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ABSTRACT: With the aid of a class of newly discovered Trost-type bisphosphine ligands bearing a chiral cycloalkane 
framework, the Pd-catalyzed decarboxylative dearomative asymmetric allylic alkylation (AAA) of benzofurans was achieved 
with high efficiency [0.2-1.0 mol% Pd2(dba)3/L], good generality and high enantioselectivity (> 30 examples, 82-99% yield 
and 90-96% ee). Moreover, a diversity-oriented synthesis (DOS) of previously unreachable flavaglines is disclosed. It features 
a reliable and scalable sequence of the freshly developed Tsuji-Trost-Stoltz AAA, a Wacker-Grubbs-Stoltz oxidation, an intra-
benzoin condensation and a conjugate addition, which allows the efficient construction of the challenging and compact 
cyclopenta[b]benzofuran scaffold with contiguous stereocenters. This strategy offers a new avenue for developing flavagline-
based drugs.  

The palladium-catalyzed asymmetric allylic alkylation 
(AAA) has become one of the most powerful bond-forming 
reactions for accessing biologically relevant molecules in  
the realm of enantioselective catalysis.1 Due to its wide 
applicability, the mechanism has been thoroughly explored 
by preeminent researchers such as Trost, Stoltz, Lloyd-
Jones, etc., through experimental and/or computational 
methods.2 We are now cognizant of the fact that the reaction 
pathway could vary greatly depending on various 
parameters, while chiral ligand plays a vital role in ensuring 
a highly enantiomeric transformation. In this context, PHOX 
ligands developed independently by Helmchen, Pfaltz and 
Williams,3 as well as Trost’s DPPBA-based ligands were 
soon revealed as the privileged candidates for AAA.4 Despite 
the notable advancement, ligand design for surmounting 
highly challenging while practical enantioselective 
transformations continues to be a popular research area. 
Recently, by incorporating a chiral cyclohexane scaffold into 
the PHOX framework, we developed a new class of CyPHOX 
ligands,5 which exhibited much better performance in 
Lam's nickel-catalyzed desymmetrizing arylative 
cyclization than the common PHOX ligands.6 With our 
continuing interest in ligand design and asymmetric 
synthesis, we herein report the discovery of  a new class of 
Trost-type bisphosphine ligands bearing chiral cycloalkane 
scaffolds, which exhibited excellent performance in the Pd-
catalyzed decarboxylative dearomative AAA of 
benzofurans,7,8 Furthermore, the success of this AAA 
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Figure 1. A Diversity-Oriented Synthesis (DOS) Approach to 
Flavaglines by A Palladium-Catalyzed AAA.
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enabled a diversity-oriented synthesis (DOS) of unprece-
dented flavaglines (Figure 1).9 

Flavaglines (rocaglates), characterized by a densely 
functionalized cyclopenta[b]benzofuran scaffold with 
contiguous stereocenters (including two vicinal 
tetrasubstituted carbons, Figure 1A),10 were found to exhibit 
a notably wide array of biological properties, and of 
particular interest is their selective cytotoxicity towards a 
broad spectrum of cancer cell lines over normal cell lines. 
This activity is now believed to be due to their ability to 
target prohibitins (PHBs) 1 and 2 as well as translation 
initiation factor eIF4A.11,12 For these reasons, flavaglines 
have long been the focus of numerous synthetic studies,13 
and drug development.14 However, to the best of our 
knowledge, a general strategy, suitable for manipulation at 
C3a and C3 beyond dominant aryl groups (Figure 1B), and to 
overcome the critical issues such as substrate dependence, 
reliability and optical outcome associated with existing 
synthetic methods, remains a significant challenge. By close 
analysis of flavaglines (Figure 1B), we envisioned  that an 
asymmetric diversity-oriented synthesis (DOS) synthesis 
should be viable through a two-stage  diversification design: 
1) the palladium-catalyzed AAA of benzofuran-3(2H)-ones 
11 or its benzofuran derivatives 12; and 2) classic conjugate 
additions or other alkene functionalizations of the tricyclic 
intermediates 9 derived from AAA products 10, although 
establishing all the required stereocenters on such a highly 
compact and strained scaffold will be a formidable task. 

