Synthesis of 3-Alkyl-1*H*-quinolin-2-ones via Palladium-Catalyzed Intramolecular Cyclization of Benzyl Halides and α,β-Unsaturated Amides

Zhangqin Liu,^{a,b} Changqing Shi,^{a,b} Yuanwei Chen*a

^a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China Fax +86(28)85232228; E-mail: chenyw@cioc.ac.cn

Received 1 March 2008

Abstract: An efficient synthesis of 3-alkyl-1*H*-quinolin-2-ones was achieved in high yield (up to 91%) via $Pd_2(dba)_3$ -catalyzed intramolecular cyclization of benzyl halides and electron-deficient olefins, followed by treatment with DBU.

Key words: palladium, cyclization, benzyl halides, electron-deficient olefins, quinolinone

Since modern palladium chemistry started in 1960, palladium catalysts have received considerable attention because of their wide applications in carbon-carbon bond formations such as Heck reaction,¹ Sonogashira coupling,² and Suzuki coupling.³ However, palladium-catalyzed coupling of benzyl halides and olefins have not been studied extensively. Negishi's group first reported the intramolecular cyclization of benzyl halides and unfunctionalized olefins to form five- to seven-membered rings.⁴ Several other groups also reported the cyclization of benzyl halides and simple olefins or electron-rich olefins.⁵ However, as far as we are aware of, there are no further studies on the cyclization of benzyl halides and electrondeficient olefins. Here, we report the first synthesis of 3alkyl-1H-quinolin-2-ones via palladium-catalyzed intramolecular cyclization of benzyl halides and electrondeficient olefins. The 3-alkyl-1H-quinolin-2-one moiety is present in a number of biologically active compounds such as R207910 (Figure 1), which has been described to have significant activity against drug-sensitive and drugresistant Mycobacterium tuberculosis⁶ and elicit antitubercular activity.7

In search of the optimized reaction conditions, we began our initial study by examining the intramolecular cyclization of *N*-acetyl-*N*-[2-(bromomethyl)phenyl]acrylamide

Figure 1 Structure of R207910

SYNLETT 2008, No. 11, pp 1734–1736 Advanced online publication: 11.06.2008 DOI: 10.1055/s-2008-1077875; Art ID: W03508ST © Georg Thieme Verlag Stuttgart · New York (1a,⁸ Scheme 1). The reaction was initially performed in refluxing MeCN for 12 hours with $Pd(PPh_3)_4$ (5% mol) and 3 equivalents of Et₃N. Besides the expected 3-alkyl-1*H*-quinolin-2-one was obtained, another three cyclization products **3a–c** were also isolated. Compounds **3a** and **3c** are the acetylated products of **3b** and **2a**, respectively. By treatment of the reaction mixture with DBU, **3a–c** were successfully converted to 3-methyl-1*H*-quinolin-2-one (**2a**) as a single product in moderate yield (67%).⁹

Scheme 1 Palladium-catalyzed cyclization of *N*-acetyl-*N*-[2-(bromo-methyl)phenyl]acrylamide (1a) to yield 3-methyl-1*H*-quinolin-2one (2a)

Encouraged by the successful intramolecular cyclization of acrylamide **1a**, we further investigated a variety of ligands to promote the reaction (Table 1, entries 1–9). To our surprise, the combination of Pd₂(dba)₃ and dppf or L₂ dramatically increased the yield of **2a** to 91% and 90%, respectively (entries 3 and 9). Other ligands such as L₁, L₃,¹⁰ dppm, dppe, dppb, and Xantphos (entries 2, 4–8) gave moderate yields after longer reaction time. Inorganic bases, such as K₂CO₃, Na₂CO₃, Cs₂CO₃, and organic bases such as DABCO and DBU were found to provide no products for this reaction (entries 10–14). In nonpolar solvents such as toluene (entry 15), no cyclization products could be isolated and the starting material **1a** was quantitatively recovered. In apolar solvents other than MeCN, poor or moderate yields were obtained (entries 16–19).

^b Graduate School, Chinese Academy of Sciences, Beijing 100039, P. R. of China

^a Conditions: **1a** (1.0 equiv), Et_3N (3 equiv), $Pd_2(dba)_3$ (2.5 mol%), diphosphine ligand (5 mol%) or monophosphine ligand (10 mol%), solvent (5 mL).

