

Chlorotrifluoromethylation of Terminal Olefins via Atom Transfer-Type Radical Reaction Catalyzed by Cobalt Complexes

Kazuki Maeda, Takuya Kurahashi,* and Seijiro Matsubara*

Dedicated to Professor Armin de Meijere on the occasion of his 80th birthday.

Abstract: A cobalt porphyrin-catalyzed chlorotrifluoromethylation reaction of olefins is described. The use of CF_3SO_2CI as the CF_3 radical source and a cobalt catalyst enabled the selective addition of CF_3 radicals under thermal conditions. Various functional groups such as esters and Ar-X moieties, which can be reactive with low valent transition metal catalysts, were well-tolerated in this catalytic process. A highly functionalized alkaloid derivative was also tolerated as a substrate. As a demonstration of the bio-inspired catalytic system, catalytic usage of vitamin B_{12} , which is the commercially available form of the natural cobalt porphyrinoid, was employed, and diastereoselective chlorotrifluoromethylation of the alkaloid molecule was achieved.

Introduction

Trifluoromethyl (CF₃) groups are generally accepted as essential functionality in pharmaceutical chemistry because of their excellent anti-metabolic nature, electron negativity, membranepermeability, and other expedient characteristics.^[1] For these reasons, various methodologies which enable the introduction of CF_3 groups have been well established.^[2] Among them. utilization of CF₃ radicals has been recognized as a powerful strategy for trifluoromethylation reactions. For example, MacMillan and co-workers demonstrated an elegant application photoredox technique in the of their electrophilic trifluoromethylation of electron-rich arenes.[3] After their pioneering results, photo-induced generation of the CF3 free radical has become common methodology for mild and functional group-tolerant trifluoromethylative functionalization.^[4]

In contrast, utilization of perfluoroalkyl radicals under thermal conditions using olefins and perfluoroalkyl halides is an old yet powerful methodology, and easier to apply in classical laboratory and industrial processes. Both early and late low valent transition metals are able to catalyze this type of perfluoroalkylation reaction, known as an atom transfer radical addition.^[5] However, the low valent transition metal complexes are potentially reactive toward various functional groups, including the resulting carbon–halogen bond and the hydrogen atom at the β -position (Scheme 1(a)). This could result in a lack of chemoselectivity and could be problematic in the late stage trifluoromethylation reaction.

Considering the above issues, we supposed that some types of cobalt(II) complexes could be robust and selective catalysts

[*]	K. Maeda, Prof. Dr. T. Kurahashi, Prof. Dr. S. Matsubara
	Department of Material Chemistry
	Graduate School of Engineering, Kyoto University
	Kyoto 615-8510, Japan
	E-mail: maeda.kazuki.62x@st.kyoto-u.ac.jp,
	kurahashi.takuya.2c@kyoto-u.ac.jp,
	matsubara.seijiro.2e@kyoto-u.ac.jp
	Supporting information for this article is given via a link at the end of
	the document.

for the thermal atom transfer radical trifluoromethylation reaction. Highly coordinated square-planar cobalt(II) complexes, such as cobalt(II) porphyrins or salens, are generally known to have unpaired electron in the d_z2 orbital. If the singly occupied orbital of the paramagnetic low-spin cobalt center can interact with the low-lying LUMO of the CF₃-containing substrate, selective generation of the CF₃ radical might be achieved (Scheme 1(b)).^[6] Even more advantageously, such a cobalt catalyst does not possess reactive orbitals for side reactions, therefore, generation and addition of the CF₃ radical might proceed in a chemoselective manner.

.co(IV)

Scheme 1. (a) Early transition metal-catalyzed atom transfer CF_3 radical addition, (b) Co(II) metalloradical for generation of CF_3 radicals, and (c) the envisaged catalytic cycle for the chlorotrifluoromethylation of olefins.

Results and Discussion

In the course of our trial, trifluoromethanesulfonyl chloride (CF₃SO₂Cl), which was previously used for the Ru(II) catalyzed chlorotrifluoromethylation of olefins,^[7] was chosen as the highly electron-deficient CF₃ radical source. If the cobalt metalloradical can interact with the low-lying LUMO of CF₃SO₂Cl, homolytic abstraction of Cl might occur, and the CF₃ radical should be generated after the pyrolytic release of SO₂ gas (Scheme 1(c)). Pleasingly, when 5 mol % of cobalt(II) porphyrin, CoTPP (TPP: 5,10,15,20-tetraphenylporphyrinato), was used as the catalyst in the presence of olefin **1a** and CF₃SO₂Cl, the desired chlorotrifluoromethylated product **2a** was obtained in 77% yield (Table 1, entry 1). The use of the Jacobsen-type cobalt salen