With these considerations in mind, we started to 
investigate the Pd-catalyzed AAA. Initially, the direct AAA of 
11 was tested, but it proved unsuccessful.15 To our delight, 
the mild and neutral Tsuji-Trost-Stoltz AAA of 12a cleanly 

delivered the desired allylation product 10a by using PHOX 
and CyPHOX ligands (Table 1, entries 1-9), and best results 
were obtained with tert-Butyl PHOX L5 (entry 4, 62% ee).16 
To our disappointment, our CyPHOX ligands showed poor 
performance in this AAA (entries 6-9). Considering 
completely different transition states involved in the 
palladium-catalyzed AAA with PHOX ligands2h and Trost’s 
bisphosphine ligands,2a-g we thus prepared Trost-type 
ligands L11-L14 incorporating our chiral cyclohexane 
scaffold (see SI for synthesis), and evaluated their 
performance in this AAA. To our delight, among these four 
new ligands, the best chirality matched one L12 offered a 
significant improvement with an ee of 65% compared with 
the original Trost ligand L1 (20% ee). Based upon previous 
pioneering mechanistic investigations,2a-g we reckoned that, 
in addition to the traditional Wall-Flap effect, the chiral 
cycloalkane scaffold of L12 might play a role of further 
enhancing selectivity through its interaction with the 
nucleophile during the bond-forming step, as the π-allyl 
moiety involved is deeply embraced in the chiral pocket.17 
As one more tunable element introduced into the Trost 
Modular Ligand (TML) series, chances of success are 
supposed to increase. Thus, a series of this new class of 
ligands were prepared and evaluated in this AAA. L15 was 
soon found to give best results for benzofuran 12a (entry 
15, 79% ee).18 More intriguingly, decreasing the loading of 
the catalyst from 2.5 mol% to 0.2 mol% has a negligible 
influence on the enantiomeric outcome of this AAA (entry 
19, 80% ee). Furthermore, the reaction proceeded with very 
good efficiency even at -20 °C with 0.2 mol% 
Pd2(dba)3/L15, and best results were thus obtained (entry 
20, 89% yield and 92% ee). 

Table 1. Ligand Development and Optimization for the Palladium-Catalyzed AAA.a

entry Ligand X Y yield (%)b ee (%)c

1 L1 5 10 61 2
2 L2 5 10 80 13
3 L3 5 10 84 46
4 L4 5 10 95 62  
5 L5 5 10 78 4
6 L6 5 10 88 8
7 L7 5 10 81 3
8 L8 5 10 86 4
9 L9 5 10 83 7

10 L10 2.5 2.5 89 -20d 
11 L11 2.5 2.5 90 40
12 L12 2.5 2.5 87 65
13 L13 2.5 2.5 87 -60d,e

14 L14 2.5 2.5 85 11e

15 L15 2.5 2.5 89 79e

16 L16 2.5 2.5 88 72e

19 L15 0.2 0.2 91 80e
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20 L15 0.2 0.2 89 92
aUnless otherwise noted, the reactions were carried out with 12 (0.5 mmol), X mol% Pd2(dba)3·CHCl3 and Y mol% ligand (L) in 

THF at -20 °C. bIsolated Yield. cDetermined by Chiral HPLC. dReverse sequence of peaks by HPLC. eRun at RT. 
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Table 2. Scope of the Palladium-Catalyzed Decarboxylative Dearomative AAA.a

0.2 mol% Pd2(dba)3
0.2 mol% L15
THF, -20 oC

12 10

10j
99% y, 91% eec

X

O

O

O

O

O

O

OOMe

O

O

O

O

X

MeO

R R

R
O

O

N
R

O

O

O

R
X

R

10a (X = O, R = H ): 89% y, 92% ee
10b (X = NAc, R = H ): 89% y, 82% ee

10c (X = O, R = CO2Me): 99% y, 91% ee
10d (X = O, R = CN): 91% y, 90% ee
10e (X = O, R = CF3): 92% y, 90% ee

10f (X = O, R = F): 92% y, 90% ee
10g (X = O, R = Cl): 93% y, 90% ee

10k (X = Me): 97% y, 92% ee

NH HN
O O

PAr2 Ar2P

L15: Ar = 4-CH3-C6H4-

N

O

O

Ph

O

O

Ph

X

OMe

O

O

10o
98% y, 96% ee

O

O

N
Me

O

O

X

10p
99% y, 90% eec

10q (X = O): 95% y, 90% eec 10v
99% y, 91% ee

10x (X = OMe): 99% y, 91% ee 10b' (X = OMe): 98% y, 90% eec 10e'
98% y, 94% ee

10f'
90% y, 90% ee

10d'
98% y, 91% ee

O

O

10n
91% y, 91% ee

O

O

R1

O

O

R1

O

O

Ar
Ar

O

O

Ph
10s

94% y, 90% ee

O

O

10m
95% y, 92% ee

representative examples

O

O

Ph

Me Me

Me

10a'
98% y, 90% ee

10w
98% y, 91% ee

10i (X = O, R = NHBoc): 88% y, 90% eec

10l (X = Br): 82% y, 93% eec

10r (X = S): 94% y, 92% eec

10y (X = Br): 98% y, 94% ee

10h (X = O, R = OMe): 99% y, 91% eec

O

O

10u
91% y, 90% eec

10z (X = F): 98% y, 94% eed 10c' (X = Br): 99% y, 92% eed

O

O

Ph

10t
97% y, 90% eec

O

OOMe

MeO

R'
10g' (R' = OMe): 83% y, 90% eee

10h' (R' = H): 92% y, 90% eef

10v-10c': R = 1-naphthyl

b

aUnless otherwise noted, the reactions were carried out with 12 (0.5 mmol) and 0.2 mol% Pd2(dba)3/L15 in THF at -20 °C. bWith 
1.0 mol% Pd2(dba)3/L16 and 4 Å MS in THF at -20 °C. cWith 0.4 mol% Pd2(dba)3/15 in THF at -40 °C. dWith 0.4 mol% Pd2(dba)3/L15 
in THF  at -5 °C. eWith 1.0 mol% Pd2(dba)3/L16 and 4 Å MS in THF at -50 °C.  fWith 1.0 mol% Pd2(dba)3/L16 and 4 Å MS in THF at -
45 °C. 

With best conditions in hand, we then evaluated the 
scope of this Pd-catalyzed AAA (Table 2). A series of 
benzofurans (12a, 12c-u) with various different alkyl 
substituent at C3a position were first evaluated under the 
established optimal conditions. In the presence of 0.2 or 0.4 
mol % of Pd2(dba)3/L15, all reactions proceeded smoothly 
to provide the desired products in excellent yields (82-
99%) with excellent enantioselectivities (90-96% ee), 
regardless of their steric or electronic properties. More 
importantly, variations of the benzofuran core (10v-10h’), 
notably even with a heterocyclic ring pyridine, had no 
obvious influence on the reaction efficiency, and excellent 
results were preserved with low catalyst loading as well 
(90-99% yields, 90-94% ee). It is worth to note that L16 
evolved to be the best option for benzofurans containing 
aryl substituents at C3a position (10g’ and 10h’), and 
additive 4Å molecular sieves are found essential for 
obtaining high enantioselectivities.19  Furthermore, indole 
12b could also be applied in this AAA to produce the desired 
allylation product 10b with good results (89% yield, 81% 
ee).20

