# SHORT REPORTS

# A SECOIRIDOID GLUCOSIDE FROM FRAXINUS FORMOSANA

TAKAO TANAHASHI, HIROKO WATANABE, ATSUKO ITOH, NAOTAKA NAGAKURA,\* KENICHIRO INOUE,† MASAMI ONO,† TETSURO FUJITA† and CHENG-CHANG CHEN‡

Kobe Women's College of Pharmacy, Higashinada-ku, Kobe 658, Japan; † Faculty of Pharmaceutical Sciences of Kyoto University, Sakyo-ku, Kyoto 606, Japan; ‡National Kaohsiung Normal University, Kaohsiung, Taiwan, Republic of China

(Received in revised form 8 October 1991)

Key Word Index-Fraxinus formosana; Oleaceae; leaves; secoiridoid glucosides; fraxiformoside; ligstroside; isoligustroside.

Abstract—A new secoiridoid glucoside, fraxiformoside, was isolated from *Fraxinus formosana*, together with the known secoiridoid glucosides, ligstroside and isoligustroside. The structural elucidation of fraxiformoside by spectroscopic and chemical studies is described.

## INTRODUCTION

In a continuation of our previous investigations of the secoiridoid glucosides from the family Oleaceae [1], we examined the leaves of *Fraxinus formosana* Hay., which grows in Taiwan. This study has resulted in the isolation of a new secoiridoid glucoside. We report here the structural elucidation of this compound.

## **RESULTS AND DISCUSSION**

The methanolic extract of the fresh leaves of *F. formosana* was fractionated as described in the Experimental section to give three secoiridoid glucosides, ligstroside (1) [2], 2 and 3 along with three phenolic compounds, which were identified as 2-(4-hydroxyphenyl)ethanol (tyrosol), 2-(4-hydroxyphenyl)ethanol (tyrosol), 2-(4-hydroxyphenyl)ethyl  $\beta$ -D-glucopyranoside (salidroside) [3] and acteoside [4] from their spectroscopic data.

Glucoside 2,  $C_{25}H_{32}O_{12}$ , was recognized as an isomer of compound 1. It showed UV, IR and <sup>1</sup>H and <sup>13</sup>C NMR (Table 1) spectral features closely similar to those of compound 1. A significant difference in their <sup>1</sup>H NMR spectra was a chemical shift of the carbomethoxyl group ( $\delta$ 3.71 in 1 and 3.63 in 2), suggesting compound 2 to be isoligustroside, previously isolated as its acetate from *Syringa vulgaris* [5]. A comparison of the spectral data of the acetate 2a with those reported in the literature confirmed that compound 2 was isoligustroside. This is the first report on the characterization of compound 2 as a glucoside.

Compound 3, named fraxiformoside, was assigned the molecular formula  $C_{32}H_{38}O_{13}$ . It showed UV maxima at 204.5, 225.5, 240.5 (sh), 270 (sh), 275 (sh) and 286 (sh) nm and IR bands at 3420, 1756, 1704, 1634 and 1518 cm<sup>-1</sup>. Its <sup>1</sup>H NMR spectrum exhibited a singlet characteristic of

H-3 of a secoiridoid glucoside at  $\delta$ 7.51 (s), signals for a vinyl methyl group at  $\delta 1.75$  (dd), an anomeric proton at  $\delta$ 4.80 (d), an allylic acetal proton at  $\delta$ 6.01 (br s) and an olefinic proton at  $\delta 6.17$  (qd), indicating the presence of an oleoside (4) moiety in the molecule. Furthermore, its <sup>1</sup>H NMR spectrum showed duplicated aromatic AA'BB' spin systems centred at  $\delta 6.88$  and 7.12, along with signals of two sets of OCH2CH2Ar moieties, which appeared as an ABX<sub>2</sub> spin system at  $\delta 4.31$  (dt), 4.28 (dt) and 2.87 (t) and as an  $A_2X_2$  spin system at  $\delta 3.75$  (t) and 2.82 (t). Acetylation of compound 3 yielded the acetate 3a, which exhibited signals of five alcoholic and one phenolic acetyl groups in its <sup>1</sup>H NMR spectrum. These findings reflected the presence of two non-equivalent tyrosol moieties attached to the oleoside (4) moiety, obviously at the C-7 and C-11 positions through different types of ester linkages.

The nature of the ester linkage at C-7 in compound 3 was deduced from comparative studies of <sup>1</sup>H and <sup>13</sup>C NMR spectra. The downfield shifts of H<sub>2</sub>-6 as well as the upfield shift of the C-7 signal of compound 3, when compared with the corresponding signals of compounds 1§ and 2, strongly suggested that the C-7 carbonyl group should be linked to a phenolic oxygen rather than an alcoholic one [3]. The HMBC experiment with compound 3 revealed a <sup>3</sup>J interaction between H-3 and C-11 ( $\delta$ 168.2), that was in turn correlated to methylene proton signals at  $\delta$ 4.31 and 4.28. Hence the carbonyl group at C-11 was concluded to be esterified with a primary alcohol, and fraxiformoside was characterized as compound 3.

Finally, as an additional structural confirmation, compound 3 underwent methanolysis to yield isoligustroside (2) and tyrosol. The preferential methanolysis of C-7 could be attributed to the better leaving ability of phenoxide as opposed to alkoxide and the greater ease in solvolysis with saturated esters relative to  $\alpha,\beta$ -unsaturated esters. Therefore, compound 2 could conceivably be an artifact formed from compound 3 in the extraction process.

<sup>\*</sup>Author to whom correspondence should be addressed.

<sup>§</sup>The signals for H<sub>2</sub>-6 appeared at  $\delta$ 2.44 and 2.70.

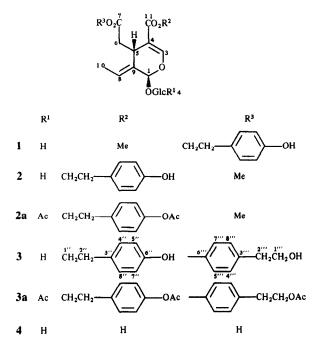



Table 1. <sup>13</sup>CNMR data of ligstroside (1), isoligustroside (2) and fraxiformoside (3) in CD<sub>3</sub>OD

| С        | 1     | 2     | 3            |
|----------|-------|-------|--------------|
| 1        | 95.3  | 95.2  | 95.4         |
| 3        | 155.2 | 155.1 | 155.3        |
| 4        | 109.5 | 109.6 | 109.5        |
| 5        | 31.9  | 31.8  | 31.8         |
| 6        | 41.3  | 40.9  | 41.1         |
| 7        | 173.3 | 173.6 | 171.8        |
| 8        | 125.0 | 124.9 | 125.2        |
| 9        | 130.6 | 130.5 | 130.7        |
| 10       | 13.6  | 13.5  | 13.8         |
| 11       | 168.7 | 168.2 | 168.2        |
| OMe      | 51.9  | 52.1  |              |
| 1′       | 101.0 | 100.9 | 101.1        |
| 2′       | 74.9  | 74.8  | 74.8         |
| 3′       | 78.0  | 78.0  | 78.0         |
| 4′       | 71.6  | 71.5  | 71.5         |
| 5'       | 78.5  | 78.4  | 78.4         |
| 6′       | 62.9  | 62.7  | 62.7         |
| 1",1‴    | 66.9  | 66.4  | 66.5, 64.1   |
| 2'',2''' | 35.2  | 35.3  | 35.3, 39.6   |
| 3",3‴    | 130.2 | 130.3 | 130.3, 138.3 |
| 4",4‴    | 131.1 | 131.0 | 131.0, 131.0 |
| 5",5‴    | 116.4 | 116.3 | 116.4, 122.6 |
| 6",6‴    | 157.2 | 157.1 | 157.2, 150.6 |
| 7",7"    | 116.4 | 116.3 | 116.4, 122.6 |
| 8",8"    | 131.1 | 131.0 | 131.0, 131.0 |

## **EXPERIMENTAL**

<sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR: TMS as int. standard; FAB-MS: glycerol or 3-nitrobenzylalcohol as the matrix; CC and TLC: silica gel.

Plant material. The leaves of F. formosana were collected in Heng-Chun Tropical Botanical Garden, Taiwan, in November 1986. A voucher specimen is deposited in the Herbarium of the Institute of Botany, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan.

Isolation of glucosides. Fresh leaves of F. formosana (63.5 g) were extracted with hot MeOH. After concn. the extract (8.4 g) was dissolved in H<sub>2</sub>O and filtered through a Celite layer. The filtrate and washings were combined and extracted with CHCl<sub>3</sub> and n-BuOH successively. The n-BuOH layer, after evapn of the solvent, was subjected to CC with CHCl<sub>1</sub>-MeOH of increasing MeOH content. Combined fractions eluted with 3-5%, 7-10% and 10-20% MeOH-CHCl3 were concd in vacuo to afford residues R-1 (151.7 mg), R-2 (669.2 mg) and R-3 (734.3 mg), respectively. Recrystallization of R-1 from Et<sub>2</sub>O-C<sub>6</sub>H<sub>6</sub> gave tyrosol (82.9 mg). R-2 was further purified by prep. HPLC ( $\mu$ Bondasphere 5 $\mu$  C18-100 Å, MeOH-H<sub>2</sub>O, 1:1) yielded salidroside (166.7 mg), 1 (7.9 mg), 2 (6.0 mg) and 3 (212.1 mg) in order of elution. R-3 was repeatedly subjected to CC with EtOAc-C<sub>6</sub>H<sub>6</sub>-EtOH (79:20:1 to 76:19:5), giving rise to acteoside (131.0 mg).

Isoligustroside (2). Powder,  $[\alpha]_{D}^{30} -152^{\circ}$  (MeOH; c 0.27). UV  $\lambda_{max}^{MeOH}$  nm (log  $\varepsilon$ ): 203 (4.02), 227.5 (4.21), 240sh (4.12), 278 (3.26), 286sh (3.12). IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3432, 1712, 1634, 1520. <sup>1</sup>H NMR (CD<sub>3</sub>OD):  $\delta$ 1.72 (3H, dd, J = 7.0 and 1.5 Hz, H<sub>3</sub>-10), 2.39 (1H, dd, J = 14.5 and 9.5 Hz, H-6), 2.66 (1H, dd, J = 14.5 and 4.5 Hz, H-6), 2.86 (2H, t, J = 6.5 Hz,  $H_2-2''$ ), 3.40 (1H, t, J = 8.5 Hz, H-3'), 3.63 (3H, s, CO<sub>2</sub>Me), 3.66 (1H, dd, J = 12.0 and 5.5 Hz, H-6'), 3.88 (1H, dd, J = 12.0 and 1.5 Hz, H-6'), 3.95 (1H, dd, J = 9.5 and 4.5 Hz, H-5), 4.26 (1H, dt, J = 11.0 and 6.5 Hz, H-1"), 4.29 (1H, dt, J = 11.0 and 6.5 Hz, H-1"), 4.79 (1H, d, J=7.5 Hz, H-1'), 5.90 (1H, br s, H-1), 6.09 (1H, qd, J=7.0 and 1.0 Hz, H-8), 6.70 and 7.06 (4H, AA'BB' pattern, J = 8.5 Hz, H-5", 7" and H-4", 8"), 7.46 (1H, s, H-3). Negative ion FAB-MS, m/z: 523  $[M-H]^-$ . (Found: C, 55.25; H, 6.03.  $C_{25}H_{32}O_{12} \cdot H_2O$ requires: C, 55.35; H, 6.32% ) Acetylation of this compound gave a product which had identical spectral data to those of isoligustroside pentaacetate (2a) [5].

Fraxiformoside (3). Powder,  $[\alpha]_{D}^{28} - 118^{\circ}$  (MeOH, c 1.1). UV  $\lambda_{max}^{MeOH}$  nm (log  $\varepsilon$ ): 204.5 (4.26), 225.5 (4.32), 240.5sh (4.16), 270sh (3.31), 275sh (3.28), 286sh (3.13). IR v<sup>KBr</sup><sub>max</sub> cm<sup>-1</sup>: 3420, 1756, 1704, 1634, 1518. <sup>1</sup>H NMR (CD<sub>3</sub>OD):  $\delta$ 1.75 (3H, dd, J = 7.0 and 1.2 Hz, H<sub>3</sub>-10), 2.67 (1H, dd, J = 15.0 and 9.5 Hz, H-6), 2.82 (2H, t, J = 7.0 Hz, H<sub>2</sub>-2"'), 2.86 (1H, dd, J = 15.0 and 4.5 Hz, H-6), 2.87  $(2H, t, J = 6.5 \text{ Hz}, H_2 - 2'')$ , 3.41 (1H, t, J = 9.0 Hz, H - 3'), 3.63 (1H, t, J = 9.0 Hz)dd, J = 12.0 and 5.5 Hz, H-6'), 3.75 (2H, t, J = 7.0 Hz, H<sub>2</sub>-1'''), 3.82 (1H, dd, J = 12.0 and 1.0 Hz, H-6'), 4.07 (1H, dd, J = 9.5 and4.5 Hz, H-5), 4.28 (1H, dt, J = 11.0 and 6.5 Hz, H-1"), 4.31 (1H, dt, J = 11.0 and 6.5 Hz, H-1"), 4.80 (1H, d, J = 7.5 Hz, H-1'), 6.01 (1H, br s, H-1), 6.17 (1H, qd, J = 7.0 and 1.0 Hz, H-8), 6.70 and 7.06 (4H, AA'BB' pattern, J = 8.5 Hz, H-5", 7" and H-4", 8"), 6.99 and 7.25 (4H, AA'BB' pattern, J = 8.5 Hz, H-5", 7" and H-4", 8"), 7.51 (1H, s, H-3). Negative ion FAB-MS, m/z: 629 [M-H]<sup>-</sup>. (Found: C, 58.87; H, 6.11. C<sub>32</sub>H<sub>38</sub>O<sub>13</sub> H<sub>2</sub>O requires: C, 59 25; H, 6.22%.)

