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A B S T R A C T   

Novel D-π-A chromophores with quinoxaline/quinoxalinone core in the π-conjugated bridge and various bulky 
groups in the acceptor moiety have been synthesized and systematically investigated at molecular level by 
UV–Vis spectroscopy, DFT calculations, electrochemical and TGA-DSC methods as well as at materials level by 
the example of PMMA-based composite polymer materials doped with different chromophore contents using 
molecular modeling and SHG technique. Chromophores exhibit positive dioxane/chloroform solvatochromic 
shift of ca. 50 nm, high values of first hyperpolarizability and dipole moment, small energy gap and good thermal 
stability. Tolyl and cyclohexylphenyl substituents unlike phenyl can be treated as most effective isolating groups, 
preventing chromophore pronounced aggregation even at 30 wt% content. Femtosecond nonlinear optical (NLO) 
activity was studied for poled thin guest-host polymer films with various chromophore weight content. Film 
DBA-VQPhV-TCFPhCy(25 wt%)/PMMA with bulky cyclohexylphenyl groups in chromophore acceptor shows 
maximal NLO coefficient, d33, values among the studied materials (37 pm/V) as well as good long-term stability 
of NLO response together with excellent chromophore thermal stability (Td = 256 ◦C). Composite materials 
doped with quinoxaline chromophores are photostable with respect to laser pulses with peak intensities up to 11 
GW/cm2.   

1. Introduction 

Nonlinear optical (NLO) materials are presented as acentric inor
ganic crystals, for example, lithium niobate [1], and promising for the 
generation of intense coherent deep- UV light fluorooxoborates [2,3], 
useful for THz generation organic crystals [4] and various poled thin 
film chromohore-containig organic materials: composite polymer ma
terials, molecular glasses, molecular composite glasses [5]. Organic 
materials with quadratic NLO properties attract considerable research 
interest due to their potential use in optoelectronic devices to promote 
development of such areas as telecommunications and information 

technology [6–8]. The key constructing blocks for such materials are the 
second-order NLO chromophores. To achieve large optical non
linearities (large molecular first hyperpolarizability) various “push-pull” 
molecules have been designed and systematically investigated [9–11]. 
Molecular engineering of organic chromophores has evolved in various 
directions. There was an increase in the length of the chromophore 
π-bridge due to the introduction of additional vinyl units [12,13], 
including conformationally locked-in cyclopentene [14], cyclohexene 
[14–18], pyrane [19] or tetrahydronaphtalene [20] ring frameworks. 
The incorporation of heterocyclic moiety, mainly thiophene ring [18, 
21–23], in the π-bridge was widely used in the design of NLO 
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chromophores. Other heterocyclic, as a rule π-excessive, moieties, such 
as pyrrole [24], furan [25], which serve as auxiliary donor, were also 
used. Variation of donor [14,15,17,25–32] and acceptor [13,15,18, 
33–36] terminal fragments including the selection of the optimal ratio of 
donor-acceptor strength was another important structural factor in the 
design of NLO chromophores. NLO activity of more complex chromo
phore systems has also been investigated; among them were Y-type 
chromophores with two donor fragments [23,37–39], bichromophores 
[40–42], macrocyclic chromophores [43], etc. Heteroaromatics played 
an important role in the design of NLO chromophores, but mostly 
π-excessive heterocycles were incorporated into the π-bridge of chro
mophores, thiazole being the only exception [44,45]. Two decades ago it 
was shown theoretically that the introduction of a π-deficient hetero
cycle in the π-bridge can lead to the enhancement of the first hyper
polarizability values [46]. Some azine functionalized π-conjugated dyes 
with NLO and photoluminescence properties have been recently devel
oped [47–49]. According to our theoretical studies, the chromophores 
with the quinoxaline core in the π-bridge exhibit significant NLO activity 
[50,51], and for some chromophores it was confirmed experimentally 
[52,53]. Our present investigations focus on the novel type of NLO 
chromophores with incorporated π-deficient quinoxaline/quinoxalinone 
core in the π-bridge, bulky aromatic substituent in acceptor and its effect 
on optical, electrochemical and thermal properties of chromophores as 
well as on femtosecond NLO activity of guest-host chromophor
e-containing polymer materials. Composite materials doped with D-π-A 
chromophores with bulky (isolating) group in donor moiety show 
enhancement of macroscopic NLO activity due to a decrease in the 
dipole-dipole interaction and the establishment of a 
non-centrosymmetric organization of chromophores in the materials 
[54–57]. 

2. Materials and techniques 

2.1. Chromophores characterization 

The NMR, UV–Vis, IR and MALDI spectra were registered on the 
equipment of Assigned Spectral-Analytical Center of FRC Kazan Scien
tific Center of RAS. NMR experiments were performed with Bruker 
AVANCE-600 and AVANCE-400 (600 and 400 MHz for 1H NMR, 150 
and 100 MHz for 13C NMR) spectrometers. Chemical shifts (δ in ppm) are 
referenced to the solvents. The mass spectra were obtained on Bruker 
UltraFlex III MALDI TOF/TOF instrument with p-nitroaniline as a ma
trix. UV–Vis spectra were recorded at room temperature on a Perki
nElmer Lambda 35 spectrometer using 10 mm quartz cells. Spectra were 
registered with a scan speed of 480 nm/min using a spectral width of 1 
nm. All samples were prepared in solution with the concentrations of ca 
~3.5 × 10− 5 mol/L. The thermal stabilities of chromophores were 
investigated by simultaneous thermal analysis (thermogravimetry/dif
ferential scanning calorimetry - TG/DSC) using NETZSCH (Selb, Ger
many) STA449 F3 instrument. Approximately 2.6–3.7 mg samples were 
placed in an Al crucible with a pre-hole on the lid and heated from 30 to 
600 ◦C. The same empty crucible was used as the reference sample. 
High-purity argon was used with a gas flow rate of 50 mL/min. TG/DSC 
measurements were performed at the heating rates of 10K/min. The 
reaction progress and the purity of the obtained compounds were 
controlled by TLC on Sorbfil UV-254 plates with visualization under UV 
light. Voltammograms were recorded with a BASi Epsilon potentiostat/ 
galvanostat (USA) at 25 ◦C in dichloromethane solutions under dry ni
trogen atmosphere. All measurements were carried out with 0.2 M 
Bu4NBF4 as the supporting electrolyte, platinum working electrode 
(0.02 cm2), platinum auxiliary electrode, and Ag/AgNO3 reference 
electrode. All potentials were referred against the ferrocenium/ferro
cene redox couple. 

2.2. Chromophores synthesis 

Aldehydes 6, 7 and Me-TCFAr acceptors 8b,c were synthesized ac
cording to the literature [52,53,58–60]. 

2.2.1. 2-(3-Cyano-4,5-dimethyl-5-phenylfuran-2(5H)-ylidene) 
malononitrile (8a) 

To stirred solution of 3-(4-cyclophenyl)-3-hydroxybutan-2-one (1.0 
g, 61 mmol) in dry pyridine (5 mL) malononitrile (0.81 g, 12.3 mmol) 
was added at 0 ◦C. The temperature of the reaction mixture was slowly 
raised to rt and the reaction mixture was stirred for another 5 h. Then the 
reaction mixture was poured into water and the precipitate was filtered 
and washed with water. When a few drops of acetic acid were added to 
the solution, a precipitate again was formed, which was filtered and 
washed with water. Yield 0.75 g (54%). White-gray powder, mp 177 ◦C 
(EtOH).1H NMR (400 MHz, CDCl3): 7.50–7.46 (m, 3H, m,р-Ph), 
7.23–7.19 (m, 2H, о-Ph), 2.24 (s, 3Н, СН3), 2.02 (s, 3Н, СН3). 13C NMR 
(100 MHz, CDCl3): 182.2, 175.7, 133.9, 130.5, 129.6, 125.0, 110.8, 
110.3, 109.0, 104.8, 101.5, 58.9, 22.3, 14.5. IR (νmax, cm− 1, KBr): 3067 
(CH), 2997 (CH), 2230 (С≡N), 2219 (C–––N), 1620 (C––C), 1597 (C––C). 

2.2.2. Synthesis of chromophores with phenylquinoxaline moiety 
A solution of aldehyde 6 (115 mg, 0.25 mmol), Me-TCFAr (8a-c) 

(0.22 mmol) and anhydrous ethanol (2 mL) was stirred for 7–14 h (7h in 
case of 8a, 14 h in case of 8b, 10 h in case of 8c) at 70 ◦С, then cooled to 
rt. After removal of the solvent by rotary evaporation, the residue was 
purified by silica-gel column chromatography (eluent: petroleum ether/ 
ethyl acetate = 7:1→ petroleum ether/ethyl acetate = 3:1) to give a 
product as black powder. 

2.2.2.1. 2-(3-Сyano-4-((E)-2-(6-((E)-4-(dibutylamino)styryl)-3-phenyl
quinoxalin-2-yl)vinyl)-5-methyl-5-phenylfuran-2(5H)-ylidene)malononi
trile (DBA-VQPhV-TCFPh). Yield 87 mg (56%). Rf = 0.47 (hexane/ethyl 
acetate 2:1). 1H NMR (600 MHz, CDCl3): δ 8.06–8.00 (m, 3H, Н-7,8 
quinoxaline, 1H of –CH––CH− TCF), 7.94 (s, 1H, Н-5 quinoxaline), 7.54 
(dd, J = 7.4, 7.4 Hz, 1H, p-Ph), 7.49–7.31 (m, 10H, Ph, m-Ph, 3,5-H 
aniline, 1H of –CH––CH− DBA), 7.29 (d, J = 15.7, 1H, 
–CH––CH− TCF), 7.10 (d, J = 8.0 Hz, 2H, o-Ph), 7.03 (d, J = 16.3 Hz, 1H, 
–CH––CH− DBA), 6.66 (d, J = 8.6 Hz, 2H, 2,6-H aniline), 3.33 (t, J = 7.6 
Hz, 4H, NСН2), 2.06 (s, 3H, Me), 1.65–1.57 (m, 4H, NCH2CH2), 
1.43–1.35 (m, 4H, N(CH2)2CH2), 0.98 (t, J = 7.3 Hz, 6Н, СН3). 13C NMR 
(150 MHz, CDCl3): 175.0, 172.5, 155.8, 148.9, 143.2, 143.1, 143.0, 
142.80, 141.5, 137.2, 135.0, 133.9, 130.5, 129.8, 129.6, 129.4, 128.9, 
128.8, 125.7, 124.7, 123.4, 121.7, 120.0, 111.7, 111.2, 110.6, 109.7, 
103.3, 99.1, 59.2, 50.8, 29.5, 24.1, 20.3, 14.0. IR (νmax, cm− 1, KBr): 
3446 (CH), 2928 (CH), 2228 (CN), 1579 (C––C, C––N), 1511 (C––C). 
MALDI-TOF: 707 [M+H]+. 

2.2.2.2. 2-(3-Сyano-4-((E)-2-(6-((E)-4-(dibutylamino)styryl)-3-phenyl
quinoxalin-2-yl)vinyl)-5-methyl-5-(p-tolyl)furan-2(5H)-ylidene)malononi
trile (DBA-VQPhV-TCFTol). Yield 97 mg (61%). Rf = 0.22 (hexane/ethyl 
acetate 3:1). 1H NMR (600 MHz, CDCl3): δ 8.06–8.00 (m, 3H, Н-7,8 
quinoxaline, 1H of –CH––CH− TCF), 7.96 (s, 1H, Н-5 quinoxaline), 7.54 
(dd, J = 7.4, 7.4 Hz, 1H, p-Ph), 7.47–7.30 (m, 7H, o,m-Ph, 3,5-H aniline, 
1H of –CH––CH− DBA), 7.30 (d, J = 15.7, 1H, –CH––CH− TCF), 7.12 (d, 
J = 8.3 Hz, 2H, 3,5-H p-Tol), 7.04 (d, J = 16.3 Hz, 1H, –CH––CH− DBA), 
6.98 (d, J = 8.3 Hz, 2H, 2,6-H p-Tol), 6.66 (d, J = 8.8 Hz, 2H, 2,6-H 
aniline), 3.32 (t, J = 7.6 Hz, 4H, NСН2), 2.38 (s, 3H, MeC6H4), 2.03 
(s, 3H, MeTCF), 1.65–1.55 (m, 4H, NCH2CH2), 1.43–1.34 (М, 4H, N 
(CH2)2CH2), 0.97 (t, J = 7.3 Hz, 6Н, СН3). 13C NMR (150 MHz, CDCl3): 
175.0, 172.8, 155.8, 148.9, 143.2, 143.0, 142.9, 141.9, 140.8, 137.2, 
133.9, 131.9, 130.3, 129.8, 129.4, 129.3, 128.8, 128.7, 125.7, 124.8, 
123.4, 121.7, 120.2, 111.7, 111.3, 110.7, 109.7, 103.3, 99.3, 59.0, 50.8, 
29.5, 24.1, 21.3, 20.3, 14.0. IR (νmax, cm− 1, KBr): 3443 (CH), 2929 (CH), 
2230 (CN), 1583 (C––C, C––N), 1514 (C––C). MALDI-TOF: 721 [M+H]+. 
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2.2.2.3. 2-(3-Сyano-5-(4-cyclohexylphenyl)-4-((E)-2-(6-((E)-4-(dibuty
lamino)styryl)-3-phenylquinoxalin-2-yl)vinyl)-5-methylfuran-2(5H)-yli
dene)malononitrile (DBA-VQPhV-TCFPhCy). Yield 85 mg (49%). Rf =

0.37 (hexane/ethyl acetate 3:1). 1H NMR (400 MHz, CDCl3): δ 8.07–7.97 
(m, 3H, Н-7.8 quinoxaline, 1H of –CH––CH− TCF), 7.93 (s, 1H, Н-5 
quinoxaline), 7.57 (dd, J = 7.3, 7.3 Hz, 1H, p-Ph), 7.50–7.27 (m, 8H, o, 
m-Ph, 3,5-H aniline, 1H of –CH––CH− DBA, 1H of –CH––CH− TCF), 7.14 
(d, J = 8.5 Hz, 2H, 3,5-H p-CyPh), 7.03 (d, J = 16.5 Hz, 1H, 
–CH––CH− DBA), 6.99 (d, J = 8.5 Hz, 2H, 2,6-H p-CyPh), 6.66 (d, J =
8.7 Hz, 2H, 2,6-H aniline), 3.33 (t, J = 7.6 Hz, 4H, NСН2), 3.40 (t, J =
7.6 Hz, 4H, NСН2), 2.55–2.46 (m, 1H, Cy), 2.03 (s, 3H, Me), 1.92–1.81 
(m, 4H, Cy), 1.80–1.73 (m, 1H, Cy), 1.67–1.56 (m, 4H, NCH2CH2), 
1.48–1.35 (m, 8H, N(CH2)2CH2, 4H of Cy), 1.32–1.20 (m, 1H, Cy), 0.98 
(t, J = 7.3 Hz, 6Н, СН3). 13C NMR (100 MHz, CDCl3): 175.1, 172.7, 
155.8, 150.7, 148.9, 143.2, 143.0, 142.9, 142.8, 141.5, 137.2, 133.8, 
132.2, 129.8, 129.4, 129.3, 128.8, 128.7, 128.0, 125.7, 124.8, 123.4, 
121.7, 120.1, 111.7, 111.3, 110.7, 109.7, 103.2, 99.3, 58.9, 50.8, 44.2, 
34.2, 34.1, 29.4, 26.7, 26.0, 24.1, 20.3, 14.0. IR (νmax, cm− 1, KBr): 3462 
(CH), 2927 (CH), 2229 (CN), 1582 (C––C, C––N), 1512 (C––C). MALDI- 
TOF: 789 [M+H]+. 

2.2.3. 2-(3-Cyano-5-(4-cyclohexylphenyl)-4-((E)-2-(6-((E)-4- 
(dibutylamino)styryl)-3-oxo-4-propyl-3,4-dihydroquinoxalin-2-yl)vinyl)-5- 
methylfuran-2(5H)-ylidene)malononitrile (DBA-VQonV-TCFPhCy) 

A mixture of aldehyde 7 (60 mg, 0.13 mmol), Me-TCFPhCy (8c) (46 
mg, 0.13 mmol) and anhydrous ethanol (1 mL, A and B) or anhydrous 
ethanol (2.2 mL) and methylene chloride (0.8 mL, C) was stirred for 6 h 
(A), 40 h (B) and 144 h (C) at 70 ◦С (A), 50 ◦С (B) and rt (C), respec
tively, then cooled to rt (A and B). After removal of the solvent by rotary 
evaporation, the residue was purified by silica-gel column chromatog
raphy (eluent: methylene chloride/ethyl acetate = 250:1) to give a 
product as black powder. Yield 34 mg (33%, A), 58 mg (56%, B), 36 mg 
(35%, C). Rf = 0.32 (hexane/ethyl acetate 2.5:1). 1H NMR (600 MHz, 
CDCl3): δ 7.99 (d, J = 16.2 Hz, 1H, –CH––CH-TCF), 7.78 (d, J = 8.6 Hz, 
1H, H-8 quinoxaline), 7.67 (d, J = 16.2 Hz, 1H, –CH––CH-TCF), 7.56 (d, 
J = 8.6 Hz, 1H, H-7 quinoxaline), 7.43 (d, J = 8.5 Hz, 2H, 3,5-H aniline), 
7.29 (d, J = 8.4 Hz, 2H, C6H4Cy), 7.26 (d, J = 8.4 Hz, 2H, C6H4Cy), 7.24 
(d, J = 16.0 Hz, 1H, –CH––CH-An), 7.15 (s, 1H, H-5 quinoxaline), 6.94 
(d, J = 16.0 Hz, 1H, –CH––CH-An), 6.65 (d, J = 8.5 Hz, 2H, 2,6-H ani
line), 4.26–4.19 (m, 1H, N–CH2), 4.19–4.12 (m, 1H, N–CH2), 3.33 (t, J 
= 7.4 Hz, 4H, N–CH2), 2.60–2.49 (m, 1H, Cy), 2.21 (s, 3H, CH3), 
1.90–1.79 (m, 6H, 4H of Cy, N(CO)CH2CH2), 1.78–1.72 (m, 1H, Cy), 
1.67–1.64 (m, 4H, N–CH2CH2), 1.44–1.34 (m, 8H, N-(CH2)2CH2, 4H of 
Cy), 1.32–1.23 (m, 1H, Cy), 1.09 (t, J = 7.4 Hz, 3H, CH3), 0.98 (t, J = 7.4 
Hz, 6H, CH3). 13C NMR (100 MHz, CDCl3): 175.1, 172.7, 154.7, 150.7, 
149.1, 146.36, 143.7, 140.6, 134.0, 133.9, 133.0, 132.6, 131.6, 128.9, 
128.0, 125.9, 122.9, 122.0, 121.5, 121.1, 111.8, 111.4, 110.9, 110.7, 
110.0, 103.2, 99.8, 58.6, 50.8, 44.2, 44.1, 34.2, 34.1, 29.5, 26.7, 26.0, 
24.4, 20.6, 20.3, 14.0, 11.4. IR (νmax, cm− 1, KBr): 3068 (C–H), 3030 
(C–H), 2957 (C–H), 2928 (C–H), 2855 (C–H), 2229 (C–––N), 1657 
(C––O), 1582 (C––N, C––C). MALDI-TOF: 771 [M+H]+. 

2.3. DFT calculations 

Structure and NLO characteristics of chromophores under study were 
calculated in the framework of Density Functional Theory (DFT). 
Chromophores geometrical parameters were optimized in gas phase at 
B3LYP/6-31G(d) level and electric characteristics (dipole moments, μ, 
components of linear polarizability tensor, αij, and first hyper
polarizability tensor, βijk) were calculated at the M06-2X/aug-cc-pVDZ 
level; the use of M06-2X density functional [61,62] and Dunning basis 
sets [63,64] are recognized as an adequate choice for this purpose 
[65–67]; further on the computational level for electric characteristics 
calculations is denoted as B3LYP/6-31G(d)//M06-2X/aug-cc-pVDZ. 
These chromophores are systems with intramolecular charge transfer, 
the dominating component of first hyperpolarizability tensor is βzzz, 

where z-axis coincides with the charge transfer direction along the 
molecule. Average linear polarizability αav is calculated as 

α(av)=
1
3
(
αxx +αyy + αzz

)
,

and βtot as 

βtot =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
x + β2

y + β2
z

√

; βi = βiii +
1
3
∑

i∕=k

(βikk + βkik + βkki), i= x, y, z.

The calculations were performed by Jaguar program package [68, 
69]. 

2.4. Atomistic modeling 

To estimate the isolating ability of substituents in acceptor fragment 
of the chromophores, molecular modeling of composite materials with 
PMMA as polymer matrix and chromophores-guests was carried out. The 
chromophore content in considered composite polymer materials was 
20, 25 and 30 wt%. Composite polymer materials were packed in the 
amorphous cell under compressive protocol (NPT ensemble) (Fig. S1) in 
the course of multistage simulation to get density close to that of real 
polymer. Polymer matrix was modeled by 10 chains each containing 60 
monomer units. Such oligomer size provides sufficient flexibility of 
chains, it contains 10 Kuhn segments [70] Polymer chains and chro
mophores in such a cell experience steric hindrances due to environ
ment. Chromophore number in a cell was tuned according the 
chromophore molecular weight and the desired weight content in 
composite material; weight content is indicated in round parentheses 
after composite system notation. Molecular modeling was performed 
with Desmond program [71] using OPLS3e force field [72]. 