^b Yield of isolated product.

^c Pd(PPh₃)₄ instead of Pd₂(dba)₃ and ligand was used.

^d Starting material was completely destroyed by the inorganic base.

^e Starting material disappeared without cyclization products.

This novel palladium-catalyzed intramolecular cyclization can be applied to a wide range of acrylamide (Table 2). In addition to the benzyl bromides,¹² benzyl chloride could be employed to give the cyclization product **2a** in 67% yield (entry 3). But the cyclization reaction failed with benzyl acetate even when more catalysts were used (entry 2). A number of 3-aryl acrylamides were also examined.

The phenyl ring can be substituted at the 3- or 4-position, and the group can be electron-donating or electron-withdrawing (entries 4–8).¹³ When heterocyclic acrylamide substrate was employed, the corresponding cyclization product was also obtained in 71% yield (entry 10). However, the cyclization did not happen with the 2-nitrophenyl acrylamide substrate (entry 9), probably due to steric hindrance. 3-Alkyl substitution on acrylamide (entry 11) could also give the desired cyclization product **2h**, though in a lower yield. Methyl substitution on benzene ring also cyclized smoothly to give the corresponding products in moderate yield (entries 12 and 13).

R ²		1 Pd ₂ (dba) ₃ (2.5 mol% dppf (5 mol%) Et ₃ N, MeCN, reflux	b) R ² DBU reflux	
Entr	y X	R ¹	R ²	Yield of 2 (%)
1	Br	Н	Н	91 (2 a)
2	AcO	Н	Н	n.r.
3	Cl	Н	Н	67 (2a)
4	Br	Ph	Н	73 (2b) ^b
5	Br	$3-O_2NC_6H_4$	Н	85 (2c)
6	Br	4-MeC ₆ H ₄	Н	76 (2d) ^b
7	Br	4-MeOC ₆ H ₄	Н	81 (2e)
8	Br	$4-ClC_6H_4$	Н	66 (2f) ^b
9	Br	$2-O_2NC_6H_4$	Н	n.r.
10	Br		Н	71 (2g)
11	Br	Me	Н	36 (2h)
12	Br	Н	Me	61 (2i)
13	Br	Ph	Me	65 (2j)

^a Yield of isolated product.

^b See ref.¹¹ for structural confirmation.

In summary we have developed a novel practical approach to synthesize 3-alkyl-1*H*-quinolin-2-ones via the cyclization of benzyl halides with a,b-unsaturated amides promoted by $Pd_2(dba)_3$ and dppf as catalysts. Further studies to expand the scope of reaction are in progress.

Acknowledgment

We would like to thank 100 talents program of Chinese Academy of Sciences, the Chengdu Institute of Organic Chemistry, and Graduate School of Chinese Academy of Science for financial support of this work.

References and Notes

- (a) Heck, R. F.; Nolley, J. P. J. Am. Chem. Soc. 1968, 90, 5518. (b) Heck, R. F. Acc. Chem. Res. 1979, 12, 146.
 (c) Heck, R. F. Org. React. 1982, 27, 345. (d) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
 (e) Mayasundari, A.; Young, D. G. J. Tetrahedron Lett. 2001, 42, 203. (f) Haeberli, A.; Leumann, C. J. Org. Lett. 2001, 3, 489.
- (2) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, *16*, 4467. (b) Hundermark, T.; Littke, A.; Buchwald, S. L.; Fu, G. C. Org. Lett. **2000**, *2*, 1729.
 (c) Batey, R. A.; Shen, M.; Lough, A. J. Org. Lett. **2002**, *4*, 1411. (d) Balova, I. A.; Morozkina, S. N.; Knight, D. W.; Vasilevsky, S. F. *Tetrahedron Lett.* **2003**, *44*, 107.
- (3) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
 (b) Stanforth, S. P. Tetrahedron 1998, 54, 263. (c) Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271.
- (4) (a) Wu, G.; Lamaty, F.; Negishi, E. J. Org. Chem. 1989, 54, 2507. (b) Wu, G.; Shimoyama, I.; Negishi, E. J. Org. Chem. 1991, 56, 6506.
- (5) (a) Pan, Y.; Zhang, Z. