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Abstract: A concise total synthesis of macakurzin C has been ac-
complished in nine steps (21% overall yield) from commercially
available phloroglucinol, featuring a sequential aromatic Claisen re-
arrangement–cyclization.
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Natural products exhibiting acetylcholinesterase (AChE)
inhibition are considered as promising new entities for the
treatment of Alzheimer’s disease (AD), because most
promising drugs for symptomatic of AD are AChE inhib-
itors. Thus, flavonoids with AChE inhibitory activity are
of interest for the medicinal chemistry community.1

Recently, macakurzins A–C (1–3, Figure 1) were isolated
from the leaves of Macaranga kurzii (Euphorbiaceae) col-
lected from Yen-Bai, Vietnam by Mai and Pham in 2012.2
Their structures were determined by extensive NMR
spectroscopic analysis, and the absolute stereochemistry
of macakurzins A and B were both identified as racemic
mixture by their esterification with Mosher’s reagent.2

Figure 1 Macakurzin A, B, and C

Interestingly, macakurzin C (3) showed potent AChE in-
hibitory activity (IC50 = 20 μM), while closely related ma-
cakurzin B (2) displayed no activity against AChE (no
inhibition at 50 μM against AChE). Based on the initial re-
sults, Mai and Pham demonstrated that the lack of a hy-
droxyl group in the pyran ring of 3 increased the activity
in comparison with 2. Due to the interesting biological
properties of 3, further studies on the structure–activity re-
lationship of 3 may be crucial for developing more potent
drug candidates. However, its natural source is too scarce
(0.006% isolated yield from crude EtOAc extracts).
Macakurzin C was previously synthesized in very poor
overall yield (<3%) by prenylation at C(6) in glalangin
and DDQ-mediated oxidative cyclization of the resultant
C(6)-prenylated galangin.3 Therefore, we sought to devel-
op an efficient and scalable synthetic route that would
provide a sufficient quantity of 3 and its analogues for ex-
tensive in vitro/in vivo biological studies to develop more
potent AChE inhibitors. Herein, we report a concise and
efficient synthetic route to 3 through a sequential aromatic
Claisen rearrangement and cyclization.4,5

Scheme 1  Retrosynthetic plan

Our retrosynthetic plan for macakurzin C (3) is outlined in
Scheme 1. We envisioned that the synthesis of macakurz-
in C (3) could be accomplished from aryl propargyl ether
5 by a tandem aromatic Claisen rearrangement–cycliza-
tion for the D ring in the natural product. We expected that
the chemoselective cyclization of the C(7) phenolic
hydroxyl over the C(5) hydroxyl in allenyl bisphenol 4
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should be dictated by the intrinsic reactivity of C(5) and
C(7) hydroxyl groups. Preparation of aryl propargyl ether
5 would be challenging because of the low reactivity of
the C(5) hydroxyl group in flavonol 6.

Scheme 2  Attempted preparation of the substrate for the aromatic
Claisen rearrangement

Our synthesis of macakurzin C commenced with commer-
cially available phloroglucinol (7), which was trans-
formed to the known tribenzoate 106 by Friedel–Crafts
acylation7 followed by benzoylation of the resulting trihy-
droxyphenol 9 in 58% overall yield (Scheme 2). Exposure
of tribenzoate 10 to K2CO3 in hot pyridine (140–150 °C)
gave rise to flavonol monobenzoate 6 in 80% yield
through Baker–Venkataraman rearrangement and dehy-
dration followed by concomitant deprotection of the C(5)
benzoyl group.
With monobenzoate 6 in hand, we attempted propargyla-
tion at the C(5) hydroxyl group. However, attempts to
propargylate the C(5) hydroxyl group were proven to be
problematic due to the low reactivity of the C(5) hydroxyl
group and instability of the C(7) benzoyl protection
group. Indeed, all our attempts using conventional condi-
tions [methyl- or trifluoro-(2-methylbut-3-yn-2-yl] car-
bonate, DBU, CuCl2, MeCN) failed to give 11. In
addition, exposure of monobenzoate 6 to more reactive
conditions (3-chloro-3-methylbut-1-yne, DBU, CuCl2,
MeCN) gave rise to the C(5) propargyl ether 11 in very
poor yield (<10%), but the C(7) propargyl ether 12 (64%)
as a major product along with C(5)/C(7) bispropargyl
ether 13 (<10%).8

The aromatic Claisen rearrangement of the C(7) propargyl
ether 12 provided 15 as a major product (14/15 = 1:3,
Scheme 3).9 To overcome this problem, the C(5) propar-

gylation should be crucial. Thus, we investigated the C(7)
hydroxyl protecting groups, which should be tolerant to
the reaction conditions of propargylation.

Scheme 3  Attempted aromatic Claisen rearrangement of 12

After an extensive investigation of the C(7) hydroxyl pro-
tecting groups,10 we were pleased to find that the THP
group is tolerant to the reaction conditions and can be eas-
ily removed under mild acidic conditions (Scheme 4).
Deprotection of the benzoyl group in 6 afforded bisphenol
165 in 92% yield, which was protected by the THP group
to provide 17 in 82% yield. Treatment of 17 with 3-
chloro-3-methylbut-1-yne and DBU in MeCN in the pres-
ence of a catalytic amount of CuCl2 gave rise to C(5) prop-
argyl ether 18 in a good yield (66%, 83% based on the
recovered starting material) along with the propargyl
ether 12 (5%). Deprotection of the THP group in propar-
gyl ether 18 provided the phenol 5 in 97% yield.

Scheme 4  Preparation of substrate for aromatic Claisen rearrange-
ment
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Scheme 5  Total synthesis of macakurzin C (3)

Having successfully prepared C(5) propargyl ether 5, we
embarked on the final stage of the synthesis (Scheme 5).
As expected, the subjection of 5 to the conventional con-
ditions of the aromatic Claisen rearrangement smoothly
provided 14 in 93% as a single isomer.
Finally, the deprotection of the benzyl group with BCl3 in
CH2Cl2 completed the synthesis of macakurzin C (3) in
83% yield. The spectral data for synthetic 3 were identical
with those reported for the natural product (1H NMR,
13C NMR, IR, and HRMS).2

In summary, the concise synthesis of macakurzin C (3)
has been accomplished in nine steps (21% overall yield)
from commercially available phloroglucinol, featuring a
sequential aromatic Claisen rearrangement and cycliza-
tion. We strongly believe that our synthetic routes could
provide a sufficient amount of 3, which would enable us
to extensively investigate in vitro/in vivo biological stud-

ies to develop lead compounds for AChE inhibitors. The
biological evaluation of synthetic macakurzin C (3) and
its analogues are under way and will be reported in due
course.
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