2.5. Film fabrication, poling and NLO measurements 

The guest-host polymer materials were prepared with PMMA as 
polymer matrix (Tg = 103 ◦C) and chromophores under study as guests. 
Thin polymer films were cast onto glass substrates (cover glasses 100 μm 
thick) from a 5–7% solution of the polymer in cyclohexanone via spin- 
coating at 5000 rpm for 90 s. After casting, the samples were kept in a 
vacuum drying oven at room temperature for 10–16 h to remove the 
solvent residue. Films were poled at the corona-triode setup in the 
corona discharge field, voltage 6.5 kV, poling time ~20 min, the dis
tance from the tungsten needle electrode to the surface of the film being 
1 cm; the field was applied to the films heated to 108–118 ◦C. Second 
harmonic generation (SHG) was performed by the femtosecond ampli
fied laser system which allowed measuring the SHG intensity emitted by 
the sample without any micro-objective or another focusing system. The 
principal scheme of the experimental setup is presented in the Supple
mentary information and in [73]. The laser system produced pulses with 
the following parameters: the wavelength is 1028 nm, the pulse repe
tition rate is 3 kHz, pulse duration is 200 fs, a pulse energy is 164 μJ, and 
mean power of the laser beam is 492 mW. The beam diameter of 3 mm 
resulted in the peak pulse intensity of about 11.6 GW/cm2. SHG in
tensity was measured by using a z-cut α-quartz crystal as a source of a 
reference signal. We followed [74] to obtain the NLO coefficient of the 
sample d33,s: 

d33,s

d11,q
=

̅̅̅̅̅̅̅̅̅̅

Is
/

Iq

√ lc,q

ls
F,

where d11,q is known quartz nonlinear coefficient (0.45 pm/V), Is and Iq 
are SHG intensities produced by the sample and the quartz, respectively, 
and measured in the same configuration, lc,q is quartz coherence length 
related to 1028 nm (assumed as 13 μm), ls is sample thickness (of 0.3 μm 
mean value), F is correction factor (1.2 when lc,q≫ls). It was assumed in 
analyzing experimental data that d33/d13 ≈ 3. 
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3. Results and discussion 

3.1. Synthesis 

The synthetic routes for chromophores with quinoxaline/quinox
alinone core in the π-bridge are shown in Scheme 1. Starting from 
amphimethylbromoquinoxalines 1 and 2, chromophore precursors 6 and 
7 have been synthesized in the two step reactions: palladium-catalyzed 
Heck reaction of compounds 1/2 and 3 and followed by Riley oxidation 
of ethenes 4 and 5 with selenium dioxide. Finally, condensations of al
dehydes 6 and 7 with the various Me-TCFAr acceptor 8a-c gave chro
mophores DBA-VQPhV-TCFPh, DBA-VQPhV-TCFTol, DBA-VQPhV- 
TCFPhCy and DBA-VQonV-TCFPhCy (Scheme 1, Fig. 1). 

3.2. Photophysical properties 

The chromophores photophysical properties were studied in seven 
solvents of different polarity: dioxane (ε = 2.2), chloroform (ε = 4.8), 
1,2-dichloromethane (ε = 8.9), dimethylformamide (ε = 36.7), aceto
nitrile (ε = 37.5), dimethylsulfoxide (45.0) and ethylene carbonate (EC, 
ε = 89.8). UV–Vis absorption spectra of all chromophores exhibit a 
similar broad π-π* intramolecular charge-transfer (CT) absorption band 
in the visible region in the range 597–662 nm (Fig. 2, Table 1). 

Chromophores showed a positive solvatochromic shift from dioxane 
to chloroform solution and then solvatochromism inversion was 
observed giving negative solvatochromic shift from chloroform to polar 
solvent (CH3CN, DMF, DMSO or EC). The values of positive sol
vatochromic shift for all chromophores are close (Δλ = 51–53 nm), 
while negative solvatochromic shift for chromophores with quinoxaline 
core in the π-bridge when passing from chloroform to acetonitrile (Δλ =

52–56 nm) is one and a half times greater than that for quinoxalinone- 
based chromophore DBA-VQonV-TCFPhCy (Δλ = 33 nm). Sol
vatochromic inversion is a characteristic phenomenon for D-π-A chro
mophores with a heterocyclic core in the π-bridge [55,75–77]. However 
it should be noted that the solvatochromic behavior of the chromophore 
DBA-VQonV-TCFPhCy with the quinoxalinone core in the π-bridge, 
which shows the predominance of the positive solvatochromic shift over 
the negative one, makes it similar to FTC-type chromophores [55] with 
thiophene moiety for which this phenomenon is the same, unlike the 
closely related chromophore DBA-VQPhV-TCFPhCy with a quinoxaline 
core in the π-bridge, for which this phenomenon is opposite. The value of 
the solvatochromic effect often directly correlates with the value of the 
first hyperpolarizability for related systems [45,54,78]. Chromophores 
with dialkyl aniline donor and tricyanofuranyl acceptor bonded by 
vinylene-Z-vinylene (-CH––CH-Z-CH––CH-) π-bridge, where Z are 
vinylene (-CH––CH-) [78], thiophene [45,54,55], thiazole [45], qui
noxaline/quinoxalinone (Table 1) moieties, exhibit close dioxane/ch
loroform solvatochromic shift (53 nm, 46–61 nm, 47 nm, 51–53 nm, 
respectively). 

3.3. DFT calculations of chromophores first hyperpolarizability 

The values of chromophores electric characteristics are presented in 
Table 2 together with the data for pristine 7-DBA-VQV-TCF chromo
phore [53] which does not contain any bulky group in the acceptor 
fragment. 

The comparison of βtot values for all five chromophores are also given 
in Fig. S2. To study the mutual effect of the acceptor substituent and the 
nature of the π-electron bridge we have compared the electric charac
teristics of two chromophores with TCFPhCy acceptor and quinoxaline/ 

Scheme 1. Synthesis of TCF-based chromophores with divinylquinoxaline π-bridge.  
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qinoxalinone bridges: DBA-VQPhV-TCFPhCy and DBA-VQonV-TCFPhCy. 
The data of Table 2 and Fig. S2 demonstrate the effect of bulky sub
stituents in the acceptor fragment on the value of first hyper
polarizability. The introduction of phenyl and tolyl groups 
(chromophores DBA-VQPhV-TCFPh and DBA-VQPhV-TCFTol gives most 
promising examples: the value of βtot differs insignificantly from the 
value for 7-DBA-VQV-TCF, besides the presence of substituents results 
in the flattening of the structure (Fig. S3) which promotes the increase of 
the first hyperpolarizability. According to the visualization of the 
dihedral angle between the plane of the quinoxaline bridge and the 
plane of TCF fragment, the value of this angle does not exceed 20◦ for 7- 
DBA-VQV-TCF, it becomes significantly smaller for DBA-VQPhV-TCFPh 
and DBA-VQPhV-TCFTol (6◦ and 13◦, respectively) and is equal to 46◦

and 77◦ for DBA-VQPhV-TCFPhCy and DBA-VQonV-TCFPhCy, respec
tively. The increase of the angle correlates with the decrease of the first 
hyperpolarizability value. We have also analyzed the frontier orbitals of 
the chromophores under study (Fig. 3); the corresponding energies 
together with the value of the energy gap are given in Table 3. The 
visualization of frontier orbitals (Fig. 3) confirms that all chromophores 
are CT ones, in all of them HOMO occupies mainly donor fragment and 
adjacent region of the bridge, while LUMO is concentrated at the other 
part of the bridge and the acceptor fragment. Orbital energies have very 
close values as well as ΔEg values for all chromophores (Table 3). 

