)	0.0512 (4)
H53	0.6394	0.3954	0.5091	0.061*
C54	0.57244 (12)	0.27586 (16)	0.61811 (18)	0.0484 (4)
C55	0.56359 (13)	0.16141 (17)	0.6451 (2)	0.0544 (5)
H55	0.5183	0.1352	0.7042	0.065*
C56	0.62287 (13)	0.08639 (16)	0.5831 (2)	0.0536 (5)
H56	0.6182	0.0084	0.5991	0.064*
N54	0.51327 (12)	0.35609 (18)	0.69134 (19)	0.0662 (5)
O411	0.52206 (15)	0.45668 (17)	0.6681 (2)	0.1137 (7)
O412	0.45836 (11)	0.31846 (16)	0.77356 (18)	0.0883 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0479 (8)	0.0408 (7)	0.0444 (8)	-0.0016 (6)	0.0128 (6)	-0.0032 (6)
N2	0.0457 (8)	0.0458 (8)	0.0497 (8)	0.0006 (6)	0.0112 (7)	0.0000(7)
C3	0.0540 (10)	0.0347 (8)	0.0504 (10)	0.0017 (7)	0.0051 (8)	0.0018 (8)
C4	0.0629 (11)	0.0341 (8)	0.0452 (9)	-0.0001 (8)	0.0097 (8)	-0.0014 (7)
C5	0.0568 (11)	0.0336 (8)	0.0488 (10)	-0.0012 (7)	0.0182 (8)	-0.0013 (7)
C11	0.0487 (10)	0.0370 (9)	0.0474 (9)	0.0063 (7)	0.0067 (8)	-0.0055 (7)
C12	0.0553 (11)	0.0525 (11)	0.0588 (11)	-0.0019 (9)	0.0108 (9)	-0.0076 (9)
C13	0.0568 (12)	0.0620 (13)	0.0828 (16)	-0.0055 (10)	0.0017 (11)	-0.0178 (11)
C14	0.0757 (15)	0.0687 (14)	0.0666 (14)	0.0113 (12)	-0.0108 (11)	-0.0214 (11)
C15	0.0945 (17)	0.0621 (13)	0.0476 (11)	0.0078 (12)	0.0066 (11)	-0.0088 (10)
C16	0.0712 (13)	0.0485 (10)	0.0500 (11)	-0.0004 (9)	0.0147 (9)	-0.0047 (9)
C31	0.0585 (12)	0.0596 (12)	0.0754 (14)	-0.0064 (10)	-0.0015 (10)	-0.0040 (10)
C41	0.0826 (15)	0.0513 (11)	0.0542 (12)	-0.0012 (10)	0.0087 (11)	-0.0119 (9)
O41	0.1000 (12)	0.0851 (11)	0.0520 (8)	-0.0015 (9)	0.0233 (8)	-0.0131 (7)
O51	0.0639 (8)	0.0432 (7)	0.0748 (9)	-0.0105 (6)	0.0349 (7)	-0.0144 (6)
C51	0.0511 (10)	0.0438 (9)	0.0458 (9)	-0.0049 (8)	0.0155 (8)	-0.0075 (8)
C52	0.0542 (10)	0.0474 (10)	0.0496 (10)	-0.0046 (8)	0.0188 (8)	0.0022 (8)
C53	0.0523 (11)	0.0437 (10)	0.0582 (11)	-0.0008 (8)	0.0083 (9)	0.0008 (8)
C54	0.0418 (9)	0.0554 (11)	0.0486 (10)	0.0040 (8)	0.0074 (8)	-0.0060 (8)
C55	0.0486 (10)	0.0624 (12)	0.0547 (11)	-0.0048 (9)	0.0196 (9)	0.0025 (9)
C56	0.0583 (11)	0.0445 (10)	0.0603 (11)	-0.0086 (8)	0.0202 (9)	0.0012 (9)
N54	0.0526 (10)	0.0765 (13)	0.0705 (11)	0.0135 (9)	0.0111 (9)	-0.0097 (10)
O411	0.1183 (16)	0.0660 (12)	0.1644 (19)	0.0205 (11)	0.0609 (14)	-0.0166 (12)
O412	0.0690 (10)	0.1129 (14)	0.0875 (11)	0.0230 (9)	0.0358 (9)	0.0012 (10)

Geometric parameters (Å, °)

N1—C5	1.346 (2)	С31—Н31А	0.9600	_
N1—N2	1.3792 (19)	C31—H31B	0.9600	
N1-C11	1.425 (2)	C31—H31C	0.9600	
N2—C3	1.318 (2)	C41—O41	1.205 (2)	
C3—C4	1.412 (2)	C41—H41	0.9300	
C3—C31	1.490 (3)	O51—C51	1.392 (2)	
C4—C5	1.379 (2)	C51—C52	1.375 (2)	
C4—C41	1.436 (3)	C51—C56	1.377 (2)	
C5—O51	1.349 (2)	C52—C53	1.374 (2)	
C11—C12	1.378 (2)	С52—Н52	0.9300	
C11—C16	1.383 (2)	C53—C54	1.374 (2)	
C12—C13	1.382 (3)	С53—Н53	0.9300	
C12—H12	0.9300	C54—C55	1.373 (3)	
C13—C14	1.371 (3)	C54—N54	1.464 (2)	
C13—H13	0.9300	C55—C56	1.373 (2)	
C14—C15	1.366 (3)	С55—Н55	0.9300	
C14—H14	0.9300	С56—Н56	0.9300	
C15—C16	1.379 (3)	N54—O411	1.208 (2)	
C15—H15	0.9300	N54—O412	1.217 (2)	
C16—H16	0.9300			
C5—N1—N2	110.74 (14)	C3—C31—H31A	109.5	
C5—N1—C11	130.35 (14)	C3—C31—H31B	109.5	
N2—N1—C11	118.85 (13)	H31A—C31—H31B	109.5	
C3—N2—N1	104.96 (13)	C3—C31—H31C	109.5	
N2-C3-C4	112.24 (16)	H31A—C31—H31C	109.5	
N2-C3-C31	119.70 (16)	H31B—C31—H31C	109.5	
C4—C3—C31	128.05 (17)	O41—C41—C4	126.9 (2)	
C5—C4—C3	103.77 (15)	O41—C41—H41	116.5	
C5—C4—C41	129.73 (17)	C4—C41—H41	116.5	
C3—C4—C41	126.36 (18)	C5—O51—C51	118.98 (13)	
N1C5O51	119.02 (15)	C52—C51—C56	122.32 (16)	
N1C5C4	108.26 (15)	C52—C51—O51	122.25 (15)	
O51—C5—C4	132.58 (15)	C56—C51—O51	115.38 (15)	
C12-C11-C16	120.40 (17)	C53—C52—C51	118.61 (16)	
C12-C11-N1	121.39 (15)	С53—С52—Н52	120.7	
C16-C11-N1	118.21 (16)	С51—С52—Н52	120.7	
C11—C12—C13	119.28 (19)	C52—C53—C54	118.99 (17)	
С11—С12—Н12	120.4	С52—С53—Н53	120.5	
С13—С12—Н12	120.4	С54—С53—Н53	120.5	
C14—C13—C12	120.5 (2)	C55—C54—C53	122.36 (16)	
C14—C13—H13	119.8	C55—C54—N54	118.60 (17)	
С12—С13—Н13	119.8	C53—C54—N54	119.02 (18)	
C15—C14—C13	120.0 (2)	C54—C55—C56	118.77 (16)	
C15—C14—H14	120.0	С54—С55—Н55	120.6	
C13—C14—H14	120.0	C56—C55—H55	120.6	

C14—C15—C16 C14—C15—H15 C16—C15—H15 C15—C16—C11 C15—C16—H16 C11—C16—H16	120.7 (2) 119.7 119.7 119.23 (19) 120.4 120.4	C55—C56—C51 C55—C56—H56 C51—C56—H56 O411—N54—O412 O411—N54—C54 O412—N54—C54	118.85 (17) 120.6 120.6 123.20 (19) 118.24 (18) 118.56 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.03 (18) \\ 177.50 (14) \\ 0.99 (19) \\ -178.18 (15) \\ -1.54 (19) \\ 177.54 (18) \\ 174.50 (17) \\ -6.4 (3) \\ -177.14 (14) \\ 5.7 (3) \\ -0.94 (19) \\ -178.10 (16) \\ 1.44 (18) \\ -174.41 (18) \\ 176.93 (18) \\ 1.1 (3) \\ -32.5 (3) \\ 150.56 (16) \\ 148.36 (18) \\ -28.6 (2) \\ -1.3 (3) \\ 179.59 (17) \\ 1.1 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.2 (3) \\ 0.0 (3) \\ 0.7 (3) \\ 179.87 (17) \\ -1.9 (3) \\ -176.9 (2) \\ -136.63 (16) \\ 48.3 (3) \\ 32.7 (3) \\ -149.82 (17) \\ 3.2 (3) \\ -179.48 (16) \\ -0.7 (3) \\ -2.0 (3) \\ 176.39 (16) \\ 2.2 (3) \\ -176.22 (17) \\ 0.3 (3) \\ -3.1 (3) \\ 179.48 (17) \\ 179.3 (2) \\ 0.8 (3) \\ 0.0 (3) \end{array}$
C12—C13—C14—C15	-0.4 (3)	C53—C54—N54—O412	-178.45 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
C14—H14…O412 ⁱ	0.93	2.57	3.330 (3)	139
C52—H52…O41 ⁱⁱ	0.93	2.53	3.456 (2)	174
C55—H55…O411 ⁱⁱⁱ	0.93	2.50	3.259 (3)	139
C53—H53···· <i>Cg</i> 2 ^{iv}	0.93	2.84	3.564 (2)	135

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+1, *y*-1/2, -*z*+3/2; (iv) *x*, -*y*+1/2, *z*+1/2.

3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1*H*-pyrazole-4-carbaldehyde (V)

$C_{21}H_{16}N_2O_2$	<i>b</i> = 17.2550 (16) Å
$M_r = 328.36$	c = 13.1989 (11) Å
Monoclinic, $P2_1/n$	$\beta = 106.079 \ (2)^{\circ}$
a = 7.7302 (6) Å	V = 1691.7 (2) Å ³

Z = 4 F(000) = 688 $D_x = 1.289 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4456 reflections

Data collection

Bruker APEXII CCD	34394 measured reflections
diffractometer	4311 independent reflections
Radiation source: fine focus sealed tube	2711 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
Detector resolution: 0.3333 pixels mm ⁻¹	$\theta_{\text{max}} = 28.6^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
φ and ω scans	$h = -9 \rightarrow 10$
Absorption correction: multi-scan	$k = -23 \rightarrow 23$
(SADABS; Bruker, 2015)	$l = -17 \rightarrow 17$
$T_{\min} = 0.954, \ T_{\max} = 0.988$	
Refinement	

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.047$ H-atom parameters constrained $wR(F^2) = 0.130$ $w = 1/[\sigma^2(F_o^2) + (0.0511P)^2 + 0.449P]$ S = 1.03where $P = (F_o^2 + 2F_c^2)/3$ 4311 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$ 227 parameters 0 restraints $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\theta = 2.0 - 29.0^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, brown

 $0.20 \times 0.16 \times 0.14 \text{ mm}$

T = 296 K

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

			IT +/IT
X	<i>y</i>	Z	$U_{\rm iso} + U_{\rm eq}$
0.49965 (16)	0.38271 (8)	0.43857 (10)	0.0354 (3)
0.32134 (17)	0.36741 (8)	0.38728 (10)	0.0415 (3)
0.2601 (2)	0.32861 (10)	0.45616 (13)	0.0404 (4)
0.3964 (2)	0.31630 (10)	0.55195 (13)	0.0393 (4)
0.5463 (2)	0.35199 (9)	0.53568 (12)	0.0356 (3)
0.60936 (19)	0.42022 (9)	0.38274 (11)	0.0328 (3)
0.7251 (2)	0.47936 (9)	0.42849 (13)	0.0411 (4)
0.7348	0.4949	0.4973	0.049*
0.8265 (2)	0.51508 (11)	0.37058 (16)	0.0522 (5)
0.9065	0.5544	0.4010	0.063*
0.8099 (3)	0.49299 (12)	0.26867 (17)	0.0616 (6)
0.8775	0.5176	0.2298	0.074*
0.6933 (3)	0.43438 (12)	0.22374 (15)	0.0598 (5)
0.6820	0.4197	0.1544	0.072*
0.5936 (2)	0.39740 (10)	0.28053 (13)	0.0447 (4)
0.5160	0.3573	0.2503	0.054*
	x 0.49965 (16) 0.32134 (17) 0.2601 (2) 0.3964 (2) 0.5463 (2) 0.60936 (19) 0.7251 (2) 0.7348 0.8265 (2) 0.9065 0.8099 (3) 0.8775 0.6933 (3) 0.6820 0.5936 (2) 0.5160	xy $0.49965 (16)$ $0.38271 (8)$ $0.32134 (17)$ $0.36741 (8)$ $0.2601 (2)$ $0.32861 (10)$ $0.3964 (2)$ $0.31630 (10)$ $0.5463 (2)$ $0.35199 (9)$ $0.60936 (19)$ $0.42022 (9)$ $0.7251 (2)$ $0.47936 (9)$ 0.7348 0.4949 $0.8265 (2)$ $0.51508 (11)$ 0.9065 0.5544 $0.8099 (3)$ $0.49229 (12)$ 0.8775 0.5176 $0.6933 (3)$ $0.43438 (12)$ 0.6820 0.4197 $0.5936 (2)$ 0.3573	xyz $0.49965(16)$ $0.38271(8)$ $0.43857(10)$ $0.32134(17)$ $0.36741(8)$ $0.38728(10)$ $0.2601(2)$ $0.32861(10)$ $0.45616(13)$ $0.3964(2)$ $0.31630(10)$ $0.55195(13)$ $0.5463(2)$ $0.35199(9)$ $0.53568(12)$ $0.60936(19)$ $0.42022(9)$ $0.38274(11)$ $0.7251(2)$ $0.47936(9)$ $0.42849(13)$ 0.7348 0.4949 0.4973 $0.8265(2)$ $0.51508(11)$ $0.37058(16)$ 0.9065 0.5544 0.4010 $0.8099(3)$ $0.49299(12)$ $0.26867(17)$ 0.8775 0.5176 0.2298 $0.6933(3)$ $0.43438(12)$ $0.22374(15)$ 0.6820 0.4197 0.1544 $0.5936(2)$ $0.39740(10)$ $0.28053(13)$ 0.5160 0.3573 0.2503

C31	0.0691 (2)	0.30215 (13)	0.42740 (16)	0.0597 (5)
H31A	0.0073	0.3213	0.3586	0.090*
H31B	0.0115	0.3216	0.4780	0.090*
H31C	0.0654	0.2465	0.4270	0.090*
C41	0.3834 (3)	0.27328 (11)	0.64338 (15)	0.0526 (5)
H41	0.4890	0.2654	0.6969	0.063*
O41	0.2458 (2)	0.24671 (9)	0.65573 (13)	0.0737 (5)
O51	0.72116 (14)	0.35620 (8)	0.59018 (8)	0.0467 (3)
C51	0.9302 (2)	0.33196 (9)	0.75230 (12)	0.0358 (3)
H51	0.9925	0.3013	0.7163	0.043*
C52	0.7727 (2)	0.36509 (9)	0.69996 (12)	0.0362 (4)
C53	0.6730 (2)	0.41139 (11)	0.75088 (14)	0.0492 (4)
H53	0.5655	0.4342	0.7130	0.059*
C54	0.7369 (2)	0.42215 (11)	0.85672 (14)	0.0522 (5)
H54	0.6702	0.4517	0.8914	0.063*
C54A	0.9017 (2)	0.38972 (10)	0.91541 (12)	0.0401 (4)
C55	0.9757 (3)	0.40256 (12)	1.02489 (14)	0.0530 (5)
H55	0.9116	0.4319	1.0614	0.064*
C56	1.1380 (3)	0.37294 (13)	1.07740 (14)	0.0588 (5)
H56	1.1842	0.3820	1.1493	0.071*
C57	1.2360 (3)	0.32887 (12)	1.02410 (15)	0.0577 (5)
H57	1.3483	0.3096	1.0605	0.069*
C58	1.1689 (2)	0.31377 (11)	0.91914 (14)	0.0486 (4)
H58	1.2346	0.2833	0.8849	0.058*
C58A	1.0003 (2)	0.34402 (9)	0.86189 (12)	0.0357 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0282 (7)	0.0455 (8)	0.0302 (7)	-0.0012 (5)	0.0041 (5)	0.0019 (6)
N2	0.0287 (7)	0.0557 (9)	0.0367 (7)	-0.0034 (6)	0.0036 (6)	-0.0029 (6)
C3	0.0342 (8)	0.0449 (9)	0.0429 (9)	-0.0035 (7)	0.0120 (7)	-0.0081 (7)
C4	0.0386 (9)	0.0423 (9)	0.0402 (9)	0.0018 (7)	0.0166 (7)	-0.0001 (7)
C5	0.0313 (8)	0.0443 (9)	0.0309 (8)	0.0048 (7)	0.0082 (6)	0.0022 (6)
C11	0.0296 (7)	0.0358 (8)	0.0318 (8)	0.0015 (6)	0.0068 (6)	0.0027 (6)
C12	0.0413 (9)	0.0420 (9)	0.0383 (9)	0.0001 (7)	0.0084 (7)	-0.0052 (7)
C13	0.0493 (10)	0.0455 (10)	0.0625 (12)	-0.0127 (8)	0.0166 (9)	-0.0026 (9)
C14	0.0722 (14)	0.0593 (12)	0.0655 (13)	-0.0135 (10)	0.0393 (11)	0.0030 (10)
C15	0.0767 (14)	0.0670 (13)	0.0451 (10)	-0.0114 (11)	0.0327 (10)	-0.0055 (9)
C16	0.0494 (10)	0.0473 (10)	0.0380 (9)	-0.0078 (8)	0.0131 (8)	-0.0056 (7)
C31	0.0395 (10)	0.0760 (14)	0.0642 (13)	-0.0148 (9)	0.0153 (9)	-0.0146 (11)
C41	0.0580 (11)	0.0540 (11)	0.0537 (11)	0.0038 (9)	0.0284 (9)	0.0080 (9)
O41	0.0737 (10)	0.0734 (10)	0.0916 (12)	-0.0013 (8)	0.0523 (9)	0.0165 (8)
O51	0.0296 (6)	0.0782 (9)	0.0297 (6)	0.0051 (5)	0.0039 (5)	0.0068 (5)
C51	0.0315 (8)	0.0417 (9)	0.0333 (8)	0.0025 (6)	0.0076 (6)	0.0016 (7)
C52	0.0329 (8)	0.0453 (9)	0.0291 (8)	0.0013 (7)	0.0061 (6)	0.0050 (7)
C53	0.0374 (9)	0.0583 (11)	0.0470 (10)	0.0154 (8)	0.0034 (8)	0.0015 (8)
C54	0.0450 (10)	0.0606 (12)	0.0514 (11)	0.0110 (8)	0.0139 (9)	-0.0113 (9)

C54A	0.0398 (9)	0.0454 (9)	0.0348 (8)	-0.0031 (7)	0.0098 (7)	-0.0009(7)
C55	0.0565 (12)	0.0643 (12)	0.0392 (10)	-0.0084 (9)	0.0149 (9)	-0.0089 (9)
C56	0.0611 (12)	0.0744 (14)	0.0329 (9)	-0.0137 (10)	-0.0004 (9)	0.0020 (9)
C57	0.0466 (11)	0.0665 (13)	0.0476 (11)	0.0001 (9)	-0.0076 (9)	0.0077 (9)
C58	0.0409 (9)	0.0554 (11)	0.0432 (10)	0.0068 (8)	0.0009 (8)	0.0033 (8)
C58A	0.0326 (8)	0.0377 (8)	0.0350 (8)	-0.0019 (6)	0.0061 (7)	0.0056 (6)

Geometric parameters (Å, °)

N1—C5	1.3408 (19)	C31—H31C	0.9600
N1—N2	1.3824 (17)	C41—O41	1.210 (2)
N1—C11	1.4240 (19)	C41—H41	0.9300
N2—C3	1.318 (2)	O51—C52	1.4008 (18)
C3—C4	1.420 (2)	C51—C52	1.350 (2)
C3—C31	1.491 (2)	C51—C58A	1.412 (2)
C4—C5	1.381 (2)	C51—H51	0.9300
C4—C41	1.444 (2)	C52—C53	1.404 (2)
C5—O51	1.3455 (18)	C53—C54	1.359 (2)
C11—C16	1.378 (2)	С53—Н53	0.9300
C11—C12	1.381 (2)	C54—C54A	1.411 (2)
C12—C13	1.382 (2)	С54—Н54	0.9300
C12—H12	0.9300	C54A—C58A	1.414 (2)
C13—C14	1.370 (3)	C54A—C55	1.416 (2)
C13—H13	0.9300	C55—C56	1.354 (3)
C14—C15	1.375 (3)	С55—Н55	0.9300
C14—H14	0.9300	C56—C57	1.394 (3)
C15—C16	1.373 (2)	С56—Н56	0.9300
С15—Н15	0.9300	C57—C58	1.363 (2)
C16—H16	0.9300	С57—Н57	0.9300
C31—H31A	0.9600	C58—C58A	1.413 (2)
C31—H31B	0.9600	С58—Н58	0.9300
C5—N1—N2	111.14 (12)	H31B—C31—H31C	109.5
C5—N1—C11	129.29 (12)	O41—C41—C4	125.07 (19)
N2—N1—C11	119.30 (12)	O41—C41—H41	117.5
C3—N2—N1	105.01 (13)	C4—C41—H41	117.5
N2—C3—C4	111.76 (14)	C5—O51—C52	120.97 (12)
N2-C3-C31	119.97 (16)	C52—C51—C58A	119.83 (14)
C4—C3—C31	128.26 (16)	С52—С51—Н51	120.1
C5—C4—C3	104.03 (14)	C58A—C51—H51	120.1
C5—C4—C41	127.95 (16)	C51—C52—O51	116.15 (13)
C3—C4—C41	127.96 (16)	C51—C52—C53	122.23 (15)
N1C5O51	117.02 (13)	O51—C52—C53	121.41 (14)
N1C5C4	108.04 (13)	C54—C53—C52	118.57 (15)
O51—C5—C4	134.67 (14)	С54—С53—Н53	120.7
C16—C11—C12	120.67 (14)	С52—С53—Н53	120.7
C16—C11—N1	118.22 (14)	C53—C54—C54A	121.75 (16)
C12—C11—N1	121.09 (13)	С53—С54—Н54	119.1

