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Palladium-Catalyzed Decarboxylative Intramolecular Aziridination
from 4H-Isoxazol-5-ones Leading to 1-Azabicyclo[3.1.0]hex-2-enes**
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Transition-metal-catalyzed nitrene-transfer reactions are
powerful methods for incorporating nitrogen atoms directly
into organic molecules.[1, 2] Organic azides[2a,b] and N-sulfonyl-
iminoiodinanes[2c–e] are highly reactive nitrene precursors, and
have been widely used for such reactions as olefin aziridina-
tion and C�H amination. However, they must be handled
carefully or prepared immediately before use because of their
high reactivity. Therefore, the development of catalytic
nitrene-transfer reactions that use stable precursors under
mild reaction conditions is an important topic. Our research
interest has been focused on 4H-isoxazol-5-ones, five-mem-
bered cyclic oxime esters, as candidates for stable vinylnitrene
equivalents (Scheme 1). They can be readily prepared from b-

ketoesters[3] and are generally thermally stable. We envi-
sioned that the reaction of a 4H-isoxazol-5-one with a
palladium catalyst would give a nitrene complex,[4] which is
formed by the activation of the N�O bond by a low-valent
palladium species[5] followed by decarboxylation. Herein, we
report a palladium-catalyzed decarboxylative intramolecular
aziridination reaction of alkene-tethered 4H-isoxazol-5-ones
to form N-fused bicyclic aziridines.

During the course of our investigations of several nitrene-
transfer reactions using 4H-isoxazol-5-ones, we found that the
reaction of 4H-isoxazol-5-one 1 a, which possesses a methallyl
group at the 4-position, in the presence of 2.5 mol% of
[Pd2(dba)3] (5 mol% Pd) and 10 mol% of PPh3 in 1,4-dioxane
at 80 8C for 12 h gave the expected 1-azabicyclo[3.1.0]hex-2-
ene 2a[6] in 84 % yield (Table 1, entry 1). Various triarylphos-

phine ligands were examined for this decarboxylative intra-
molecular aziridination reaction (Table 1, entries 2–9). The
use of more electron-donating triarylphosphines resulted in
similar or lower yields (Table 1, entries 2–4), whereas the use
of more electron-withdrawing triarylphosphines increased the
yields (Table 1, entries 5 and 6) up to 95% yield (87 % yield
upon isolation). However, the reactions with the more
electron-deficient P(C6F5)3 or ortho-substituted triarylphos-
phines did not proceed well (Table 1, entries 7–9). Trialkyl-
phosphines or bidentate phosphine ligands were not effective
for this reaction (Table 1, entries 10–14).[7]

The present intramolecular aziridination reaction is
applicable to a variety of 4H-isoxazol-5-ones possessing a
range of substituents. Table 2 summarizes the substrate scope
of this reaction, using 5 mol% or 10 mol % of the palladium
catalyst [Pd2(dba)3]/P(4-CF3C6H4)3. 4H-Isoxazol-5-ones 1b
and 1c, bearing a 2-naphthyl group and a (p-trifluorome-
thyl)phenyl group instead of a phenyl group, gave 1-
azabicyclo[3.1.0]hexenes 2 b and 2c in 83% and 80% yields,
respectively (Table 2, entries 2 and 3). The use of isoxazolone
1d, having two phenyl groups on the five-membered ring

Scheme 1. 4H-isoxazol-5-ones as a vinylnitrene equivalent.