3.4. Electrochemical study 

For structures with several redox-active centers linked by unsatu
rated bridges it is especially interesting to clarify the relationship be
tween redox properties and peculiarities of intramolecular electron 
transfer as well as mutual influence of the centers on these properties. 
Redox processes are the basis of numerous functions in biology, chem
istry, including materials chemistry and particularly NLO activity. 

Combination of redox-active moieties in a sole molecule of a D-π-A 
chromophore typically leads to significant changes in its redox proper
ties in comparison with those of individual fragments. The chromophore 
molecules proposed in this study include dialkylarylamine donor, which 
is oxidized reversibly, quinoxaline core, which is easily and reversibly 
reduced and oxidized [79–81], as well as TCFPh terminal electron 
acceptor, also capable to reversible oxidation [82] and reduction [83]. 
The electrochemical study of chromophores assembled from these 
redox-active units capable to reversible electron transfers (oxidations 
and reductions) is of great interest as assessing and predicting the energy 
gap values (optical and electrochemical) of chromophores, these esti
mations providing an important tool for selection of structures with the 
highest NLO activity. 

The redox properties of the NLO chromophores were studied by cy
clic and differential pulse voltammetries (CV and DPV) in dichloro
methane containing tetrabutylammonium tetrafluoroborate (0.2 M) as 
the supporting electrolyte. These results are presented in Table 4 and in 
Fig. 4. 

To estimate the HOMO-LUMO energy gaps according to electro
chemistry data we used recently proposed approach [84], based on close 
relation of the oxidation and reduction potentials with the energies of 
the HOMO and LUMO levels of organic NLO chromophore. Due to 
irreversibility or low reversibility of redox processes we used DPV po
tentials values (as the ones closest usually to the formal oxidation and 
reduction potentials) to calculate the frontier orbitals energy [27,35,76, 
77,84,85]. 

The electrochemistry picture is very similar for all chromophores 
under study: quasi-reversible oxidation and irreversible reduction are 
observed; energy gaps for chromophores vary insignificantly what is in 
accordance with the DFT estimations (Table 4). These rather close 
values for the studied chromophores seem to be quite expected: in 
conformity with the HOMO and LUMO visualization (Fig. 3) the 

Fig. 1. Chemical structure of the synthesized chromophores.  
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introduction of the substituents to the chromophores acceptor fragment 
almost does not affect the frontier orbitals. However, quantitatively the 
electrochemical estimations give notably smaller values than DFT and 
optical ones. The smallest gap ΔEel corresponds to DBA-VQonV-TCFPhCy, 
which coincides with the estimated optical gap ΔEopt

max (ΔEopt
max =

1240/λmax, λmax taken from Table 1), because chromophore DBA- 
VQonV-TCFPhCy has the largest λmax amongst the studied here com
pounds. The largest electrochemical gap is characteristic of chromo
phore 7-DBA-VQV-TCF, the basic structure from which all other 
derivatives with substituents were obtained. This observation also co
incides with the results of the optical gap estimation, namely, the large 
ΔEopt

max value for 7-DBA-VQV-TCF (λmax = 619 nm [53]. EHOMO almost 
coincide for all chromophores, ELUMO change insignificantly, being 
slightly lower only for DBA-VQonV-TCFPhCy. Relatively, the results of 
the energy trends estimation by electrochemical calculation and optical 
data (ΔEopt

λmax) are in good agreement (Table 5), although the absolute 
values of the optical gaps calculated on the basis of λmax are over
estimated traditionally. 

3.5. Thermal properties 

The thermal stabilities of chromophores were investigated by 

Fig. 2. UV–Vis experimental spectra of studied chromophores in different solvents.  

Table 1 
Photophysical properties of the studied chromophores.   

λmax, nm (ε, 103⋅M− 1 cm− 1) Δλmax
a, nm Δλmax

b, nm 

1,4-dioxane CHCl3 CH2Cl2 CH3CN DMF DMSO EC 

DBA-VQPhV-TCFPh 599 (34.2) 652 (28.3) 636 (26.9) 596 (30.4) 604 (20.3) 614 (22.0) 608 (24.9) 53 56 
DBA-VQPhV-TCFTol 596 (34.0) 646 (25.4) 632 (28.4) 592 (34.4) 604 (24.0) 612 (28.5) 607 (27.4) 50 54 
DBA-VQPhV-TCFPhCy 597 (35.9) 648 (30.8) 633 (28.6) 596 (30.6) 608 (22.2) 617 (26.8) 611 (21.2) 51 52 
DBA-VQonV-TCFPhCy 609 (39.2) 662 (30.9) 657 (38.3) 629 (34.3) 639 (20.0) 647 (21.7) 643 (27.9) 53 33  

a –dioxane/CHCl3. 
b –CHCl3/CH3CN. 

Table 2 
Electrical characteristics of the studied chromophores calculated at the B3LYP/ 
6-31G(d)//M062X/aug-cc-pVDZ level.  

Chromophores μ (D) αav (10− 24 

esu) 
βzzz (10− 30 

esu) 
βtot (10− 30 

esu) 

7-DBA-VQV-TCF 
[53] 

19.5 118.8 789 875 

DBA-VQPhV-TCFPh 20.2 126.6 815 890 
DBA-VQPhV-TCFTol 20.1 130.0 775 841 
DBA-VQPhV-TCFPhCy 16.8 129.4 622 619 
DBA-VQonV-TCFPhCy 21.5 123.6 472 517  
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simultaneous TG/DSC analysis. Fig. 5 shows the thermogravimetric 
curves of studied chromophores. The investigated quinoxaline-based 
chromophores exhibit the similar character of weight loss and have 
high thermal stability: the decomposition temperatures at which 5% 
mass loss occurs at heating are above 267 ◦C. However, only for chro
mophores DBA-VQPhV-TCFPhCy TGA and DSC decomposition tempera
ture agrees well (values Td

a and Td
b in Table 6). For chromophores DBA- 

VQPhV-TCFPh and DBA-VQPhV-TCFTol TGA and DSC decomposition 
temperatures are markedly different; similar behavior was found for the 

Fig. 3. Frontier orbitals of 7-DBA-VQV-TCF (a), DBA-VQPhV-TCFPh (b), DBA-VQPhV-TCFTol (c), DBA-VQPhV-TCFPhCy (d) and DBA-VQonV-TCFPhCy (e).  

Table 3 
Frontier orbital energies and ΔEg

DFT values for the studied chromophores.  

Chromophores E(HOMO), eV E(LUMO), eV ΔEg
DFT,eV 

7-DBA-VQV-TCF − 5.18 − 3.28 1.90 
DBA-VQPhV-TCFPh − 5.17 − 3.24 1.93 
DBA-VQPhV-TCFTol − 5.16 − 3.22 1.94 
DBA-VQPhV-TCFPhCy − 5.18 − 3.29 1.89 
DBA-VQonV-TCFPhCy − 5.20 − 3.05 2.15  
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chromophore 7-DBA-VQV-TCF [53]. The studied compounds appeared 
as highly crystalline ones with melting points (Tm) at 189 ◦C, 195 ◦C and 
248 ◦C for chromophores with Ph, Tol and CyPh substituents in 
acceptor, respectively (Fig. 6, Table 6). The presence of an endothermic 
peak at 148 ◦C for DBA-VQPhV-TCFTol attracts attention, which is 
apparently indicates at the recrystallization, since no mass loss is 
observed at this temperature. 

3.6. Atomistic modeling of PMMA-based composite materials 

All the considered polymer composite systems were packed in 
amorphous cell with density, close to that of real polymer, ranging from 
1.051 to 1.065 g/cm3; the results of simulations are summarized in 
Table 7. In all the composite systems studied here some proportion of 

chromophores-guests are noncovalently bound with each other by π-π 
interactions of different structural moieties, the number of bound 
chromophores depends on the chromophore concentration in the ma
terial. Among stacked structures both parallel and antiparallel 
arrangement of chromophore dipole moments is revealed for all the 
chromophores. In composite material DBA-VQPhV-TCFPh(20)/PMMA 
(Fig. 7(a)) 12 chromophores out of 21 are noncovalently bound by π-π 
interactions, all pairwise except one trimer (Fig. 7(b), (c)). In two 
chromophores intramolecular bonds between their rings are formed. 
Phenyl substituent in acceptor (Ph(A)) also participates in the non
covalent bonds formation, such bonds are formed between phenyl sub
stituents in the bridge (Ph(B)) and in acceptor (Ph(B)-Ph(A), between 
bridge (B) and Ph(A) (B-Ph(A)). 

In the case of DBA-VQPhV-TCFPh(25)/PMMA 17 chromophores out 
of 28 are bound noncovalently, all the moieties are involved in bonding 
including Ph(A) in four cases. 

At further increase of the chromophore DBA-VQPhV-TCFPh load up 

Table 4 
Electrochemical data (CV peak potentials, DPV potentials) for oxidation-reduction of chromophores and calculated frontier orbitals energy values (eV). EHOMO = − (E 
[DPV,ox vs. Fc+/Fc] + 4.8)(eV), ELUMO = − (E[DPV,red vs. Fc+/Fc] + 4.8)(eV).  

Chromophores Cyclic votammetry (E, V) DPV potentials (V) EHOMO, eV ELUMO, eV ΔEel, eV 

Oxidation Reduction Oxidation Reduction 

7-DBA-VQV-TCF Ep
f = 0.25; Ep

r = 0.13; 
ΔE = quasi-rev. 

Ep
f = − 0.92; irrev. 0.21 − 0.83 − 5.01 − 3.97 1.04 

DBA-VQPhV-TCFPh Ep
f = 0.24; Ep

r = 0.14; 
ΔE = quasi-rev. 

Ep
f = − 0.90; irrev. 0.21 − 0.80 − 5.01 − 4.00 1.01 

DBA-VQPhV-TCFTol Ep
f = 0.23; Ep

r = 0.14; 
ΔE = quasi-rev. 

Ep
f = − 0.91; irrev. 0.20 − 0.82 − 5.00 − 3.98 1.02 

DBA-VQPhV-TCFPhCy Ep
f = 0.25; Ep

r = 0.14; 
ΔE = quasi-rev. 

Ep
f = − 0.91; irrev. 0.20 − 0.81 − 5.00 − 3.99 1.01 

DBA-VQonV-TCFPhCy Ep
f = 0.24; Ep

r = 0.12; 
ΔE = quasi-rev. 

Ep
f = − 0.83; irrev. 0.20 − 0.75 − 5.00 − 4.05 0.95 

Conditions: CH2Cl2/0.2 M Bu4NBF4, Pt working electrode; AgNO3 reference electrode, recalculated to Fc+/Fc; substrate concentration 1–2 mM. 

Fig. 4. Cyclic voltammograms of investigated chromophores in CH2Cl2 – 0.2 M 
Bu4NBF4, scan rate 100 mV/s. 

Table 5 
Energy gaps of the studied chromophores, evaluated by different methods.  

Chromophore λmax, nma ΔEopt,
max eVa ΔEg

DFT ΔEel, eVa 

7-DBA-VQV-TCF 619 [53] 2.00 1.90 1.04 
DBA-VQPhV-TCFPh 636 1.95 1.93 1.01 
DBA-VQPhV-TCFTol 632 1.96 1.94 1.02 
DBA-VQPhV-TCFPhCy 633 1.96 1.89 1.01 
DBA-VQonV-TCFPhCy 657 1.89 2.15 0.95  

a In CH2Cl2. 

Fig. 5. TGA curves of DBA-VQPhV-TCFPh (a), DBA-VQPhV-TCFTol (b) and 
DBA-VQonV-TCFPhCy (c). 

Table 6 
Thermal properties of the studied chromophores.  

Chromophore DBA-VQPhV-TCFPh DBA-VQPhV-TCFTol DBA-VQonV-TCFPhCy 

Td
a, ◦C 287 275 267 

Td
b, ◦C 232 236 256 

Tm, ◦C 189 195 248  

a TGA, temperature at which 5% mass loss occurs at heating. 
b DSC. 
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to 30 wt% 23 chromophores out of 36 are involved in noncovalent 
bonding with each other, chromophores are bound most antiparallely, 
Ph(A) forms noncovalent bonds with donor (D), B and Ph(B). In some 
chromophores intramolecular π-π-stacking is realized (Ph(B)-Ph(A)). At 
30 wt% content the chromophores begin to aggregate with the forma
tion of clusters up to 5 molecules (Table 7), i.e. aggregation becomes 
pronounced. Chromophore distribution in material is rather nonuniform 
– chromophores are concentrated in one place in a cell (Fig. S4). The 
proportion of chromophores involved in noncovalent bonding with each 
other is increased from 57 to 64% with the chromophore content growth 
from 20 to 30%, but pronounced chromophore aggregation is revealed 
only at 30 wt% content. 

Only 4 chromophores out of 20 are noncovalently bound by π-π in
teractions in composite material DBA-VQPhV-TCFTol(20)/PMMA, all 
pairwise except one trimer. Tolyl substituent in acceptor also partici
pates in the intermolecular noncovalent bonds formation with Ph(B) (Ph 
(A)-Ph(B)), with bridge (Ph(A)-B). Intramolecular π-π-stacking is also 
revealed in three chromophores, such chromophores do not interact 
with any other ones. The number of non-covalently bound chromo
phores increases to 7 in DBA-VQPhV-TCFTol(25)/PMMA, i.e. 25% (7 of 
28) of chromophores are involved in intermolecular π-π interactions, 
phenyl ring of acceptor substituent participates in noncovalent bonding 
with acceptor and bridge rings of other chromophores. It should be 
mentioned, that at 25 wt% content no pronounced aggregation of 
chromophores was revealed – maximum size of one aggregate is only 4 
chromophores, although chromophores are not very uniformly 

distributed over the cell (Fig. S5(a)). At 30 wt% content (Fig. S5(b)) 15 
chromophores of 36 are noncovalently bound in DBA-VQPhV- 
TCFTol(30)/PMMA system, tolyl substituent participating in non- 
covalent binding. In some chromophores intramolecular bonds are 
also realized with participation of tolyl substituent. In the case of tolyl- 
substituted acceptor maximum number of chromophores in aggregate is 
only 3 independently on the chromophore content in material. 

In DBA-VQPhV-TCFPhCy(20)/PMMA material the chromophores are 
rather uniformly distributed (Fig. S6(a)), 4 out of 19 chromophores are 
involved in π-π-interactions with each other, all pairwise. Phenyl frag
ment of acceptor substituent does not participate in noncovalent 
bonding. Dimers are bound via donor-donor and donor-bridge 
interactions. 

In DBA-VQPhV-TCFPhCy(25)/PMMA the chromophores are still 
rather uniformly spread over the material, 10 chromophores out of 25 
are noncovalently bound with each other, maximum number of chro
mophores in aggregate reaches 4 units, all parallel to each other. Only 
one antiparallel pair of stacked chromophores was detected. In DBA- 
VQPhV-TCFPhCy(30)/PMMA (Fig. S6(b)) 16 chromophores of 33 are 
noncovalently bound with each other by π-π interactions of various 
moieties. In some chromophores intramolecular bonds between Phe(B) 
and phenyl ring of PhCy substituent in acceptor are revealed. PhCy(A) 
participates in noncovalent binding with various moieties of other 
chromophores (D, Ph(B), B), but in all the revealed cases furanyl ring 
itself is not involved in noncovalent bonding of chromophores; similar 
observation was made when considering composite materials with 
chromophores-guests, containing furanyl acceptor [52]. 

Composite polymer materials with a NLO chromophore which is 
representative of another class – quinoxalinone ones - were also 
considered, chromophore-guest is DBA-VQonV-TCFPhCy with quinox
alinone fragment in π-electron bridge. In DBA-VQonV-TCFPhCy(20)/ 
PMMA composite system (Fig. S7(a)) 6 chromophores out of 20 are 
noncovalently bound (Table 7), all pairwise, and one stacking dimer is 
formed due to interaction of phenyl moiety of PhCy substituent with one 
of bridge rings. In all dimers chromophores are antiparallelly arranged. 
In DBA-VQonV-TCFPhCy(25)/PMMA (Fig. S7(b)) composite system 7 out 
of 26 chromophores are π-π bound, maximum size of an aggregate is 
three, in one dimer Ph of PhCy substituent participates in bonding with 
bridge of the neighbouring chromophore, this substituent does not 
prevent chromophore parallel arrangement. 

Summarizing consideration of composite materials with 
chromophores-guests, one can see, that the proportion of noncovalently 
bound chromophores increases with the chromophore content growth in 
all composite materials, the size of the aggregate is maximal for DBA- 
VQPhV-TCFPh(30)/PMMA, reaching 5 units. As for other quinoxaline- 
based substituted chromophores DBA-VQPhV-TCFTol and DBA-VQPhV- 
TCFPhCy, the size of the chromophore aggregate does not exceed 4 units 
(Table 7) for all three considered concentrations. In composite materials 
DBA-VQonV-TCFPhCy the chromophore content increase does not result 
in growth of the chromophore aggregate size, and proportion of chro
mophores involved in noncovalent binding is very close for two 
considered concentrations. 

Tolyl and cyclohexylphenyl substituents can be treated as most 
effective ones, preventing chromophore pronounced aggregation even 
at 30 wt% content. As for phenyl substituent, it can’t completely isolate 
the chromophores-guests, the size of an aggregate reaches 5 units. 

3.7. NLO performance 

The thin films of guest-host polymer materials were prepared with 
PMMA as polymer matrix and studied chromophores as guests to study 
macroscopic NLO activity. Polymer films were poled in a corona 
discharge field. The quality of orientation was controlled by the ab
sorption change in UV–Vis spectra detected before and after poling 
(Fig. 8), and characterized by order parameter, η (Table 8), calculated by 
the following formula: η = 1-A/A0, where A and A0 are the absorptions 

Fig. 6. DSC curves of DBA-VQPhV-TCFPh (a), DBA-VQPhV-TCFTol (b) and DBA- 
VQonV-TCFPhCy (c). 

Table 7 
Composite systems with considered chromophores-guests: number of chromo
phores in a cell (N), number of noncovalently bound chromophores (Nb), 
portion of noncovalently bound chromophores (%), maximum number of 
chromophores in aggregate (M), material density ρ(g/cm3).  

Composite system N Nb % M ρ 

DBA-VQPhV-TCFPh(20)/PMMA 21 12 57 3 1.065 
DBA-VQPhV-TCFPh(25)/PMMA 28 17 61 2 1.053 
DBA-VQPhV-TCFPh(30)/PMMA 36 23 64 5 1.065 
DBA-VQPhV-TCFTol(20)/PMMA 20 4 20 3 1.056 
DBA-VQPhV-TCFTol(25)/PMMA 28 7 25 4 1.052 
DBA-VQPhV-TCFTol(30)/PMMA 36 15 42 3 1.060 
DBA-VQPhV-TCFPhCy(20)/PMMA 19 4 21 2 1.065 
DBA-VQPhV-TCFPhCy(25)/PMMA 25 10 40 4 1.051 
DBA-VQPhV-TCFPhCy(30)/PMMA 33 16 48 3 1.053 
DBA-VQonV-TCFPhCy(20)/PMMA 20 6 33 2 1.062 
DBA-VQonV-TCFPhCy(25)/PMMA 26 7 27 3 1.053  
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of the polymer films after and before poling [5,37,86–88]. 
NLO coefficients were obtained by the SHG technique using ampli

fied femtosecond pulses at a wavelength of 1028 nm. For each case the 
effective generation of the second harmonic is observed in a wide range 
of pump beam incidence angles (20◦–80◦) with a maximum in the vi
cinity of 60◦ (Fig. 9). 

NLO activity for chromophore DBA-VQPhV-TCFPh with large value 
of first hyperpolarizability (Table 2) was studied more thoroughly and 
thin polymer films doped with this chromophore in various concentra
tions (15 wt%, 20 wt%, 25 wt% and 30 wt%) were fabricated. The 
composite materials DBA-VQPhV-TCFPh(20)/PMMA and DBA-VQPhV- 
TCFPh(25)/PMMA) show close d33 values 29 pm/V, which are 
maximum amongst considered here DBA-VQPhV-TCFPh/PMMA com
posite materials (Table 8, Fig. 10). The increase of the chromophore load 
up to 30 wt% leads to decrease of NLO activity of polymer material DBA- 
VQPhV-TCFPh(30)/PMMA. This observation is in line with the results 
for DBA-VQPhV-TCFPh/PMMA composite materials simulation – 30 wt 

% chromophores load results in most pronounced chromophores 
aggregation. 

Composite materials DBA-VQPhV-TCFTol/PMMA exhibit similar 
behavior to that for DBA-VQPhV-TCFPh/PMMA: NLO activity is maximum 
at 20–25 wt% chromophore load, but d33 values are 10% higher than in the 
case of DBA-VQPhV-TCFPh/PMMA at the same chromophore content. NLO 
activity of DBA-VQPhV-TCFPhCy/PMMA unlike DBA-VQPhV-TCFPh/ 
PMMA and DBA-VQPhV-TCFTol/PMMA demonstrates a more pronounced 
weight concentration dependence: starting from 23 pm/V at 20 wt% load, 
d33 value arises to 37 pm/V at 25 wt% chromophore content. Increase in the 
chromophore load up to 30 wt% leads to decrease of NLO coefficient to 27 
pm/V for DBA-VQPhV-TCFPhCy(30)/PMMA. This value is by 17% larger 
than d33 of DBA-VQPhV-TCFPhCy(20)/PMMA, while the d33 values for DBA- 
VQPhV-TCFPh(30)/PMMA and DBA-VQPhV-TCFTol(30)/PMMA, on the 
contrary, are by 38% and 35% less than the values of DBA-VQPhV- 
TCFPh(20)/PMMA and DBA-VQPhV-TCFTol(20)/PMMA, correspondingly. 
The presence of a bulky substituent in the p-position of phenyl ring in TCF 

Fig. 7. Amorphous cell with DBA-VQPhV-TCFPh(20)/PMMA (a); examples of intramolecular (b) and intermolecular (c) noncovalent bonding.  