C11—C12—C13	119.06 (15)	С54А—С54—Н54	119.1
C11—C12—H12	120.5	C54—C54A—C58A	118.46 (14)
C13—C12—H12	120.5	C54—C54A—C55	123 10 (16)
C14-C13-C12	120.38(17)	C58A—C54A—C55	118 41 (15)
C14—C13—H13	119.8	C56-C55-C54A	121.20(17)
C12—C13—H13	119.8	C56-C55-H55	119.4
$C_{12} = C_{13} = C_{14} = C_{15}$	120.02 (17)	$C_{54} = C_{55} = H_{55}$	119.4
C_{13} C_{14} H_{14}	120.02 (17)	C55 C56 C57	119.4 120.24 (17)
C15 - C14 - H14	120.0	C55-C56-H56	110.0
$C_{15} = C_{14} = I_{14}$	120.0	C57 C56 H56	110.0
$C_{10} = C_{15} = C_{14}$	120.44 (17)	$C_{57} = C_{50} = H_{50}$	119.9
$C_{10} = C_{15} = H_{15}$	119.0	$C_{58} = C_{57} = C_{50}$	120.09 (18)
$C_{14} = C_{15} = I_{115}$	119.0	$C_{56} = C_{57} = H_{57}$	119.7
	119.40 (10)	$C_{50} = C_{57} = C_{58} = C_{58}$	119.7
C13—C16—H16	120.5	C57 = C58 = C58A	120.52 (17)
C11—C16—H16	120.3	С57—С58—Н58	119.7
C3—C31—H31A	109.5	C58A—C58—H58	119.7
С3—С31—Н31В	109.5	C51—C58A—C58	121.90 (15)
H31A—C31—H31B	109.5	C51—C58A—C54A	119.14 (14)
C3—C31—H31C	109.5	C58—C58A—C54A	118.93 (15)
H31A—C31—H31C	109.5		
C5—N1—N2—C3	1.54 (17)	N1—C11—C16—C15	177.84 (16)
C11—N1—N2—C3	176.03 (13)	C5—C4—C41—O41	175.77 (19)
N1—N2—C3—C4	-1.31 (18)	C3—C4—C41—O41	-7.5 (3)
N1—N2—C3—C31	179.93 (15)	N1—C5—O51—C52	146.36 (14)
N2—C3—C4—C5	0.64 (19)	C4—C5—O51—C52	-40.5 (3)
C31—C3—C4—C5	179.27 (17)	C58A—C51—C52—O51	174.26 (13)
N2—C3—C4—C41	-176.73 (16)	C58A—C51—C52—C53	-0.5(2)
C31—C3—C4—C41	1.9 (3)	C5—O51—C52—C51	148.23 (15)
N2—N1—C5—O51	173.68 (13)	C5—O51—C52—C53	-37.0(2)
C11—N1—C5—O51	-0.1(2)	C51—C52—C53—C54	-0.9(3)
N2—N1—C5—C4	-1.17(18)	051—C52—C53—C54	-175.35 (16)
$C_{11} = N_1 = C_5 = C_4$	-174.96(14)	C52—C53—C54—C54A	1.6 (3)
$C_3 - C_4 - C_5 - N_1$	0 34 (17)	C53-C54-C54A-C58A	-0.9(3)
C41 - C4 - C5 - N1	177 71 (16)	C_{53} C_{54} C_{54A} C_{55}	177 24 (18)
C_{3} C_{4} C_{5} C_{5}	-173 21 (17)	$C_{54} - C_{54} - C_{55} - C_{56}$	-177 22 (18)
$C_{41} - C_{4} - C_{5} - O_{51}$	4 2 (3)	$C_{58A} - C_{54A} - C_{55} - C_{56}$	0.9(3)
C_{5} N1 – C11 – C16	131 39 (17)	$C_{54A} = C_{55} = C_{56} = C_{57}$	0.0(3)
N_{2} N1 C11 C16	-420(2)	C_{55} C_{56} C_{57} C_{58}	-12(3)
C_{5} N1 C_{11} C_{12}	-503(2)	$C_{56} = C_{57} = C_{58} = C_{58} = C_{58}$	1.2(3)
N2_N1_C11_C12	13631(15)	C_{2}^{2}	-176.80(16)
C_{16} C_{11} C_{12} C_{13}	-0.5(2)	$C_{52} = C_{51} = C_{56} = C_{56} = C_{56}$	11(2)
N1 C11 C12 C13	-17877(15)	$C_{52} = C_{51} = C_{56N} = C_{54N}$	1.1(2) 177 50(17)
C11 - C12 - C13	11(3)	C57 - C58 - C58 - C54	-0.5(3)
C12 - C13 - C14 - C15	-0.7(3)	$C_{54} - C_{54} - C_{58} - C_{51}$	-0.5(3)
C12 - C13 - C14 - C15 C13 - C14 - C15 - C16	-0.3(3)	$C_{5} = C_{5} + A = C_{5} + $	$-178\ 71\ (15)$
$C_{13} - C_{14} - C_{15} - C_{16} - C_{10}$	0.3(3)	$C_{54} = C_{54} + C_{56} + C$	177 54 (16)
$C_{14} = C_{13} = C_{10} = C_{11}$	-0.4(2)	$C_{34} = C_{34A} = C_{30A} = C_{30}$	-0.7(2)
U12-U11-U10-U13	0.4 (3)	UJJ—UJ4A—UJ8A—UJ8	0.7(2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C51—H51····O41 ⁱ	0.93	2.50	3.386 (2)	160
C12—H12···Cg1 ⁱⁱ	0.93	2.96	3.4804 (17)	117
C53—H53…Cg2 ⁱⁱ	0.93	2.78	3.6477 (19)	155

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1, –*y*+1, –*z*+1.

3-Methyl-1-phenyl-5-(piperidin-1-yl)-1H-pyrazole-4-carbaldehyde (VI)

Crystal data

-	
$C_{16}H_{19}N_{3}O$	F(000) = 576
$M_r = 269.34$	$D_{\rm x} = 1.243 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.9432 (7) Å	Cell parameters from 3504 reflections
b = 16.0546 (14) Å	$\theta = 2.4 - 28.1^{\circ}$
c = 10.1155 (8) Å	$\mu=0.08~\mathrm{mm^{-1}}$
$\beta = 97.777 \ (2)^{\circ}$	T = 296 K
$V = 1439.0 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.20 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	27358 measured reflections
Radiation source: fine focus sealed tube	1869 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\text{int}} = 0.047$
Detector resolution: 0.3333 pixels mm ⁻¹	$\theta_{\text{max}} = 26.6^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -20 \rightarrow 20$
(SADABS; Bruker, 2015)	$l = -12 \rightarrow 12$
$T_{\min} = 0.950, \ T_{\max} = 0.992$	
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0563P)^2 + 0.4589P]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.141$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.05	$\Delta \rho_{\rm max} = 0.29 \ { m e} \ { m \AA}^{-3}$
3000 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
183 parameters	Extinction correction: SHELXL2014

183 parameters0 restraintsHydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Sheldrick, 2015b),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.011 (2)

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
N1	0.35185 (18)	0.62845 (10)	0.68452 (15)	0.0453 (4)
N2	0.39911 (19)	0.66723 (12)	0.57496 (17)	0.0531 (5)
C3	0.3664 (2)	0.61450 (15)	0.4763 (2)	0.0522 (5)
C4	0.3031 (2)	0.53927 (13)	0.51801 (18)	0.0479 (5)
C5	0.2954 (2)	0.55100 (12)	0.65407 (18)	0.0427 (5)
C11	0.3634 (2)	0.67370 (12)	0.80659 (19)	0.0448 (5)
C12	0.2377 (2)	0.68566 (13)	0.8697 (2)	0.0520 (5)
H12	0.1447	0.6644	0.8324	0.062*
C13	0.2501 (3)	0.72930 (14)	0.9883 (2)	0.0618 (6)
H13	0.1656	0.7373	1.0312	0.074*
C14	0.3876 (3)	0.76093 (15)	1.0431 (2)	0.0674 (7)
H14	0.3962	0.7897	1.1235	0.081*
C15	0.5118 (3)	0.75014 (15)	0.9793 (2)	0.0685 (7)
H15	0.6040	0.7727	1.0158	0.082*
C16	0.5011 (2)	0.70600 (14)	0.8610(2)	0.0574 (6)
H16	0.5860	0.6981	0.8185	0.069*
C31	0.3991 (3)	0.63675 (19)	0.3393 (2)	0.0774 (8)
H31A	0.4450	0.6909	0.3412	0.116*
H31B	0.3067	0.6373	0.2787	0.116*
H31C	0.4666	0.5963	0.3100	0.116*
C41	0.2749 (3)	0.46445 (16)	0.4411 (2)	0.0646 (6)
H41	0.2456	0.4179	0.4859	0.078*
O41	0.2855 (2)	0.45590 (13)	0.32399 (16)	0.0913 (6)
N51	0.24068 (18)	0.50265 (10)	0.74926 (15)	0.0456 (4)
C52	0.1312 (3)	0.43642 (16)	0.7089 (2)	0.0616 (6)
H52A	0.1842	0.3857	0.6916	0.074*
H52B	0.0682	0.4524	0.6272	0.074*
C53	0.0347 (3)	0.42096 (16)	0.8158 (2)	0.0653 (6)
H53A	-0.0323	0.3745	0.7900	0.078*
H53B	-0.0269	0.4697	0.8254	0.078*
C54	0.1283 (3)	0.40178 (14)	0.9484 (2)	0.0596 (6)
H54A	0.1778	0.3483	0.9432	0.071*
H54B	0.0629	0.3982	1.0173	0.071*
C55	0.2464 (2)	0.46891 (15)	0.9851 (2)	0.0560 (6)
H55A	0.1969	0.5204	1.0045	0.067*
H55B	0.3124	0.4523	1.0648	0.067*
C56	0.3381 (2)	0.48331 (13)	0.87430 (19)	0.0489 (5)
H56A	0.4074	0.5291	0.8975	0.059*
H56B	0.3972	0.4339	0.8621	0.059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
N1	0.0486 (9)	0.0487 (10)	0.0407 (9)	-0.0008 (8)	0.0135 (7)	0.0070 (7)	
N2	0.0523 (10)	0.0596 (11)	0.0498 (10)	0.0034 (8)	0.0161 (8)	0.0169 (9)	

C3	0.0477 (12)	0.0675 (14)	0.0430 (11)	0.0110 (10)	0.0123 (9)	0.0149 (11)
C4	0.0496 (12)	0.0587 (13)	0.0356 (10)	0.0092 (10)	0.0067 (8)	0.0054 (9)
C5	0.0402 (10)	0.0497 (12)	0.0383 (10)	0.0035 (9)	0.0059 (8)	0.0056 (8)
C11	0.0491 (12)	0.0418 (11)	0.0434 (11)	-0.0002 (9)	0.0055 (9)	0.0065 (9)
C12	0.0516 (12)	0.0548 (13)	0.0508 (12)	-0.0007 (10)	0.0110 (10)	0.0015 (10)
C13	0.0809 (17)	0.0562 (14)	0.0508 (13)	0.0075 (12)	0.0180 (12)	0.0024 (11)
C14	0.102 (2)	0.0501 (14)	0.0471 (13)	0.0009 (13)	-0.0025 (13)	0.0030 (10)
C15	0.0754 (17)	0.0559 (14)	0.0676 (16)	-0.0100 (13)	-0.0150 (13)	0.0043 (12)
C16	0.0505 (13)	0.0552 (14)	0.0655 (14)	-0.0028 (10)	0.0049 (10)	0.0091 (11)
C31	0.0787 (17)	0.108 (2)	0.0483 (14)	0.0014 (15)	0.0186 (12)	0.0238 (14)
C41	0.0819 (16)	0.0713 (16)	0.0397 (12)	0.0097 (13)	0.0041 (11)	-0.0009 (11)
O41	0.1297 (16)	0.1042 (15)	0.0387 (10)	0.0246 (12)	0.0068 (9)	-0.0075 (9)
N51	0.0496 (9)	0.0509 (10)	0.0355 (8)	-0.0103 (8)	0.0035 (7)	0.0041 (7)
C52	0.0649 (14)	0.0685 (15)	0.0503 (13)	-0.0166 (12)	0.0039 (11)	-0.0052 (11)
C53	0.0580 (13)	0.0693 (16)	0.0700 (15)	-0.0159 (12)	0.0142 (11)	-0.0012 (12)
C54	0.0655 (14)	0.0564 (14)	0.0611 (14)	-0.0045 (11)	0.0247 (11)	0.0074 (11)
C55	0.0619 (13)	0.0641 (14)	0.0427 (12)	-0.0004 (11)	0.0098 (10)	0.0079 (10)
C56	0.0515 (11)	0.0534 (12)	0.0414 (11)	-0.0026 (10)	0.0044 (9)	0.0101 (9)

Geometric parameters (Å, °)

N1—C5	1.361 (3)	C31—H31B	0.9600
N1—N2	1.386 (2)	C31—H31C	0.9600
N1-C11	1.424 (2)	C41—O41	1.209 (3)
N2—C3	1.311 (3)	C41—H41	0.9300
C3—C4	1.422 (3)	N51—C52	1.465 (3)
C3—C31	1.498 (3)	N51—C56	1.469 (2)
C4—C5	1.400 (3)	C52—C53	1.493 (3)
C4—C41	1.434 (3)	C52—H52A	0.9700
C5—N51	1.377 (2)	С52—Н52В	0.9700
C11—C12	1.380 (3)	C53—C54	1.514 (3)
C11—C16	1.380 (3)	С53—Н53А	0.9700
C12—C13	1.381 (3)	С53—Н53В	0.9700
С12—Н12	0.9300	C54—C55	1.519 (3)
C13—C14	1.375 (3)	C54—H54A	0.9700
С13—Н13	0.9300	C54—H54B	0.9700
C14—C15	1.369 (4)	C55—C56	1.493 (3)
C14—H14	0.9300	C55—H55A	0.9700
C15—C16	1.383 (3)	C55—H55B	0.9700
С15—Н15	0.9300	C56—H56A	0.9700
С16—Н16	0.9300	C56—H56B	0.9700
C31—H31A	0.9600		
C5—N1—N2	111.91 (16)	O41—C41—C4	126.5 (2)
C5—N1—C11	130.03 (15)	O41—C41—H41	116.7
N2—N1—C11	118.02 (16)	C4—C41—H41	116.7
C3—N2—N1	104.94 (17)	C5—N51—C52	120.08 (16)
N2—C3—C4	112.29 (17)	C5—N51—C56	119.72 (15)

119.9 (2)	C52—N51—C56	112.51 (16)
127.8 (2)	N51—C52—C53	110.39 (18)
104.59 (18)	N51—C52—H52A	109.6
128.1 (2)	С53—С52—Н52А	109.6
126.73 (19)	N51—C52—H52B	109.6
120.83 (16)	С53—С52—Н52В	109.6
106.22 (16)	H52A—C52—H52B	108.1
132.91 (19)	C52—C53—C54	111.81 (19)
120.2 (2)	С52—С53—Н53А	109.3
120.2(18)	C54—C53—H53A	109.3
119 60 (18)	C52—C53—H53B	109.3
119.80 (10)	C54—C53—H53B	109.3
120.1	H53A-C53-H53B	107.9
120.1	C_{53} C_{54} C_{55}	110 77 (18)
120.1 120.0(2)	C_{53} C_{54} C_{55}	109.5
120.0 (2)	C55 C54 H54A	109.5
120.0	C53 C54 H54R	109.5
120.0	C55 C54 U54D	109.5
120.1 (2)	C_{33} — C_{54} — C_{54} — C_{54}	109.3
119.9	ПЗ4А—С34—ПЗ4В	108.1
119.9	$C_{50} = C_{55} = C_{54}$	111.10(18)
120.5 (2)	С56—С55—Н55А	109.4
119.8	С54—С55—Н55А	109.4
119.8	С56—С55—Н55В	109.4
119.4 (2)	С54—С55—Н55В	109.4
120.3	H55A—C55—H55B	108.0
120.3	N51—C56—C55	110.90 (17)
109.5	N51—C56—H56A	109.5
109.5	С55—С56—Н56А	109.5
109.5	N51—C56—H56B	109.5
109.5	С55—С56—Н56В	109.5
109.5	H56A—C56—H56B	108.0
109.5		
2.2 (2)	N1-C11-C12-C13	179.70 (19)
-175.79 (16)	C11—C12—C13—C14	0.2 (3)
-2.3 (2)	C12—C13—C14—C15	0.8 (3)
178.66 (18)	C13—C14—C15—C16	-1.3 (4)
1.5 (2)	C12—C11—C16—C15	0.2 (3)
-179.5 (2)	N1-C11-C16-C15	179.78 (18)
-170.3 (2)	C14-C15-C16-C11	0.8 (3)
8.7 (3)	C5—C4—C41—O41	-178.4(2)
-179.19 (16)	C3—C4—C41—O41	-8.4 (4)
-1.5 (3)	N1-C5-N51-C52	156.64 (19)
-1.3 (2)	C4—C5—N51—C52	-20.6 (3)
176.41 (18)	N1-C5-N51-C56	-56.2 (3)
-0.1 (2)	C4—C5—N51—C56	126.5 (2)
171.6 (2)	C5—N51—C52—C53	-152.67 (19)
177.5 (2)	C56—N51—C52—C53	58.0 (3)
	119.9 (2) 127.8 (2) 104.59 (18) 128.1 (2) 126.73 (19) 120.83 (16) 106.22 (16) 132.91 (19) 120.2 (2) 120.2 (2) 120.2 (18) 119.60 (18) 119.8 (2) 120.1 120.1 120.0 (2) 120.0 120.0 120.0 120.0 120.1 (2) 119.9 119.9 119.9 120.5 (2) 119.8 119.4 (2) 120.3 109.5 109.	119.9 (2) C52—N51—C56 127.8 (2) N51—C52—C53 104.59 (18) N51—C52—H52A 128.1 (2) C53—C52—H52B 120.83 (16) C53—C52—H52B 106.22 (16) H52A—C52—H52B 106.22 (16) H52A—C53—H53A 120.2 (2) C52—C53—H53A 120.2 (2) C52—C53—H53A 120.2 (2) C54—C53—H53B 120.2 (18) C54—C53—H53B 120.2 (2) C54—C53—H53B 120.1 H53A—C53—H53B 120.1 C53—C54—H54A 120.0 C55—C54—H54A 120.0 C55—C54—H54A 120.0 C55—C54—H54B 120.1 C55—C54—H54B 120.0 C55—C54—H54B 120.0 C55—C54—H54B 120.1 C56—C55—H55A 119.9 H54A—C55—H55A 119.9 C56—C55—H55B 120.1 C54—C55—H55B 120.3 H55A—C55—H55B 120.3 N51—C56—H56B 109.5 N51—C56—H56B 109.5 N51—C56—H56B 109.5 N51—C56—H56B

-10.8 (4)	N51—C52—C53—C54	-55.2 (3)
-53.6 (3)	C52—C53—C54—C55	52.9 (3)
124.00 (19)	C53—C54—C55—C56	-52.5 (3)
126.9 (2)	C5—N51—C56—C55	152.27 (18)
-55.6 (2)	C52—N51—C56—C55	-58.3 (2)
-0.7 (3)	C54—C55—C56—N51	54.9 (2)
	-10.8 (4) -53.6 (3) 124.00 (19) 126.9 (2) -55.6 (2) -0.7 (3)	-10.8 (4) N51—C52—C53—C54 -53.6 (3) C52—C53—C54—C55 124.00 (19) C53—C54—C55—C56 126.9 (2) C5—N51—C56—C55 -55.6 (2) C52—N51—C56—C55 -0.7 (3) C54—C55—C56—N51

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15…Cg1 ⁱ	0.93	2.97	3.848 (3)	159
C52—H52 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱ	0.97	2.96	3.761 (3)	140

Z = 2 F(000) = 532 $D_x = 1.361 \text{ Mg m}^{-3}$

 $\theta = 2.1-26.9^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 296 KBlock, brown

 $0.19 \times 0.17 \times 0.14 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5359 reflections

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) -x+1/2, y-1/2, -z+3/2.

(3*RS*)-2-Acetyl-5-(4-azidophenyl)-5'-(2-chlorophenoxy)-3'-methyl-1'-phenyl-3,4-dihydro-1'*H*,2*H*-[3,4'-bipyrazole] (IX)

Crystal data

$C_{27}H_{22}ClN_7O_2$
$M_r = 511.97$
Triclinic, $P\overline{1}$
a = 10.8804 (4) Å
<i>b</i> = 11.3363 (4) Å
c = 11.5737 (4) Å
$\alpha = 97.294 \ (2)^{\circ}$
$\beta = 90.050 \ (2)^{\circ}$
$\gamma = 117.840 \ (2)^{\circ}$
V = 1249.15 (8) Å ³

Data collection

Bruker APEXII CCD	31603 measured reflections
diffractometer	5197 independent reflections
Radiation source: fine focus sealed tube	3299 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{ m int} = 0.044$
Detector resolution: 0.3333 pixels mm ⁻¹	$\theta_{\rm max} = 26.6^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
φ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -14 \rightarrow 14$
(SADABS; Bruker, 2015)	$l = -14 \rightarrow 14$
$T_{\min} = 0.930, \ T_{\max} = 0.973$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.126$ S = 1.015197 reflections 336 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.5649P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.71807 (17)	0.56761 (16)	0.43542 (14)	0.0402 (4)
N2	0.76299 (18)	0.58772 (17)	0.55073 (15)	0.0440 (4)
C3	0.7240 (2)	0.6740 (2)	0.60408 (18)	0.0421 (5)
C4	0.6537 (2)	0.71218 (19)	0.52591 (17)	0.0389 (5)
C5	0.6526 (2)	0.64192 (19)	0.42071 (17)	0.0386 (5)
C11	0.7491 (2)	0.4825 (2)	0.35347 (19)	0.0440 (5)
C12	0.6618 (3)	0.4089 (3)	0.2551 (2)	0.0624 (7)
H12	0.5830	0.4175	0.2385	0.075*
C13	0.6939 (4)	0.3223 (3)	0.1819 (3)	0.0841 (9)
H13	0.6368	0.2732	0.1149	0.101*
C14	0.8090 (4)	0.3079 (3)	0.2070 (3)	0.0861 (10)
H14	0.8276	0.2468	0.1588	0.103*
C15	0.8964 (3)	0.3838 (3)	0.3033 (3)	0.0732 (8)
H15	0.9758	0.3759	0.3192	0.088*
C16	0.8672 (3)	0.4714 (2)	0.3765 (2)	0.0548 (6)
H16	0.9271	0.5232	0.4415	0.066*
C31	0.7568 (3)	0.7191 (3)	0.73259 (19)	0.0600 (7)
H31A	0.8224	0.6925	0.7594	0.090*
H31B	0.6729	0.6784	0.7726	0.090*
H31C	0.7962	0.8155	0.7483	0.090*
N41	0.61493 (18)	0.95120 (17)	0.40567 (16)	0.0445 (4)
N42	0.68480 (18)	0.93628 (16)	0.49793 (16)	0.0455 (4)
C43	0.5997 (2)	0.8120 (2)	0.55003 (19)	0.0438 (5)
H43	0.5992	0.8350	0.6345	0.053*
C44	0.4552 (2)	0.7677 (2)	0.4914 (2)	0.0470 (5)
H44A	0.4112	0.6733	0.4578	0.056*
H44B	0.3950	0.7826	0.5464	0.056*
C45	0.4878 (2)	0.8570 (2)	0.39832 (19)	0.0419 (5)
C421	0.8207 (2)	1.0215 (2)	0.5319 (2)	0.0518 (6)
O421	0.87539 (17)	1.00095 (17)	0.61378 (16)	0.0665 (5)
C422	0.8969 (3)	1.1362 (2)	0.4651 (3)	0.0672 (7)
H42A	0.9713	1.2091	0.5146	0.101*
H42B	0.8338	1.1661	0.4387	0.101*
H42C	0.9344	1.1074	0.3990	0.101*
C451	0.3863 (2)	0.8423 (2)	0.30793 (19)	0.0438 (5)
C452	0.4201 (2)	0.9316 (2)	0.2269 (2)	0.0548 (6)
H432	0.5096	1.0035	0.2303	0.066*
C453	0.3229 (3)	0.9152 (3)	0.1418 (2)	0.0618 (7)
H453	0.3470	0.9759	0.0883	0.074*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C454	0.1896 (2)	0.8088 (3)	0.1354 (2)	0.0547 (6)	
C455	0.1541 (3)	0.7189 (3)	0.2142 (2)	0.0601 (7)	
H455	0.0645	0.6470	0.2100	0.072*	
C456	0.2518 (2)	0.7356 (2)	0.2994 (2)	0.0550 (6)	
H456	0.2271	0.6742	0.3522	0.066*	
O51	0.59236 (14)	0.63452 (14)	0.31443 (12)	0.0439 (4)	
C51	0.6722 (2)	0.7221 (2)	0.23830 (17)	0.0385 (5)	
C52	0.6039 (2)	0.7120 (2)	0.13389 (18)	0.0456 (5)	
C152	0.43183 (6)	0.59396 (7)	0.10230 (5)	0.0642 (2)	
C53	0.6747 (3)	0.7974 (3)	0.0551 (2)	0.0687 (8)	
H53	0.6296	0.7910	-0.0155	0.082*	
C54	0.8119 (3)	0.8921 (3)	0.0802 (2)	0.0785 (9)	
H54	0.8589	0.9505	0.0271	0.094*	
C55	0.8794 (3)	0.9006 (3)	0.1834 (2)	0.0636 (7)	
H55	0.9724	0.9644	0.1998	0.076*	
C56	0.8105 (2)	0.8153 (2)	0.26297 (19)	0.0480 (5)	
H56	0.8567	0.8205	0.3326	0.058*	
N451	0.0955 (3)	0.8005 (3)	0.0454 (2)	0.0742 (7)	
N452	-0.0178 (3)	0.6960 (3)	0.0307 (2)	0.0877 (8)	
N453	-0.1227 (4)	0.6080 (4)	0.0081 (3)	0.1355 (14)	

Atomic displacement parameters $(Å^2)$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
N1 $0.0418(10)$ $0.0384(9)$ $0.0397(10)$ $0.0174(8)$ -0.002 N2 $0.0451(10)$ $0.0426(10)$ $0.0416(10)$ $0.0167(8)$ -0.002 C3 $0.0400(12)$ $0.0384(11)$ $0.0407(12)$ $0.0109(10)$ 0.0001 C4 $0.0391(11)$ $0.0337(10)$ $0.0387(11)$ $0.0115(9)$ 0.0015 C5 $0.0357(11)$ $0.0347(11)$ $0.0403(11)$ $0.0109(9)$ -0.002 C11 $0.0487(13)$ $0.0374(11)$ $0.0463(12)$ $0.0182(10)$ 0.0078 C12 $0.0735(17)$ $0.0608(15)$ $0.0554(15)$ $0.0354(14)$ -0.005 C13 $0.121(3)$ $0.079(2)$ $0.0584(18)$ $0.057(2)$ -0.005 C14 $0.130(3)$ $0.086(2)$ $0.072(2)$ $0.074(2)$ 0.030	U^{23}
N2 $0.0451(10)$ $0.0426(10)$ $0.0416(10)$ $0.0167(8)$ -0.002 C3 $0.0400(12)$ $0.0384(11)$ $0.0407(12)$ $0.0109(10)$ 0.0001 C4 $0.0391(11)$ $0.0337(10)$ $0.0387(11)$ $0.0115(9)$ 0.0015 C5 $0.0357(11)$ $0.0347(11)$ $0.0403(11)$ $0.0109(9)$ -0.002 C11 $0.0487(13)$ $0.0374(11)$ $0.0463(12)$ $0.0182(10)$ 0.0078 C12 $0.0735(17)$ $0.0608(15)$ $0.0554(15)$ $0.0354(14)$ -0.005 C13 $0.121(3)$ $0.079(2)$ $0.0584(18)$ $0.057(2)$ -0.005 C14 $0.130(3)$ $0.086(2)$ $0.072(2)$ $0.074(2)$ $0.0306(2)$	21 (7) 0.0100 (7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31 (8) 0.0136 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (9) 0.0119 (9)
C5 0.0357 (11) 0.0347 (11) 0.0403 (11) 0.0109 (9) -0.002 C11 0.0487 (13) 0.0374 (11) 0.0463 (12) 0.0182 (10) 0.0078 C12 0.0735 (17) 0.0608 (15) 0.0554 (15) 0.0354 (14) -0.002 C13 0.121 (3) 0.079 (2) 0.0584 (18) 0.057 (2) -0.003 C14 0.130 (3) 0.086 (2) 0.072 (2) 0.074 (2) 0.030	5 (9) 0.0109 (9)
C110.0487 (13)0.0374 (11)0.0463 (12)0.0182 (10)0.0078C120.0735 (17)0.0608 (15)0.0554 (15)0.0354 (14)-0.005C130.121 (3)0.079 (2)0.0584 (18)0.057 (2)-0.005C140.130 (3)0.086 (2)0.072 (2)0.074 (2)0.030	20 (9) 0.0117 (9)
C12 0.0735 (17) 0.0608 (15) 0.0554 (15) 0.0354 (14) -0.005 C13 0.121 (3) 0.079 (2) 0.0584 (18) 0.057 (2) -0.005 C14 0.130 (3) 0.086 (2) 0.072 (2) 0.074 (2) 0.030	8 (10) 0.0158 (10)
C13 0.121 (3) 0.079 (2) 0.0584 (18) 0.057 (2) -0.005 C14 0.130 (3) 0.086 (2) 0.072 (2) 0.074 (2) 0.030	52 (13) 0.0016 (12)
C14 0.130 (3) 0.086 (2) 0.072 (2) 0.074 (2) 0.030	56 (17) -0.0079 (15)
	(2) 0.0143 (17)
C15 $0.082(2)$ $0.0752(19)$ $0.087(2)$ $0.0523(17)$ 0.0281	1 (17) 0.0313 (17)
C16 0.0554 (15) 0.0517 (14) 0.0643 (15) 0.0287 (12) 0.0084	4 (12) 0.0175 (12)
C31 0.0672 (16) 0.0641 (16) 0.0424 (13) 0.0250 (13) -0.001	17 (11) 0.0104 (11)
N41 0.0434 (10) 0.0365 (9) 0.0544 (11) 0.0186 (8) 0.0051	1 (8) 0.0110 (8)
N42 0.0397 (10) 0.0341 (9) 0.0574 (12) 0.0118 (8) 0.0002	2 (8) 0.0116 (8)
C43 0.0445 (12) 0.0377 (11) 0.0463 (12) 0.0159 (10) 0.0050	0 (10) 0.0103 (9)
C44 0.0413 (12) 0.0416 (12) 0.0575 (14) 0.0171 (10) 0.0074	4 (10) 0.0155 (10)
C45 0.0401 (12) 0.0333 (11) 0.0527 (13) 0.0174 (10) 0.0078	8 (10) 0.0072 (9)
C421 0.0443 (13) 0.0400 (12) 0.0657 (16) 0.0166 (11) 0.0009	9 (12) 0.0034 (11)
O421 0.0530 (10) 0.0554 (10) 0.0780 (12) 0.0154 (9) -0.014	41 (9) 0.0071 (9)
C422 0.0487 (14) 0.0424 (13) 0.097 (2) 0.0082 (11) 0.0075	5 (13) 0.0173 (13)
C451 0.0418 (12) 0.0371 (11) 0.0530 (13) 0.0189 (10) 0.0057	7 (10) 0.0068 (10)
C452 0.0473 (13) 0.0476 (13) 0.0644 (16) 0.0159 (11) 0.0038	8 (11) 0.0170 (12)
C453 0.0617 (16) 0.0609 (16) 0.0640 (16) 0.0263 (14) 0.0049	9 (13) 0.0235 (13)
C454 0.0501 (14) 0.0638 (15) 0.0510 (14) 0.0278 (13) 0.0019	

C455	0.0433 (13)	0.0607 (15)	0.0644 (16)	0.0140 (12)	0.0027 (12)	0.0121 (13)
C456	0.0470 (14)	0.0545 (14)	0.0593 (15)	0.0179 (12)	0.0062 (11)	0.0184 (11)
051	0.0410 (8)	0.0437 (8)	0.0401 (8)	0.0123 (7)	-0.0050 (6)	0.0148 (6)
C51	0.0421 (12)	0.0388 (11)	0.0356 (11)	0.0190 (10)	0.0035 (9)	0.0094 (9)
C52	0.0457 (12)	0.0528 (13)	0.0386 (12)	0.0229 (11)	-0.0004 (9)	0.0087 (10)
C152	0.0497 (4)	0.0759 (4)	0.0539 (4)	0.0191 (3)	-0.0120 (3)	0.0076 (3)
C53	0.0667 (17)	0.090 (2)	0.0464 (14)	0.0300 (16)	-0.0002 (12)	0.0273 (14)
C54	0.0714 (19)	0.086 (2)	0.0658 (18)	0.0193 (16)	0.0135 (15)	0.0425 (16)
C55	0.0487 (14)	0.0633 (16)	0.0617 (16)	0.0098 (12)	0.0057 (12)	0.0189 (13)
C56	0.0449 (13)	0.0504 (13)	0.0438 (12)	0.0178 (11)	-0.0009 (10)	0.0090 (10)
N451	0.0607 (15)	0.0910 (18)	0.0658 (15)	0.0306 (14)	-0.0037 (12)	0.0147 (13)
N452	0.0718 (18)	0.105 (2)	0.0770 (18)	0.0341 (18)	-0.0142 (14)	0.0112 (15)
N453	0.084 (2)	0.129 (3)	0.141 (3)	0.009 (2)	-0.044 (2)	0.014 (2)

Geometric parameters (Å, °)

N1—C5	1.358 (3)	C45—C451	1.457 (3)
N1—N2	1.375 (2)	C421—O421	1.221 (3)
N1-C11	1.420 (3)	C421—C422	1.492 (3)
N2—C3	1.324 (3)	C422—H42A	0.9600
C3—C4	1.413 (3)	C422—H42B	0.9600
C3—C31	1.496 (3)	C422—H42C	0.9600
C4—C5	1.364 (3)	C451—C456	1.390 (3)
C4—C43	1.498 (3)	C451—C452	1.391 (3)
C5—O51	1.368 (2)	C452—C453	1.375 (3)
C11—C16	1.377 (3)	C452—H432	0.9300
C11—C12	1.382 (3)	C453—C454	1.381 (3)
C12—C13	1.383 (4)	С453—Н453	0.9300
С12—Н12	0.9300	C454—C455	1.374 (3)
C13—C14	1.371 (4)	C454—N451	1.423 (3)
С13—Н13	0.9300	C455—C456	1.378 (3)
C14—C15	1.370 (4)	C455—H455	0.9300
C14—H14	0.9300	C456—H456	0.9300
C15—C16	1.374 (3)	O51—C51	1.391 (2)
С15—Н15	0.9300	C51—C56	1.378 (3)
С16—Н16	0.9300	C51—C52	1.382 (3)
C31—H31A	0.9600	C52—C53	1.376 (3)
C31—H31B	0.9600	C52—C152	1.721 (2)
C31—H31C	0.9600	C53—C54	1.374 (4)
N41—C45	1.288 (3)	С53—Н53	0.9300
N41—N42	1.382 (2)	C54—C55	1.371 (4)
N42—C421	1.357 (3)	C54—H54	0.9300
N42—C43	1.485 (3)	C55—C56	1.377 (3)
C43—C44	1.536 (3)	C55—H55	0.9300
C43—H43	0.9800	C56—H56	0.9300
C44—C45	1.500 (3)	N451—N452	1.239 (3)
C44—H44A	0.9700	N452—N453	1.112 (4)
C44—H44B	0.9700		