Table 1: Palladium-catalyzed intramolecular aziridination giving
azabicyclo[3.1.0]hexene 2a.[a]

Entry Ligand Conversion [%][b] Yield [%][b]

1 PPh3 98 84
2 P(4-MeC6H4)3 91 76
3 P(4-MeOC6H4)3 98 83
4 P(2-furyl)3 81 69
5 P(4-FC6H4)3 100 92
6 P(4-CF3C6H4)3 100 95 (87[c])
7 P(C6F5)3 0 0
8 P(2-MeC6H4)3 14 11
9 P(2-MeOC6H4)3 9 0
10 PBu3 0 0
11 PCy3 3 0
12 P(tBu)3 7 6
13[d] dppb 11 0
14[d] rac-binap 15 0

[a] The reaction was carried out with isoxazolone 1a (0.20 mmol),
[Pd2(dba)3] (2.5 mol%), and ligand (10 mol%) in 1,4-dioxane (1.3 mL).
[b] The yields were determined by 1H NMR spectroscopy of the crude
products (see the Supporting Information). [c] Yield of the isolated
product. [d] 5 mol% of ligand was used. binap = 2,2’-bis(diphenylphos-
phanyl)-1,1’-binaphthyl ,Cy = cyclohexyl, dba = dibenzylideneacetone,
dppb= bis(diphenylphosphanyl)butane.
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(R1 = R2 = Ph), increased the yield of the corresponding
aziridines up to 88% (Table 2, entry 4). Isoxazolone 1e,
which possesses an allyl group with a long alkyl chain (R3 = n-
hexyl), gave the bicyclic aziridine in 80% yield (Table 2,
entry 5). Isoxazolones with aliphatic groups at the imine
carbon atom were also used in the present reaction, and the
yields of 1-azabicyclo[3.1.0]hexenes 2 f–2 h were moderate. In
the case of isoxazolone 1 h, bearing two methallyl groups, the
corresponding aziridine 2 h was obtained in 40 % yield, with
one of the methallyl groups remaining intact. Furthermore,
the reaction of tricyclic isoxazolone 1 i also proceeded well to
give tetracyclic compound 2 i in 65% yield [Eq. (1)].

Scheme 2 shows a proposed catalytic cycle for the
palladium-catalyzed intramolecular aziridination reaction of
methallyl-substituted 4H-isoxazol-5-one 1a. First, the oxida-
tive addition of isoxazolone 1a to a low-valent palladium
center forms the six-membered palladacycle A, which readily
undergoes decarboxylation[8, 9] to give vinylnitrene/palladium
complex B[10] and/or four-membered azapalladacyclobutene
intermediate B’.[11] Then, cycloaddition of the tethered alkene
gives two possible azapalladacycles C and C’. Both inter-
mediates can undergo the reductive elimination to produce
bicyclic aziridine 2a, and regenerate the low-valent palladium
catalyst.

The palladium-catalyzed reaction of 4H-isoxazol-5-one
1j, possessing an unsubstituted allyl group, did not give a
bicyclic aziridine,[12] instead, pyrrole 3j and pyridine 4j were
obtained in low yields.[13] The selectivity towards the pyrrole
was remarkably increased using a bulky monophosphine
ligand (tBuXPhos).[14] Under the optimized reaction condi-

tions, pyrrole 3 j was obtained in 74% yield together with the
trace amount of pyridine 4j [Eq. (2)].

The reaction of isoxazolone 1k, which possesses both an
allyl group and a methallyl group, could result in a mixture of
three products (aziridine, pyrrole, and pyridine). Interest-
ingly, the reaction proceeded selectively in the presence of a
Pd/tBuXphos catalyst to give the corresponding bicyclic
aziridine 2k in 54% yield with a small amount of pyrrole
3k as a by-product [Eq. (3); 2k/3k = 6:1].

Azabicyclo[3.1.0]hexenes, the products of the present
reaction, are highly reactive because of their strained N-fused
bicyclic aziridine backbone.[6d,e,15] Of the various addition
reactions to the activated olefins of these azabicyclo-
[3.1.0]hexenes, protonolysis of the bicyclic aziridines was
first examined. The reaction of azabicyclic compound 2a with
an excess amount of acetic acid in dichloromethane pro-

Table 2: Palladium-catalyzed intramolecular aziridination giving
azabicyclo[3.1.0]hexenes 2.[a]

Entry Isoxazolone R1 R2 R3 Yield [%][b]

1 1a Ph Me Me 2a 87
2 1b 2-naphthyl Me Me 2b 83
3 1c 4-CF3C6H4 Me Me 2c 80[c]