COMMUNICATION

WILEY-VCH

	catalyst						
CI CF ₃	MeCN	- C					
1a	100 °C, time	2a					
Fable 1 Optimization of the chlorotrifluoromethylation of 1a ^[a]							

entry	catalyst (loading)	time	conv. ^[b]	yield ^[b]
1	CoTPP (5 mol %)	4 h	95%	77%
2	(R,R)-Cosalen* (5 mol %)	4 h	64%	48%
3	Co(acac) ₂ (5 mol %)	4 h	28%	21%
4	CoCITPP (5 mol %) ^[c]	4 h	90%	85%
5	(R,R)-CoClsalen* (5 mol %) ^[c]	4 h	66%	63%
6	Co(acac) ₃ (5 mol %) ^[c]	4 h	22%	28%
7	Cul (5 mol %) ^[c]	4 h	69%	39%
8	[Cu(bathophen) ₂]Cl (5 mol %) ^[c]	4 h	31%	28%
9	CuCl ₂ (5 mol %) ^[c]	4 h	84%	48%
10	CuTPP (5 mol %) ^[c]	4 h	39%	31%
11	CoCITPP (1 mol %) ^[c]	12 h	>99%	92% (92%)
12	vitamin B ₁₂ (5 mol %) ^[c]	4 h	80%	70%

[a] The reactions were conducted with **1a** (0.1 mmol), CF₃SO₂Cl (0.4 mmol), CF₃SO₂Na (10 µmol), and catalyst (1 or 5 µmol) in MeCN (1 mL) at 100 °C for the indicated time under a N₂ gas atmosphere. [b] Determined by ¹H NMR using Bn₂O as an internal standard. Differences between the conversion and the yield might be due to an analytical error. The isolated yield is shown in parenthesis. [c] 10 µmol (10 mol % to **1a**) of CF₃SO₂Na was used as an additive. TPP = 5,10,15,20-tetraphenylporphyrinato, salen* = (1*R*,2*R*)-*N*,*N*-bis(3,5-di-*tert*-butylsalicylidene)cyclohexanediamine, acac = pentane-2,4-dionato, bathophen = 2,9-diphenyl-1,10-phenanthroline

complex in place of the porphyrin also succeeded, though the yield was lower (48%, entry 2). The acetylacetonate salt of Co(II) and other cobalt salts failed to achieve good yields (entry 3; see Supporting Information for details). Further modification of the reaction conditions revealed that the combination of the Co(III) porphyrin, which can be easily prepared by air-oxidation of Co(II) complexes, and CF₃SO₂Na (Langlois' salts) as catalysts gave better yields (85%, entry 4).^[8] Note these reactions proceeded well in the absence of light (see Supporting Information), indicating that the catalysis proceeds via a fully thermal reaction pathway. The Co(III) salen complex also gives the products in

the presence of CF₃SO₂Na, though some decomposition of the Co salen complex under the reaction conditions diminished the yield (entry 5). This clearly reflects the importance of having a robust catalyst in this transformation. Co(acac)₃ was not effective for this reaction (entry 6). Some copper salts known to be important for atom transfer radical addition reactions^[9] and other trifluoromethylative reactions^[10] were also tested, however, none of these gave better results (entry 7-9). It is noteworthy that some by-products, likely derived from uncontrolled addition of the CF₃SO₂ radical intermediates, were detected in the reaction mixture of these copper-catalyzed reactions. This emphasizes the efficient catalytic ability of the Co porphyrin in controlling the generation and reactivity of the CF₃ radicals. The paramagnetic copper(II) porphyrin, CuTPP, afforded 2a in only 31% yield (entry 10). This indicates the importance of the redox viability of the cobalt porphyrin catalyst in this reaction.^[11] The combination of CoCITPP and CF₃SO₂Na was found to be a fairly effective catalytic system to furnish the product in 92% isolated vield even with only 1 mol % catalyst loading, although a somewhat longer reaction time was needed (entry 11). Thus, the combination of CoCITPP and CF₃SO₂Na was chosen as the best catalyst.Additionally, vitamin B₁₂ (commercially available cyanocobalamin form) was tested as a Co(III) porphyrinoid catalyst, and cleanly gave 2a in 70% yield (entry 12). The catalytic use of cobalamin is well known in single-electron catalysis,^[12] however, preactivation of the catalysts to the Co(I) species was commonly needed. In this transformation, no such highly reductive condition was required. Thus, this result might expand the utility of the cobalamins as environmentally friendly catalysts.