C5—N1—N2	109.94 (17)	H44A—C44—H44B	109.1
C5—N1—C11	131.03 (17)	N41—C45—C451	121.9 (2)
N2—N1—C11	118.97 (17)	N41—C45—C44	114.0 (2)
C3—N2—N1	105.22 (16)	C451—C45—C44	124.14 (18)
N2—C3—C4	112.06 (18)	O421—C421—N42	119.4 (2)
N2—C3—C31	119.7 (2)	O421—C421—C422	123.0 (2)
C4—C3—C31	128.3 (2)	N42—C421—C422	117.5 (2)
C5—C4—C3	103.77 (19)	C421—C422—H42A	109.5
C5—C4—C43	127.47 (19)	C421—C422—H42B	109.5
C3—C4—C43	128.67 (19)	H42A—C422—H42B	109.5
N1—C5—C4	109.00 (18)	C421—C422—H42C	109.5
N1—C5—O51	121.29 (18)	H42A—C422—H42C	109.5
C4—C5—O51	129.63 (19)	H42B—C422—H42C	109.5
C16—C11—C12	120.3 (2)	C456—C451—C452	117.9 (2)
C16—C11—N1	118.1 (2)	C456—C451—C45	120.2 (2)
C12—C11—N1	121.5 (2)	C452—C451—C45	121.93 (19)
C11—C12—C13	118.8 (3)	C453—C452—C451	120.9 (2)
C11—C12—H12	120.6	C453—C452—H432	119.5
C13—C12—H12	120.6	C451—C452—H432	119.5
C14-C13-C12	120.8 (3)	C452—C453—C454	120.2 (2)
C14—C13—H13	119.6	C452—C453—H453	119.9
C12—C13—H13	119.6	C454—C453—H453	119.9
$C_{12} = C_{14} = C_{13}$	119.8 (3)	C455-C454-C453	1199(2)
C_{15} C_{14} H_{14}	120.1	C455 - C454 - N451	123.8 (2)
C13—C14—H14	120.1	C453—C454—N451	116.3 (2)
C14-C15-C16	120.3(3)	C454 - C455 - C456	110.0(2) 119.8(2)
C14-C15-H15	119.9	C454—C455—H455	120.1
C_{16} $-C_{15}$ $-H_{15}$	119.9	C456—C455—H455	120.1
C_{15} C_{16} C_{11}	119.9 (3)	C455-C456-C451	120.1 121.4(2)
C_{15} C_{16} H_{16}	120.0	C455—C456—H456	1193
C_{11} $-C_{16}$ $-H_{16}$	120.0	C451 - C456 - H456	119.3
C_3 — C_31 — H_{31A}	109 5	$C_{5} = 051 = C_{51}$	118 76 (15)
C3-C31-H31B	109.5	$C_{56} - C_{51} - C_{52}$	120 60 (19)
H31A-C31-H31B	109.5	$C_{56} - C_{51} - O_{51}$	123.61 (18)
$C_3 = C_3 = H_3 C_1$	109.5	$C_{52} - C_{51} - O_{51}$	125.01(10) 115.78(17)
H_{31A} $-C_{31}$ $-H_{31C}$	109.5	C_{53} C_{52} C_{51} C_{51}	119 3 (2)
H31B-C31-H31C	109.5	C_{53} C_{52} C_{52} C_{52} C_{52} C_{52}	120.11(18)
C45 - N41 - N42	107.91 (17)	$C_{51} - C_{52} - C_{152}$	120.55 (16)
C421 - N42 - N41	123 31 (18)	C54-C53-C52	120.32(10) 120.3(2)
C421 - N42 - C43	123.31(10) 123.29(19)	$C_{54} - C_{53} - H_{53}$	119.9
N41 - N42 - C43	113 24 (16)	$C_{52} - C_{53} - H_{53}$	119.9
N42 - C43 - C4	113.21(10) 111.51(17)	$C_{55} - C_{54} - C_{53}$	120.1(2)
N42 - C43 - C44	100 58 (16)	$C_{55} - C_{54} - H_{54}$	120.1 (2)
C4-C43-C44	115 07 (17)	C53—C54—H54	120.0
N42—C43—H43	109.8	C54-C55-C56	120.5(2)
C4-C43-H43	109.8	C54—C55—H55	119.8
C44—C43—H43	109.8	С56—С55—Н55	119.8

C45—C44—C43	102.78 (17)	C55—C56—C51	119.2 (2)
C45—C44—H44A	111.2	С55—С56—Н56	120.4
C43—C44—H44A	111.2	С51—С56—Н56	120.4
C45—C44—H44B	111.2	N452—N451—C454	115.9 (2)
C43—C44—H44B	111.2	N453—N452—N451	172.5 (4)
C5—N1—N2—C3	0.0 (2)	N42—N41—C45—C451	-178.72 (18)
C11—N1—N2—C3	177.67 (17)	N42—N41—C45—C44	2.3 (2)
N1—N2—C3—C4	-0.1 (2)	C43—C44—C45—N41	-9.3 (2)
N1—N2—C3—C31	-179.89 (18)	C43—C44—C45—C451	171.76 (19)
N2—C3—C4—C5	0.2 (2)	N41—N42—C421—O421	-179.4 (2)
C31—C3—C4—C5	179.9 (2)	C43—N42—C421—O421	-4.4 (3)
N2—C3—C4—C43	-176.68 (18)	N41—N42—C421—C422	-0.1(3)
C31—C3—C4—C43	3.1 (3)	C43—N42—C421—C422	174.9 (2)
N2—N1—C5—C4	0.1 (2)	N41—C45—C451—C456	177.0 (2)
C11—N1—C5—C4	-177.18(19)	C44—C45—C451—C456	-4.2 (3)
N2—N1—C5—O51	-176.85(16)	N41—C45—C451—C452	-2.0(3)
$C_{11} = N_1 = C_5 = O_51$	58(3)	C44-C45-C451-C452	1769(2)
$C_{3}-C_{4}-C_{5}-N_{1}$	-0.2(2)	C456-C451-C452-C453	0.5(4)
C43 - C4 - C5 - N1	176 73 (18)	C45-C451-C452-C453	179 5 (2)
$C_{3}-C_{4}-C_{5}-O_{5}1$	176.47 (19)	C451 - C452 - C453 - C454	-0.2(4)
C43 - C4 - C5 - O51	-66(3)	$C_{452} - C_{453} - C_{454} - C_{455}$	-0.2(4)
$C_{5}-N_{1}-C_{11}-C_{16}$	149 1 (2)	C452 - C453 - C454 - N451	1793(2)
N_{2} N1 C11 C16	-280(3)	C453 - C454 - C455 - C456	0.2.(4)
$C_{5}-N_{1}-C_{11}-C_{12}$	-331(3)	N451—C454—C455—C456	-179.3(2)
$N_2 - N_1 - C_{11} - C_{12}$	149.8 (2)	C454 - C455 - C456 - C451	0.2 (4)
C_{16} C_{11} C_{12} C_{13}	13(4)	C452 - C451 - C456 - C455	-0.6(3)
N1-C11-C12-C13	-1765(2)	C45-C451-C456-C455	-1795(2)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.9(4)	N1 - C5 - 051 - C51	-900(2)
C12 - C13 - C14 - C15	-25(5)	C4-C5-O51-C51	93.7(2)
C_{13} C_{14} C_{15} C_{16}	1.8(5)	$C_{5} = 051 = C_{51} = C_{56}$	12(3)
C_{14} C_{15} C_{16} C_{11}	0.4(4)	$C_{5} = 051 = C_{51} = C_{52}$	$-178\ 15\ (19)$
C_{12} C_{11} C_{16} C_{15}	-20(3)	$C_{56} = C_{51} = C_{52} = C_{53}$	-0.9(3)
N1 - C11 - C16 - C15	175.9(2)	051 - 051 - 052 - 053	1784(2)
C_{45} N41 N42 C421	-1782(2)	$C_{56} = C_{51} = C_{52} = C_{53}$	179.07(17)
C_{45} N41 N42 C421 C45 N41 N42 C43	63(2)	051 - 051 - 052 - 0152	-16(3)
C_{421} N42 C_{43} C43	-644(3)	$C_{51} - C_{52} - C_{52} - C_{52}$	-0.2(4)
N41 $N42$ $C43$ $C4$	111 03 (10)	C_{152} C_{52} C_{53} C_{54}	170.7(2)
$C_{421} N_{42} C_{43} C_{44}$	173.1(2)	$C_{132} = C_{32} = C_{33} = C_{34} = C_{55}$	179.7(2)
N41 $N42$ $C43$ $C44$	-11 A (2)	$C_{32} = C_{33} = C_{34} = C_{35}$	-0.5(5)
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}N_{-}N_{-}N_{-}N_{-}N_{-}N_{-}N_{-}N$	-679(3)	$C_{54} - C_{54} - C_{56} - C_{50}$	-0.7(4)
C_{3} C_{4} C_{43} N_{42}	108 3 (2)	$C_{2} = C_{2} = C_{2$	14(3)
$C_{5} = C_{4} = C_{43} = C_{44}$	100.3 (2)	051 051 056 055	-1770(2)
$C_{3} = C_{4} = C_{43} = C_{44}$	-1380(3)	$C_{455} = C_{454} = 0.00 - 0.000 - 0.000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.00$	-0 A (A)
NA2 CA3 CA4 CA5	130.0(2)	$C_{153} = C_{154} = 10451 = 10452$ $C_{153} = C_{154} = 10451 = 10452$	9.7 (7) 171 1 (2)
CA CA3 CA4 CA5	-108.61(10)	C+55—C+54—IN451—IN452	1/1.1 (3)
UT_UTJ_UTT_UTJ	100.01 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C14—H14…N451 ⁱ	0.93	2.58	3.378 (5)	144
C55—H55…O421 ⁱⁱ	0.93	2.59	3.228 (4)	126

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+2, -*z*+1.

(3RS)-2-Acetyl-5-(4-azidophenyl)-3'-methyl-5'-(naphthalen-2-yloxy)-1'-phenyl-3,4-dihydro-1'H,2H-[3,4'-

bipyrazole] (X)

Crystal data

$C_{31}H_{25}N_7O_2$	Z = 2
$M_r = 527.58$	F(000) = 552
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.312 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.4911 (11) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.2048 (12) Å	Cell parameters from 5566 reflections
c = 13.5943 (17) Å	$\theta = 2.2 - 27.0^{\circ}$
$\alpha = 105.323 \ (3)^{\circ}$	$\mu=0.09~\mathrm{mm}^{-1}$
$\beta = 93.505 \ (3)^{\circ}$	T = 296 K
$\gamma = 117.460 \ (3)^{\circ}$	Block, orange
$V = 1335.9 (3) Å^3$	$0.15 \times 0.13 \times 0.12 \text{ mm}$
Data collection	
Bruker APEXII CCD	16901 measured reflections
diffractometer	5470 independent reflections
Radiation source: fine focus sealed tube	2883 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.038$
Detector resolution: 0.3333 pixels mm ⁻¹	$\theta_{\rm max} = 26.6^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
φ and ω scans	$h = -12 \rightarrow 13$
Absorption correction: multi-scan	$k = -13 \rightarrow 14$
(SADABS; Bruker, 2015)	$l = -17 \rightarrow 17$
$T_{\min} = 0.926, \ T_{\max} = 0.990$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least among matrice full	a si shih saanin a sita s

Reminement on PHydrogen site rocation. Interfect from
neighbouring sitesLeast-squares matrix: full
 $R[F^2 > 2\sigma(F^2)] = 0.055$ H-atom parameters constrained
 $w = 1/[\sigma^2(F_o^2) + (0.0878P)^2 + 0.1031P]$
where $P = (F_o^2 + 2F_c^2)/3$ S = 1.01
5470 reflections
363 parameters
0 restraints $(\Delta/\sigma)_{max} < 0.001$
 $\Delta\rho_{max} = 0.25$ e Å⁻³
 $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.6651 (2)	0.45791 (19)	0.57177 (15)	0.0416 (5)