Acetylation of compound 3. Glucoside 3 (17.4 mg) was acetylated in the usual way and the crude acetate (25.3 mg) was purified by prep. TLC with CHCl<sub>3</sub>-MeOH (97:3) to yield 3a (16.3 mg) as an amorphous powder.  $[\alpha]_{D}^{23} - 85^{\circ}$  (CHCl<sub>3</sub>; c0.98). UV  $\lambda_{max}^{MeOH}$  nm (log  $\varepsilon$ ): 205 (4.32), 217 (4.28), 240sh (4.11), 270sh (3.01). IR  $\nu_{max}^{MgCH}$  cm<sup>-1</sup>: 1758, 1750, 1708, 1636, 1512. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta 1.76$  (3H, dd, J = 7.5 and 1.2 Hz, H<sub>3</sub>-10), 1.99, 2.028, 2.029, 2.039, 2.043 (15H, each s, 5 × Ac), 2.29 (3H, s. Ac). 2.63 (1H, dd, J = 15.0 and 9.0 Hz, H-6), 2.91 (1H, dd, J = 15.0 and 4.5 Hz, H-6), 2.92 (2H, t, J = 7.0 Hz, H<sub>2</sub>-2<sup>('')</sup>, 2.97 (2H, t, J = 7.0 Hz, H<sub>2</sub>-2<sup>(')</sup>, 3.75 (1H, ddd, J = 9.5, 5.0 and 2.5 Hz, H-5'), 4.057 (1H, dd, J = 12.0 and 2.5 Hz, H-6'), 4.26 (2H, t, J = 7.0 Hz, H<sub>2</sub>-1<sup>('')</sup>, 4.34

(1H, dt, J = 11.0 and 7.0 Hz, H-1"), 4.38 (1H, dt, J = 11.0 and 7.0 Hz, H-1"), 5.03 (1H, d, J = 8.0 Hz, H-1"), 5.12 (1H, t, J = 9.5 Hz, H-4'), 5.14 (1H, dd, J = 9.5 and 8.0 Hz, H-2'), 5.27 (1H, t, J = 9.5 Hz, H-3"), 5.80 (1H, br s, H-1), 6.08 (1H, br q, J = 7.0 Hz, H-8), 6.98 and 7.20 (4H, AA'BB' pattern, J = 8.5 Hz, H-5"", 7" and H-4", 8"'), 7.02 and 7.24 (4H, AA'BB' pattern, J = 8.5 Hz, H-5", 7" and H-4", 8"), 7.46 (1H, s, H-3). Positive ion FAB-MS, m/z: 883  $[M + H]^+$ .

Methanolysis of compound 3. A soln of 3 (91.3 mg) in MeOH (10 ml) was heated for 40 hr under reflux. After concn in vacuo, the residue was purified by prep. HPLC ( $\mu$ Bondasphere 5 $\mu$  C18–100 Å, MeOH-H<sub>2</sub>O, 1:1) to give tyrosol (13.8 mg), 2 (53.2 mg) and 3 (1.7 mg).

Acknowledgements—We are grateful to Mr F.-C. Ho, Heng-Chun Tropical Botanical Garden, Taiwan, for plant collection. Thanks are also due to Dr M. Sugiura (Kobe Women's College of Pharmacy) for <sup>1</sup>H and <sup>13</sup>C NMR spectra, to Mr M. Morita (Kinki University) for FAB mass spectra measurements and to the staff of the Microanalytical Centre of Kyoto University for microanalyses.

#### REFERENCES

- Inoue, K., Fujita, T., Inouye, H., Kuwajima, H., Takaishi, K., Tanahashi, T., Nagakura, N., Asaka, Y., Kamikawa, T. and Shingu, T. (1991) *Phytochemistry* 30, 1191.
- 2. Asaka, A., Kamikawa, T., Kubota, T. and Sakamoto, H. (1972) Chem. Letters 141.
- 3. Lalonde, R. T., Wong, C. and Tsai, A. I.-M. (1976) J. Am. Chem. Soc. 98, 3007.
- Kitagawa, S., Tsukamoto, H., Hisada, S. and Nishibe, S. (1984) Chem. Pharm. Bull. 32, 1209.
- Kikuchi, M., Yamauchi, Y., Yanase, C. and Nagaoka, I. (1987) Yakugaku Zasshi 107, 245.