This AAA is quite practical, as ent-10a could be obtained 
on a multigram scale without a decrease in efficiency by 
means of ent-L15 (94% yield, 91% ee).21 This allowed us to 
evaluate our DOS design for flavagline synthesis (Scheme 
1). The Wacker-oxidation of ent-10a by the Grubbs-Stoltz 
protocol provided aldehyde 13 on a multigram scale,22 and 
the subsequent cyclization was achieved either by a 
literature-based two-step operation (50%, 2 steps),12 or in 
one step by N-heterocyclic carbene  (NHC) catalysis (80%) 
affording 15 bearing the cyclopenta[b]benzofuran core in 

Scheme 1. Diversity-Oriented Synthesis of Flavaglines.a
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gram quantities. It is interesting to note, this intra-benzoin 
cyclization proved nontrivial, and only NHC catalyst 14 was 
ultimately found to be optimal for 13 to provide the desired 
intramolecular selectivity over the intermolecular benzoin 
condensation.23,24 Next, a direct oxidative dehydrogenation 
by Stahl’s protocol gave enone 9a.25 At this stage, the 
absolute configuration was unambiguously determined by 
X-ray crystallographic analysis of the mono-brominated 
enone product 16 derived from 9a. For the second phase of 
diversification, we used readily available Grignard reagents 
as nucleophiles for conjugate addition with 9a and expected 
that the nucleophilic addition from the convex face would 
provide the stereochemistry at C3, matching that of natural 
products. To our surprise, only product 17a from addition 
to the concave face was obtained with isopropyl cuprate.26 
From 17a, rocaglaol-type and rocaglamide-type flavaglines 
(18 and 20, respectively) were prepared in one or three 
simple operations (reduction or Stiles 
carboxylation/transamination/reduction), respectively. 
Meanwhile, 3-epi-17b could be accessed in good isolated 
yield from a two-step oxidation-reduction process (60%, 2 
steps) though the diastereoselectivity was moderate (2:1 
dr). This result highlights the difficulties associated with 
this highly compact and strained scaffold, and two more 
flavaglines (21 and 22) were secured proving our DOS 
design of flavaglines efficacious.27

To shed some light on the concave selectivity and the 
hydrogenation result, we then further conducted some 
experimental studies with a series of (±)-9 (Scheme 2). 
Scheme 2. 
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Firstly, regardless of alkyl or aryl cuprates, only concave 
addition products were obtained with (±)-9a or (±)-9b. 
Secondly, diastereoselectivities were observed when the 
tertiary alcohol at C8b was protected, with the more steric 
TBS giving a best 3.5:1 dr, although concave products 
predominated regardless of chelating and non-chelating 
groups. Moreover, an introduction of ester group at C2 
further increased the diastereoselectivity [concerning (±)-
3-epi-17b]. These results suggest that the steric bias 
between the concave and convex faces is subtle in this 
case.28 This also explains why the hydrogenation afforded a 
moderate diastereoselectivity, as hydrogen is much smaller 
than the cuprates. 

In summary, a new blueprint for flavagline-based drug 
development was established by DOS design. This strategy 

features two diversification stages that allows access to 
flavaglines that are unreachable by previous synthetic 
methods. The first stage highlights the significance of the 
palladium-catalyzed asymmetric allylic alkylation (AAA). 
With the newly discovered class of Trost-type bisphosphine 
ligands incorporating a chiral cycloalkane framework, the 
Pd-catalyzed decarboxylative dearomative AAA of 
benzofurans was achieved with high efficiency [0.2-1.0 
mol% Pd2(dba)3/L], good generality and high 
enantioselectivity. Studies to understand the exact effect of 
the chiral cycloalkane scaffold in this new class of Trost-
type ligands as well as in our previous CyPHOX ligands are 
necessary and underway. 
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Bn = benzyl; y = yield; ee = enantiomeric excess. MMC (Stiles 
reagent) = methoxymagnesium methyl carbonate. 
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