Scheme 2. Catalytic chlorotrifluoromethylation of terminal olefins catalyzed by Co(III) porphyrin.^[a] [a] The reactions were conducted with **1a** (1 eq), CF₃SO₂Cl (4 eq), CF₃SO₂Na (10 mol %), and catalyst in MeCN (0.1 M) at 100 °C under a N₂ gas atmosphere. The isolated yield is shown. The NMR yield, determined by using Bn₂O as an internal standard, is shown in parentheses. [b] Catalyst (1 mol %), 12 h. [c] Catalyst (5 mol %), 6 h. [d] Catalyst (5 mol %), 24 h. [e] Catalyst (5 mol %), in 1,2-dichloroethane, 36 h [f] The diastereomeric ratio was determined by ¹⁹F NMR.

COMMUNICATION

To exemplify the usability of this cobalt-catalyzed protocol, functional group tolerance of the trifluoromethylation reaction was briefly tested (Scheme 2). A fully aliphatic olefin, 1b, quantitatively gave product 2b, and olefin 1c was transformed to desired product 2c.^[13] A protected allyl phenol derivative, which is easily and readily accessible from substituted phenol, could also be used in the reaction, and 2d was obtained in good yields. The reaction with protected allyl alcohol 1e smoothly afforded 2e. Despite the fact that this reaction might occur via electrophilic addition of the CF₃ radical equivalents to the olefins, electron deficient olefins and styrene type substrates 1f and 1g could be used in this transformation with extended reaction time (6-12 h). Importantly, no substitution product at the Ar-Br moiety, which could be produced in a reaction with the poorly coordinated low valent transition metal catalysts,^[10] was observed in this cobalt porphyrin-catalyzed system with 1g. A substrate which contains an amine moiety was pleasingly compatible and gave 2h in 72% vield. As a demonstration of the utility of this catalysis, complex molecules directly relevant to bioactive compounds were also examined, and cinchona alkaloid-derived 1i could be converted to 2i in satisfying yields.

Table 2. Diastereoselective chlorotrifluoromethylation of 1i.[a]

entry	catalyst (loading)	time	dr ^[b]
1 ^[c]	CoCITPP (5 mol %)	48 h	1.4:1
2	(R,R)-CoClsalen* (10 mol %)	24 h	1.8:1
3	(S,S)-CoClsalen* (10 mol %)	24 h	1.4:1
4	vitamin B ₁₂ (5 mol %)	48 h	6.4:1

[a] The reactions were conducted with **1h** (0.05 mmol), CF₃SO₂Cl (0.5 mmol), CF₃SO₂Na (5 μ mol), and catalyst (5 μ mol) in MeCN (0.5 mL) at 100 °C for the indicated time under a N₂ gas atmosphere. [b] Determined by NMR. [c] An identical result is shown in Table 1, entry 12.

Considering the result obtained with vitamin B₁₂ catalysis (Table 1, entry 12), the possibility of stereoselective chlorotrifluoromethylation was examined (Table 2). Generally, dual functionalization of olefins by the atom transfer radical reaction have faced poor stereoselectivity because of the difficulty in controlling the reactivity around the catalytically active center.^[14] Indeed, when **1i** was used as the substrate, both the Co(III) porphyrin and salen complexes resulted in low selectivity (entries 1-3). A greater selectivity, 6.4:1, was observed when vitamin B₁₂ was used as the catalyst (entry 4). This sharp contrast clearly supports the possibility of the cobalt center contributing to C–Cl bond forming events and the existence of a secondary electrostatic interaction between the substrate and the outer sphere of the catalyst. This might open opportunities for establishing regio-, stereo-, and position-selective atom transfer-type transformations.

Conclusions

In summary, the cobalt porphyrin catalyst enabled chlorotrifluoromethylation of variously substituted olefins via a fully thermal process. This functional group-tolerant atom transfer radical reaction was achieved by use of a higher valent cobalt catalyst. Additionally, the preliminary trials suggest the possibility of stereoselective trifluoromethylation, which is especially essential for pharmaceutical applications. Development of other trifluoromethylative functionalization utilizing this catalytic system is ongoing in our laboratory.