Fig. 8. UV–Vis electron absorption spectra registered before and after poling for DBA-VQPhV-TCFPhCy/PMMA (a) and DBA-VQonV-TCFPhCy/PMMA (b) films with 
chromophore load 25 wt%. 
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acceptor leads to an increase in macroscopic NLO activity, even at higher 
chromophore content in polymer film, despite a decrease in first hyper
polarizability of chromophore DBA-VQPhV-TCFPhCy compared to that for 
DBA-VQPhV-TCFPh according to DFT; thus, cyclohexylphenyl group ex
hibits good isolating ability, what is supported by molecular modeling re
sults. In order to clarify the NLO effect in more detail, chromophore DBA- 
VQonV-TCFPhCy with quinoxalinone core instead of quinoxaline one in the 
π-bridge and TCFPhCy acceptor was synthesized (Scheme 1, Fig. 1). Due to a 

decrease in NLO activity of DBA-VQonV-TCFPhCy/PMMA with an increase 
in the chromophore content from 20 wt% to 25 wt% polymer films doped 
with 10 wt% and 15 wt% of chromophore DBA-VQonV-TCFPhCy were also 
fabricated. Maximum of d33 values (32 pm/V) arises at 15 wt% chromo
phore load, wherein NLO activities of poled films DBA-VQonV- 
TCFPhCy(20)/PMMA and DBA-VQonV-TCFPhCy(25)/PMMA are close to 
each other and differ insignificantly form that for DBA-VQonV-TCFPhCy/ 
PMMA(15). The molecular modeling of polymer composites DBA-VQonV- 
TCFPhCy/PMMA did not reveal pronounced chromophore aggregation at 20 
and 25 wt% chromophore load, thus demonstrating good isolating ability of 
CyPh substituent. According to DFT calculations, chromophore DBA- 
VQonV-TCFPhCy possesses a large dipole moment in comparison with 
chromophore DBA-VQPhV-TCFPhCy (22 D and 17 D, correspondingly, 
Table 2), and this fact may be the reason for the shift of the NLO activity 
maximum towards the low chromophore content in the polymer matrix. 
The decrease in d33 value of DBA-VQonV-TCFPhCy/PMMA (Table 8, Fig. 10) 
in comparison with that for DBA-VQPhV-TCFPhCy/PMMA correlates with 
the first hyperpolarizability of chromophores DBA-VQonV-TCFPhCy and 
DBA-VQPhV-TCFPhCy (Table 2). 

3.8. Temporal and photochemical and stability 

Three materials with chromophores containing Ph, Tol, CyPh sub
stituents in the acceptor fragment preserve more than 90% of d33 after 
annealing at 50 ◦C for 100 h (92%, 93 and 91% for materials with Ph, Tol 
and CyPh substituents, respectively). In contrast, only 52% of the initial 
d33 value of the poled film of DBA-V-TCF(20)/PMMA, without qui
noxaline core in the π-bridge, was kept after 100 h. 

Сomposite materials doped with quinoxaline chromophores are 
photostable with respect to laser pulses with intensities up to 11.6 GW/ 
cm2 and up to at least 700 J exposure dose. 

4. Conclusion 

Four chromophores - representatives of a novel class of NLO D-π-A 
chromophores with π-deficient heterocyclic moiety in the conjugated 
bridge were synthesized. Quinoxaline or quinoxalinone cores have been 
incorporated into chromophore π-bridge together with bulky group 
introduced in acceptor moiety to study the effect of these factors on 
electrochemical, linear and nonlinear optical, and thermal properties of 
these compounds as well as on chromophore aggregation in polymer 
materials doped with title chromophores and on NLO activity of thin 
poled polymer film of guest-host materials. Chromophores exhibit a 
similar broad π-π* intramolecular charge-transfer (CT) absorption band 
in the visible region in the range 597–662 nm in UV–Vis absorption 
spectra, positive solvatochromic shift at changing solvent from dioxane 
to chloroform; solvatochromism inversion was observed to give negative 
solvatochromic shift at changing solvent from chloroform to polar sol
vent. The introduction of a bulky cyclohexylphenyl substituent leads to 
non-planar geometry of the chromophores, decreasing the value of the 
first hyperpolarizability. The value of the energy gap decreases when 
passing from quinoxaline-based to quinoxalinone-based chromophores. 
The thermal stability of chromophores grows with increasing the size of 
the substituent in acceptor. Tolyl and cyclohexylphenyl substituents in 
acceptor moiety promote the decrease of pronounced aggregation even 
at 30 wt% content. Femtosecond nonlinear optical activity of poled thin 
PMMA films, doped with chromophores with various weight content, 
have been investigated by SHG technique (λ = 1028 nm). The films are 
photostable with respect to laser pulses with peak intensities up to 11 
GW/cm2. DBA-VQPhV-TCFPhCy/PMMA, doped with 25 wt% of chro
mophore with quinoxaline core in the π-bridge and bulky cyclo
hexylphenyl group in acceptor, exhibits d33 values maximal among 
those for the studied materials; it demonstrates a good temporal stability 
of NLO response and excellent chromophore thermal stability. 

Table 8 
NLO coefficients (d33), order parameters (η), λmax of polymer film and film 
thickness (h).  

Sample, chromophore(load, wt 
%)/polymer 

h, nm λ, nm η d33, pm/V 

DBA-VQPhV-TCFPh(15)/PMMA 350 619 0.28 22 
DBA-VQPhV-TCFPh(20)/PMMA 450 618 0.27 29 
DBA-VQPhV-TCFPh(25)/PMMA 400 621 0.20 29 
DBA-VQPhV-TCFPh(30)/PMMA 330 624 0.21 16 
DBA-VQPhV-TCFTol(20)/PMMA 260 619 0.27 31 
DBA-VQPhV-TCFTol(25)/PMMA 410 621 0.26 35 
DBA-VQPhV-TCFTol(30)/PMMA 140 625 0.33 23 
DBA-VQPhV-TCFPhCy(20)/PMMA 330 627 0.27 23 
DBA-VQPhV-TCFPhCy(25)/PMMA 530 626 0.25 37 
DBA-VQPhV-TCFPhCy(30)/PMMA 260 630 0.30 27 
DBA-VQonV-TCFPhCy(10)/PMMA 342 647 0.37 21 
DBA-VQonV-TCFPhCy(15)/PMMA 220 646 0.35 32 
DBA-VQonV-TCFPhCy(20)/PMMA 405 648 0.30 28 
DBA-VQonV-TCFPhCy(25)/PMMA 400 649 0.25 27  

Fig. 9. The experimental SHG intensity on the incidence angle of femtosecond 
laser radiation dependence for DBA-VQPhV-TCFPhCy/PMMA with chromophore 
load 25 wt%. 

Fig. 10. The d33 values chromophore/PMMA materials.  
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