4 1d Ph Ph Me 2d 88[c]

5 1e Ph Me n-hexyl 2e 80
6 1 f nPr Me n-hexyl 2 f 63[c]

7 1g Me Bn Me 2g 64[c]

8 1h Me methallyl Me 2h 40[c]

[a] The reaction was carried out with isoxazolone 1a (0.20 mmol),
[Pd2(dba)3] (2.5 mol%), and P(4-CF3C6H4)3 (10 mol%) in 1,4-dioxane
(1.3 mL). [b] Yield of the isolated product. [c] [Pd2(dba)3] (5 mol%), and
P(4-CF3C6H4)3 (20 mol%) were used.

Scheme 2. A proposed catalytic cycle.

11471Angew. Chem. Int. Ed. 2011, 50, 11470 –11473 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


ceeded at room temperature to give ring-opening addition
product 5a in 79% yield (Table 3, entry 1). In this product the
electrophile (proton) was introduced at the 3-position on the
azabicyclo[3.1.0]hexene backbone, and the nucleophile (ace-
tate anion) was incorporated at the 6-position. This type of

reaction also proceeded with other reagents. The use of
trimethylsilyl azide and water resulted in the ring-opening
addition of hydrogen azide to give the corresponding
azidomethyl 1-pyrroline 6a (Table 3, entry 2; 62% yield).
The reaction of azabicyclo[3.1.0]hexene 2a with molecular
bromine (Br2) afforded a dibrominated 1-pyrroline (7a) in
73% yield with a 2:1 d.r. (Table 3, entry 3). Interestingly, the
reaction of tetracyclic aziridine 2 i with molecular bromine
almost exclusively gave dibromide 7 i in 63% yield (d.r.>
20:1; Table 3, entry 4). Diiodination of aziridine 2a also gave
ring-opened diiodopyrroline 8 a in 67% yield with a 3:1 d.r.
(Table 3, entry 5). Catalytic hydrogenation using a heteroge-
neous palladium catalyst also proceeded to give dihydrogen
adduct 9a in 54% yield (Table 3, entry 6). The diphenyl-
substituted bicyclic aziridine 2d also underwent catalytic

hydrogenation to afford the pyrroline 9d in 61 % yield
(Table 3, entry 7).

A carbon electrophile showed a different reactivity
toward the bicyclic aziridine. Azabicyclo[3.1.0]hexene 2a
was treated with acetyl chloride to give the N-acetylated
enamide 10 a in 91% yield [Eq. (4)]. This result indicates that
the electrophiles first combine with the nitrogen atom
followed by the nucleophilic attack of the counter anion to
give the ring-opened enamines, and that the enamines readily
isomerize into the imines with the exception of acetyl
chloride.

In conclusion, we have developed a palladium-catalyzed
intramolecular aziridination reaction using methallyl-substi-
tuted 4H-isoxazol-5-ones as a vinylnitrene precursor. The
resulting N-fused bicyclic aziridines are readily converted into
1-pyrrolines by the addition/ring-opening reaction with var-
ious reagents. The pyrrole formation from an allyl-substituted
4H-isoxazol-5-one also supports the intermediacy of a vinyl-
nitrene/palladium B as well as an azapalladacyclobutane C.
Enantioselective aziridination and intermolecular nitrene-
transfer reactions using the present decarboxylation protocol
are in progress.

Experimental Section
General Procedure for Table 2: Isoxazolone 1 (0.20 mmol) was added
to a solution of [Pd2(dba)3] (4.6 mg, 5.0 mmol) and P(4-CF3C6H4)3

(9.3 mg, 20 mmol) in 1,4-dioxane (1.3 mL) and the mixture was stirred
at 80 8C for 12 h. The reaction mixture was filtered through a pad of
Florisil and the filtrate was concentrated under vacuum. The residue
was chromatographed on silica gel 60 NH2 (Kanto Chemical, co. ltd.)
(hexane/EtOAc = 20:1) to give 2.
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