Acknowledgements

This work was supported by ACT-C from the JST (Japan) and Grants-in-Aid for Scientific Research (Nos. 18H04253, 17KT0006, 15H05845 and 15H03809) from MEXT (Japan). T.K. acknowledges the Asahi Glass Foundation. K.M. acknowledges the Council of Human Resources Fostering Program in Chemistry, Japan Chemical Industry Association (JCIA).

Keywords: atom transfer • cobalt catalysis • trifluoromethylation

- For selected review articles, see: a) S. Purser, P. R. Moore, S. Swallow,
 V. Gouverneur, *Chem. Soc. Rev.* 2008, *37*, 320–330; b) W. K.
 Hagmann, *J. Med. Chem.* 2008, *51*, 4359–4369.
- [2] For a selected review article, see: T. Furuya, A. S. Kamlet, T. Ritter, *Nature* 2011, 473, 470–477.
- [3] a) D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 10875–10877; b) D. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224–228.
- [4] For selected reports for utilization of CF₃ radical with photo-redox catalysts, see: a) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, J. Am. Chem. Soc. 2012, 134, 8875–8884; b) X.-J. Tang, C. S. Thomoson, W. R. Dolbier Jr., Org. Lett. 2014, 16, 4594–4597; c) X.-J. Tang, W. R. Dolbier Jr., Angew. Chem. Int. Ed. 2015, 54, 4246–4249; Angew. Chem. 2015, 127, 4320–4323; d) D. B. Bagal, G. Kachkovskyi, M. Knorn, T. Rawner, B. M. Bhanage, O. Reiser, Angew. Chem. Int. Ed. 2015, 54, 6999–7002; Angew. Chem. 2015, 127, 7105–7108. e) Y. Cheng, C. Mück-Lichtenfeld, A. Sturder, J. Am. Chem. Soc. 2018, 140, 6221–6225; And for a selected review on use of the CF₃ radicals, see; A. Studer, Angew. Chem., Int. Ed. 2012, 51, 8950–8958.
- [5] For selected examples, see: a) T. Fuchikami, I. Ojima, *Tetrahedron Lett.* **1984**, 25, 303–306; b) Q.-Y. Chen, Z.-Y. Yang, C.-X. Zhao, Z.-M. Qiu, *J. Chem. Soc., Perkin Trans.* 1 **1988**, 563–567.
- [6] For selected recent examples of utilization of the radical reactivity of Co(II) in catalysis, see: a) Y. Xiong, G. Zhang, J. Am. Chem. Soc. 2018, 140, 2735–2738. b) J. L. M. Matos, S. Vásquez-Céspedes, J. Gu, T. Oguma, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 16976–16981. c) H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521.
- Under thermal conditions: a) N. Kamigata, T. Fukushima, M. Yoshida, J. Chem. Soc., Chem. Commun. 1989, 1559–1560. b) N. Kamigata, T. Fukushima, Y. Terakawa, M. Yoshida, H. Sawada, J. Chem. Soc., Perkin Trans. 1, 1991, 627–633. c) W. Zhang, J-H. Lin, J-C. Xiao, J. Fluorine Chem. 2018, 215, 25–31. With photo-redox catalysts: d) S. H.

COMMUNICATION

Oh, Y. R. Malpani, N. Ha, Y-S. Jung, S. B. Han, Org. Lett. 2014, 16, 1310–1313. e) H. S. Han, Y. J. Lee, Y. S. Jung, S. B. Han, Org. Lett. 2017, 19, 1962–1965. f) J. Fang, Z. K. Wang, S. W. Wu, W. G. Shen, G. Z. Ao, F. Liu, Chem. Commun. 2017, 53, 7638–7641. g) M. Alkan-Zambada, X. Hu, Organometallics 2018, 37, 3928–3935.

- [8] B. R. Langlois, E. Laurent, N. Roidot, *Tetrahedron. Lett.* 1991, 32 7525–7528.
- [9] The improved results obtained by the use of the Co(III) complex and CF_3SO_2Na were possibly due to better solubility of the Co complex in MeCN. In fact, CoTPP and CoCITPP are sparsely soluble in MeCN even at elevated temperature. In contrast, the sulfinate complex $Co(SO_2CF_3)TPP$ is fairly soluble in MeCN at room temperature (CCDC 1905720, 1905721). This might help the reaction proceed efficiently. The polar solvent MeCN was required for chemoselective formation of the chlorotrifluoromethylated products. It should be noted that no products via intermolecular reaction between the olefin substrates and $Co(SO_2CF_3)TPP$ were observed. Therefore, the catalytically active species might be *in situ* generated Co(II) porphyrins (see Supporting Information).
- [10] For selected reviews on atom transfer radical polymerization catalyzed by copper(I), see: a) T. Pintauer, K. Matyjaszewski, *Chem. Soc. Rev.* 2008, 37, 1087–1097; b) N.V. Tsarevsky, *Isr. J. Chem.* 2012, 52, 276–287; c) C. Boyer, N. A. Corrigan, K. Jung, D. Nguyen, T.-K. Nguyen, N. N. M. Adnan, S. Oliver, S. Shanmugam, J. Yeow, *Chem. Rev.* 2016, 116, 1803–1949.
- [11] For selected reports on Ar–X trifluoromethylation, see: a) Y. Kobayashi,
 I. Kumadaki, *Tetrahedron Lett.* **1969**, 4095–4096; b) T. Kitazume, N.
 Ishikawa, *Chem. Lett.* **1982**, *11*, 137–140; c) M. Oishi, K. Hideaki, H.
 Amii, *Chem. Commun.* **2009**, 1909–1911; d) E. J. Cho, T. D. Senecal, T.
 Kinzel, Y. Zhang, D. A. Watson, S. L. Buchwald, *Science* **2010**, *328*, 1679–1681; e) H. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig, Angew. Chem. Int. Ed. **2011**, *50*, 3793-3798; *Angew. Chem.* **2011**, 123, 3877–3882; f) O. A. Tomashenko, E. C. Escudero-Adán, M. M.

Belmonte, V. V. Grushin, *Angew. Chem. Int. Ed.* **2011**, *50*, 7655–7659; *Angew. Chem.* **2011**, 123, 7797–7801.

- [12] Experimental values for the first oxidation potential of some types of the cobalt porphyrin and the copper porphyrin were 0.111 V and 0.463 V (vs ferrocene/ferrocenium redox potential), respectively, as determined by differential pulse voltammetry. Additionally, in the case of the cobalt porphyrins, oxidation occurs at the cobalt center (generating Co(III) porphyrin). The first oxidation of the copper porphyrin, in contrast, occurs at the porphyrin ligand.
- [13] For selected reviews on cobalamin catalysis, see: a) R. Scheffold, S. Abrecht, R. Orlinski, H.-R. Ruf, P. Stamouli, O. Tinembart, L. Walder, C. Weymuth, *Pure & Appl. Chem.* **1987**, *59*, 363–372; b) M. Giedyk, K. Goliszewska, D. Gryko, *Chem. Soc. Rev.*, **2015**, *44*, 3391–3404; c) H. Shimakoshi, Y. Hisaeda, *ChemPlusChem* **2017**, *82*, 18–29; d) K. Tahara, L. Pan, T. Ono, Y. Hisaeda, *Beilstein J. Org. Chem.* **2018**, *14*, 2553–2567. Very recently, cobalamin-mediated CF₃ radical transfer was also described: T. Ono, K. Wakiya, Md. J. Hossain, H. Shimakoshi, Y. Hisaeda. *Chem. Lett.* **2018**, *47*, 979–981.
- [14] The yields determined from the amount of the isolated products were lower due to the high volatility of the products. Product 2c in particular might be even evaporate during the work-up process.
- [15] Recently, a report on highly stereoselective atom transfer-type functionalization of olefins has been published: B. Chen, C. Fang, P. Liu, J. M. Ready, Angew. Chem. Int. Ed. 2017, 56, 8780–8784; Angew. Chem.
 2017, 129, 8906–8910. For pioneering examples of stereoselective reactions, see: a) S. Murai, R. Sugise, N. Sonoda, Angew. Chem. Int. Ed. 1981, 20, 475–476; Angew. Chem. 1981, 93, 481–482; b) M. Kameyama, N. Kamigata, M. Kobayashi, J. Org. Chem. 1987, 52, 3312–3316; c) Y. Iizuka, Z. Li, K. Satoh, M. Kamigaito, Y. Okamoto, J. Ito, H. Nishiyama, Eur. J. Org. Chem. 2007, 782–791.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION (Chlorotrifluoromethylation)

A cobalt porphyrin-catalyzed chlorotrifluoromethylation reaction of olefins is described. The use of CF_3SO_2CI as the CF_3 radical source and a cobalt catalyst enabled the selective addition of CF_3 radicals under thermal conditions.

Kazuki Maeda, Takuya Kurahashi,* and Seijiro Matsubara*

Page No. – Page No.

Chlorotrifluoromethylation of Terminal Olefins via Atom Transfer-Type Radical Reaction Catalyzed by Cobalt Complexes