N2	0.6648 (2)	0.41194 (19)	0.46756 (15)	0.0432 (5)
C3	0.5257 (3)	0.3161 (2)	0.42124 (18)	0.0409 (6)
C4	0.4331 (2)	0.2966 (2)	0.49356 (17)	0.0391 (5)
C5	0.5259 (2)	0.3892 (2)	0.58743 (18)	0.0392 (5)
C11	0.8015 (3)	0.5485 (2)	0.64502 (19)	0.0457 (6)
C12	0.8116 (3)	0.6256 (4)	0.7444 (3)	0.0944 (12)
H12	0.7279	0.6222	0.7660	0.113*
C13	0.9477 (4)	0.7090 (4)	0.8131 (3)	0.1192 (15)
H13	0.9540	0.7593	0.8814	0.143*
C14	1.0715 (3)	0.7182 (4)	0.7824 (3)	0.0908 (11)
H14	1.1624	0.7765	0.8285	0.109*
C15	1.0613 (3)	0.6411 (3)	0.6831 (3)	0.0735 (9)
H15	1.1455	0.6460	0.6615	0.088*
C16	0.9265 (3)	0.5558 (3)	0.6146(2)	0.0579(7)
H16	0.9203	0 5029	0.5473	0.069*
C31	0.9209	0.2469(3)	0.30552 (18)	0.009 0.0582(7)
H31A	0.4656	0.3036	0.2728	0.087*
H31B	0.4021	0.1537	0.2869	0.087*
H31C	0.5681	0.2387	0.2824	0.087*
N41	0.1695 (2)	0.06485 (19)	0.2024	0.007 0.0437(5)
N42	0.1093(2) 0.2441(2)	0.00485(19) 0.07050(19)	0.57131(15) 0.51032(15)	0.0437(3) 0.0441(5)
C/3	0.2441(2) 0.2714(2)	0.07050(17) 0.1020(2)	0.31032(13) 0.47200(10)	0.0441(5)
С 4 5 Н43	0.2798	0.1520 (2)	0.3979	0.0430(0)
C44	0.2298 0.1701 (3)	0.1357	0.5379	0.032
	0.1791 (3)	0.2408 (3)	0.5528 (2)	0.0494 (0)
1144A 1144A	0.0036	0.3483	0.3702	0.059*
C45	0.0930 0.1347(2)	0.2279 0.1634 (2)	0.4030	0.039
C43	0.1347(2) 0.2025(2)	0.1034(2) -0.0227(2)	0.00713(18) 0.4726(2)	0.0409(0)
0421	0.2923(3)	0.0227(2)	0.4720(2)	0.0473(0)
C422	0.3340(2) 0.2662(2)	-0.01410(18) -0.1327(2)	0.39939(13)	0.0022(3)
U422	0.2002 (3)	-0.1327(3)	0.3239 (2)	0.0011(7)
П42А 1142D	0.1850	-0.2230	0.4803	0.092*
H42B	0.2432	-0.1049	0.5904	0.092*
H42C	0.3551	-0.1407	0.5550	0.092^{*}
C451 C452	0.0570(2)	0.1803(2) 0.1020(2)	0.08995 (19)	0.0451(6)
C452	0.0181 (3)	0.1030 (3)	0.7542 (2)	0.0547(7)
H452	0.0400	0.0297	0.7442	0.066^{*}
0453	-0.0529 (3)	0.1269 (3)	0.8323 (2)	0.0611(/)
H453	-0.0/90	0.0695	0.8/43	$0.0/3^{*}$
C454	-0.0857(3)	0.2361 (3)	0.8491 (2)	0.0565 (7)
0455	-0.0469 (3)	0.3205 (3)	0.7863 (2)	0.0595 (7)
H455	-0.0689	0.3938	0.7969	0.071*
C456	0.0244 (3)	0.2966 (3)	0.7078 (2)	0.0532 (7)
H456	0.0507	0.3545	0.6662	0.064*
N451	-0.1584 (3)	0.2531 (3)	0.9322 (2)	0.0777 (7)
N452	-0.1799 (3)	0.3563 (4)	0.9520 (2)	0.0815 (8)
N453	-0.2067 (3)	0.4447 (4)	0.9772 (3)	0.1105 (12)
051	0.49499 (18)	0.42237 (16)	0.68363 (12)	0.0487 (4)
C51	0.4200 (2)	0.3517 (2)	0.82738 (17)	0.0442 (6)

H51	0.3925	0.4213	0.8433	0.053*	
C52	0.4813 (2)	0.3339 (2)	0.74396 (17)	0.0406 (6)	
C53	0.5294 (2)	0.2343 (2)	0.71852 (17)	0.0453 (6)	
H53	0.5742	0.2262	0.6621	0.054*	
C54	0.5090 (3)	0.1493 (3)	0.77839 (18)	0.0469 (6)	
H54	0.5402	0.0825	0.7621	0.056*	
C54A	0.4420 (3)	0.1604 (2)	0.86413 (18)	0.0438 (6)	
C55	0.4151 (3)	0.0699 (3)	0.9256 (2)	0.0589 (7)	
H55	0.4434	0.0009	0.9095	0.071*	
C56	0.3490 (3)	0.0824 (3)	1.0070 (2)	0.0694 (8)	
H56	0.3323	0.0221	1.0463	0.083*	
C57	0.3056 (3)	0.1853 (3)	1.0325 (2)	0.0702 (8)	
H57	0.2597	0.1926	1.0884	0.084*	
C58	0.3298 (3)	0.2748 (3)	0.9765 (2)	0.0605 (7)	
H58	0.3013	0.3436	0.9950	0.073*	
C58A	0.3978 (2)	0.2648 (2)	0.89043 (17)	0.0426 (6)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0408 (12)	0.0393 (11)	0.0473 (12)	0.0199 (10)	0.0116 (9)	0.0174 (9)
N2	0.0464 (12)	0.0413 (11)	0.0473 (12)	0.0217 (10)	0.0164 (10)	0.0215 (9)
C3	0.0443 (14)	0.0364 (13)	0.0481 (14)	0.0203 (12)	0.0117 (12)	0.0218 (11)
C4	0.0415 (13)	0.0334 (12)	0.0476 (14)	0.0194 (11)	0.0115 (11)	0.0190 (11)
C5	0.0441 (14)	0.0385 (13)	0.0449 (14)	0.0239 (12)	0.0173 (11)	0.0205 (11)
C11	0.0410 (14)	0.0374 (13)	0.0563 (16)	0.0173 (11)	0.0081 (12)	0.0164 (12)
C12	0.0551 (19)	0.102 (3)	0.084 (2)	0.0367 (19)	-0.0005 (17)	-0.026 (2)
C13	0.070 (2)	0.120 (3)	0.099 (3)	0.037 (2)	-0.015 (2)	-0.040 (2)
C14	0.051 (2)	0.079 (2)	0.095 (3)	0.0118 (17)	-0.0135 (18)	0.002 (2)
C15	0.0410 (16)	0.077 (2)	0.092 (2)	0.0178 (15)	0.0115 (16)	0.0335 (19)
C16	0.0437 (16)	0.0615 (17)	0.0608 (17)	0.0181 (14)	0.0144 (13)	0.0230 (14)
C31	0.0644 (17)	0.0618 (17)	0.0491 (16)	0.0312 (15)	0.0116 (13)	0.0198 (13)
N41	0.0374 (11)	0.0353 (11)	0.0577 (13)	0.0146 (9)	0.0101 (9)	0.0208 (9)
N42	0.0424 (11)	0.0344 (11)	0.0598 (13)	0.0186 (9)	0.0162 (10)	0.0216 (9)
C43	0.0391 (13)	0.0401 (13)	0.0548 (15)	0.0179 (11)	0.0114 (11)	0.0236 (11)
C44	0.0419 (14)	0.0420 (14)	0.0704 (17)	0.0205 (12)	0.0146 (12)	0.0274 (13)
C45	0.0324 (12)	0.0305 (12)	0.0541 (15)	0.0103 (10)	0.0050 (11)	0.0167 (11)
C421	0.0350 (13)	0.0373 (14)	0.0636 (17)	0.0156 (11)	0.0085 (12)	0.0130 (12)
O421	0.0629 (12)	0.0537 (11)	0.0772 (13)	0.0328 (10)	0.0268 (11)	0.0227 (10)
C422	0.0575 (16)	0.0433 (15)	0.089 (2)	0.0266 (13)	0.0149 (15)	0.0283 (14)
C451	0.0370 (13)	0.0407 (14)	0.0529 (15)	0.0163 (11)	0.0062 (11)	0.0148 (12)
C452	0.0532 (16)	0.0551 (16)	0.0636 (18)	0.0280 (14)	0.0171 (14)	0.0280 (14)
C453	0.0571 (17)	0.0638 (18)	0.0662 (19)	0.0262 (15)	0.0187 (14)	0.0328 (15)
C454	0.0471 (15)	0.0652 (18)	0.0528 (16)	0.0263 (14)	0.0129 (13)	0.0154 (14)
C455	0.0566 (17)	0.0575 (17)	0.0649 (18)	0.0320 (15)	0.0132 (14)	0.0139 (15)
C456	0.0529 (16)	0.0476 (15)	0.0609 (17)	0.0255 (13)	0.0135 (13)	0.0196 (13)
N451	0.0809 (18)	0.091 (2)	0.0712 (17)	0.0503 (17)	0.0300 (14)	0.0251 (15)
N452	0.0605 (16)	0.088 (2)	0.0682 (18)	0.0283 (16)	0.0139 (13)	0.0004 (16)

N453	0.097(2)	0.097(2)	0 111 (3)	0.051(2)	0 0219 (18)	-0.0110(19)
051	0.097(2)	0.097(2)	0.0478(10)	0.031(2)	0.0219(10)	0.0206 (8)
C51	0.0050(11) 0.0475(14)	0.0404 (10) 0.0432 (14)	0.0470(10)	0.0340(9)	0.0224(0)	0.0200(0)
C51	0.0475(14)	0.0432(14)	0.0431(14)	0.0238(12)	0.0098(11)	0.0090(11)
C52	0.0415 (13)	0.0411 (13)	0.0382 (13)	0.0201 (11)	0.0072 (11)	0.0129 (11)
C53	0.0489 (14)	0.0511 (15)	0.0420 (14)	0.0294 (13)	0.0130 (11)	0.0150 (12)
C54	0.0547 (15)	0.0474 (15)	0.0464 (15)	0.0325 (13)	0.0093 (12)	0.0137 (12)
C54A	0.0446 (14)	0.0444 (14)	0.0388 (13)	0.0206 (12)	0.0056 (11)	0.0118 (11)
C55	0.0701 (18)	0.0610 (17)	0.0538 (17)	0.0349 (15)	0.0145 (14)	0.0263 (14)
C56	0.082 (2)	0.080 (2)	0.0593 (18)	0.0407 (18)	0.0253 (16)	0.0394 (16)
C57	0.078 (2)	0.091 (2)	0.0538 (17)	0.0450 (19)	0.0273 (15)	0.0314 (17)
C58	0.0674 (18)	0.0701 (19)	0.0484 (16)	0.0382 (16)	0.0194 (14)	0.0169 (14)
C58A	0.0408 (13)	0.0448 (14)	0.0363 (13)	0.0187 (11)	0.0053 (11)	0.0099 (11)

Geometric parameters (Å, °)

N1—C5	1.363 (3)	C422—H42A	0.9600
N1—N2	1.373 (2)	C422—H42B	0.9600
N1-C11	1.422 (3)	C422—H42C	0.9600
N2—C3	1.328 (3)	C451—C452	1.387 (3)
C3—C4	1.411 (3)	C451—C456	1.399 (3)
C3—C31	1.493 (3)	C452—C453	1.373 (3)
C4—C5	1.368 (3)	C452—H452	0.9300
C4—C43	1.505 (3)	C453—C454	1.384 (4)
C5—O51	1.364 (2)	C453—H453	0.9300
C11—C12	1.366 (4)	C454—C455	1.380 (4)
C11—C16	1.372 (3)	C454—N451	1.422 (3)
C12—C13	1.389 (4)	C455—C456	1.378 (3)
С12—Н12	0.9300	C455—H455	0.9300
C13—C14	1.356 (5)	C456—H456	0.9300
С13—Н13	0.9300	N451—N452	1.243 (4)
C14—C15	1.365 (4)	N452—N453	1.125 (4)
C14—H14	0.9300	O51—C52	1.411 (3)
C15—C16	1.379 (4)	C51—C52	1.352 (3)
С15—Н15	0.9300	C51—C58A	1.411 (3)
C16—H16	0.9300	C51—H51	0.9300
C31—H31A	0.9600	C52—C53	1.398 (3)
C31—H31B	0.9600	C53—C54	1.363 (3)
C31—H31C	0.9600	С53—Н53	0.9300
N41—C45	1.286 (3)	C54—C54A	1.404 (3)
N41—N42	1.387 (3)	C54—H54	0.9300
N42—C421	1.360 (3)	C54A—C58A	1.419 (3)
N42—C43	1.488 (3)	C54A—C55	1.420 (3)
C43—C44	1.535 (3)	C55—C56	1.352 (3)
C43—H43	0.9800	C55—H55	0.9300
C44—C45	1.506 (3)	C56—C57	1.396 (4)
C44—H44A	0.9700	C56—H56	0.9300
C44—H44B	0.9700	C57—C58	1.357 (4)
C45—C451	1.462 (3)	С57—Н57	0.9300

C421—O421	1.224 (3)	C58—C58A	1.413 (3)
C421—C422	1.499 (4)	С58—Н58	0.9300
C5—N1—N2	109.79 (18)	N42—C421—C422	117.4 (2)
C5—N1—C11	130.2 (2)	C421—C422—H42A	109.5
N2—N1—C11	119.39 (18)	C421—C422—H42B	109.5
C3—N2—N1	105.52 (18)	H42A—C422—H42B	109.5
N2—C3—C4	111.9 (2)	C421—C422—H42C	109.5
N2—C3—C31	119.0 (2)	H42A—C422—H42C	109.5
C4—C3—C31	129.1 (2)	H42B—C422—H42C	109.5
C5—C4—C3	104.0 (2)	C452—C451—C456	118.0 (2)
C5—C4—C43	128.0 (2)	C452—C451—C45	121.9 (2)
C3—C4—C43	128.0 (2)	C456—C451—C45	120.1 (2)
N1-C5-051	121.4(2)	C453—C452—C451	121.1(2)
N1-C5-C4	108.9(2)	C453 - C452 - H452	119.4
051-05-04	1297(2)	C451 - C452 - H452	119.4
C12-C11-C16	119 3 (2)	$C_{452} - C_{453} - C_{454}$	120.4(3)
C12 - C11 - N1	119.3(2) 1224(2)	$C_{452} = C_{453} = H_{453}$	119.8
$C_{12} = C_{11} = N_1$	122.4(2) 1183(2)	C452 - C453 - H453 C454 - C453 - H453	119.8
C_{11} C_{12} C_{13}	110.5(2) 110.5(3)	$C_{455} = C_{453} = 11453$	119.0
$C_{11} = C_{12} = C_{13}$	119.5 (5)	$C_{455} = C_{454} = C_{455}$	119.4(2) 124.3(3)
$C_{12} = C_{12} = H_{12}$	120.2	$C_{453} = C_{454} = N_{451}$	124.3(3)
$C_{13} - C_{12} - C_{12}$	120.2 121.1(2)	C455 - C454 - N451	110.3(3)
C14 - C13 - C12	121.1 (5)	C450 - C455 - C454	120.2(2)
С12—С13—П13	119.4	C430 - C433 - H453	119.9
C12—C13—H13	119.4	C454 - C455 - H455	119.9
C13 - C14 - C15	119.3 (3)	C455—C456—C451	120.8 (3)
C13—C14—H14	120.4	C455—C456—H456	119.6
C15—C14—H14	120.4	C451—C456—H456	119.6
C14—C15—C16	120.2 (3)	N452—N451—C454	116.6 (3)
С14—С15—Н15	119.9	N453—N452—N451	173.0 (4)
С16—С15—Н15	119.9	C5—O51—C52	118.44 (16)
C11—C16—C15	120.6 (3)	C52—C51—C58A	120.1 (2)
С11—С16—Н16	119.7	С52—С51—Н51	119.9
С15—С16—Н16	119.7	C58A—C51—H51	119.9
C3—C31—H31A	109.5	C51—C52—C53	122.4 (2)
C3—C31—H31B	109.5	C51—C52—O51	116.1 (2)
H31A—C31—H31B	109.5	C53—C52—O51	121.5 (2)
C3—C31—H31C	109.5	C54—C53—C52	118.4 (2)
H31A—C31—H31C	109.5	С54—С53—Н53	120.8
H31B—C31—H31C	109.5	С52—С53—Н53	120.8
C45—N41—N42	108.22 (19)	C53—C54—C54A	121.6 (2)
C421—N42—N41	122.79 (19)	C53—C54—H54	119.2
C421—N42—C43	123.8 (2)	C54A—C54—H54	119.2
N41—N42—C43	113.33 (17)	C54—C54A—C58A	119.1 (2)
N42—C43—C4	111.61 (17)	C54—C54A—C55	122.6 (2)
N42—C43—C44	100.55 (18)	C58A—C54A—C55	118.3 (2)
C4—C43—C44	116.11 (19)	C56—C55—C54A	121.2 (3)
N42—C43—H43	109.4	С56—С55—Н55	119.4

C4—C43—H43	109.4	C54A—C55—H55	119.4
C44—C43—H43	109.4	C55—C56—C57	120.3 (3)
C45—C44—C43	103.33 (18)	C55—C56—H56	119.8
C45—C44—H44A	111.1	C57—C56—H56	119.8
C43—C44—H44A	111.1	C58—C57—C56	120.7 (3)
C45—C44—H44B	111.1	C58—C57—H57	1197
C43—C44—H44B	111.1	C56—C57—H57	119.7
H44A—C44—H44B	109.1	C57—C58—C58A	120.8 (3)
N41-C45-C451	1210(2)	C57—C58—H58	119.6
N41 - C45 - C44	1137(2)	C58A - C58 - H58	119.6
$C_{451} - C_{45} - C_{44}$	125.3(2)	C_{51} C_{58} C	122.9(2)
0421 - C421 - N42	129.3(2) 119.7(2)	$C_{51} - C_{58A} - C_{54A}$	122.3(2) 118.3(2)
0421 - C421 - C422	119.7(2) 122.9(2)	C58 - C58 - C54A	118.8(2)
0421-0421-0422	122.9 (2)	C30-C30A-C34A	110.0 (2)
C5—N1—N2—C3	0.0 (2)	N41—N42—C421—O421	178.4 (2)
C11—N1—N2—C3	172.04 (18)	C43—N42—C421—O421	-4.6 (3)
N1—N2—C3—C4	-0.5(2)	N41—N42—C421—C422	-1.6(3)
N1—N2—C3—C31	178.74 (18)	C43—N42—C421—C422	175.4 (2)
N2—C3—C4—C5	0.8 (2)	N41—C45—C451—C452	-0.4(3)
C31—C3—C4—C5	-178.4(2)	C44—C45—C451—C452	178.8 (2)
N2-C3-C4-C43	-175.98(19)	N41—C45—C451—C456	178.2 (2)
$C_{31} - C_{3} - C_{4} - C_{43}$	4.9 (4)	C44—C45—C451—C456	-2.6(3)
N2-N1-C5-051	-175.81(17)	C456—C451—C452—C453	0.6(4)
$C_{11} - N_{1} - C_{5} - O_{51}$	13 3 (3)	C45-C451-C452-C453	179 3 (2)
$N_{2} N_{1} C_{5} C_{4}$	0.5(2)	C451 - C452 - C453 - C454	-0.4(4)
$C_{11} = N_{1} = C_{5} = C_{4}$	-1704(2)	C452 - C452 - C453 - C454 - C455	0.4(4)
C_{3} C_{4} C_{5} N_{1}	-0.7(2)	C452 = C453 = C454 = C453 C452 = C453 = C454 = N451	-179.6(2)
C_{43} C_{4-} C_{5-} N1	176.04(19)	C453 - C454 - C455 - C456	-0.2(4)
C_{3} C_{4} C_{5} O_{51}	170.04(1)) 175.1(2)	N451 C454 C455 C456	179.6(2)
C_{4}^{4} C_{4}^{4} C_{5}^{5} O_{51}^{51}	-8.1(4)	$C_{454} = C_{454} = C_{455} = C_{456} = C_{456}$	1/9.0(2)
$C_{43} = C_{4} = C_{5} = 0.51$	-26.2(4)	$C_{454} - C_{455} - C_{450} - C_{451}$	0.4(4)
$N_{2} = N_{1} = C_{11} = C_{12}$	20.2(4)	C452 - C451 - C450 - C455	0.7(4)
$N_2 - N_1 - C_{11} - C_{12}$	103.7(3) 152.5(2)	C45 - C451 - C450 - C455	-179.3(2) -4.2(4)
$N_2 = N_1 = C_{11} = C_{16}$	132.3(2)	C453 - C454 - IN451 - IN452	-4.2(4)
$N_2 - N_1 - C_{11} - C_{10}$	-17.0(3) -0.5(5)	C433 - C434 - IN431 - IN432	1/3.0(2) -100.0(2)
C10-C11-C12-C13	-0.3(3)	N1 - C5 - O51 - C52	-100.0(2)
NI = CII = CI2 = CI3	1/8.2(3)	C4 - C5 - 051 - C52	84.0 (3)
C11 - C12 - C13 - C14	1.8(7)	$C_{58A} = C_{51} = C_{52} = C_{53}$	-2.2(3)
C12-C13-C14-C15	-1.8(7)	C58A—C51—C52—O51	1/8.06 (19)
C13 - C14 - C15 - C16	0.6 (5)	C5-051-C52-C51	-166.12 (19)
	-0.7(4)	C5-051-C52-C53	14.2 (3)
NI-CII-CI6-CI5	-1/9.4 (2)	C51—C52—C53—C54	2.2 (3)
C14—C15—C16—C11	0.6 (5)	O51—C52—C53—C54	-178.1 (2)
C45—N41—N42—C421	-178.16 (19)	C52—C53—C54—C54A	-0.2 (3)
C45—N41—N42—C43	4.6 (2)	C53—C54—C54A—C58A	-1.6 (3)
C421—N42—C43—C4	-62.2 (3)	C53—C54—C54A—C55	177.8 (2)
N41—N42—C43—C4	115.0 (2)	C54—C54A—C55—C56	-179.3 (2)
C421—N42—C43—C44	174.0 (2)	C58A—C54A—C55—C56	0.1 (4)
N41—N42—C43—C44	-8.7 (2)	C54A—C55—C56—C57	0.0 (4)

$C_{43} = C_{44} = C_{45} = C_{451} = 1732(2) = C_{55} = C_{544} = C_{584} = C_{58} = 0.3(3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7(2) $C56 1(3)$ $C52 10.9(2)$ $C52 (2)$ $C57 1.7(2)$ $C57 28.57(18)$ $C54 (2)$ $C55 5(2)$ $C54 2(2)$ $C55-$	-C57C58C58A -C51C58AC58 -C51C58AC54A -C58C58AC51 -C58C58AC54A -C54AC58AC51 -C54AC58AC51 -C54AC58AC58 -C54AC58AC58	0.8 (4) -177.8 (2) 0.3 (3) 177.4 (2) -0.7 (4) 1.5 (3) -177.9 (2) 179.7 (2) 0.3 (3)
---	--	---	---	--

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C44—H44 A ····N2 ⁱ	0.97	2.60	3.397 (4)	139

Symmetry code: (i) -x+1, -y+1, -z+1.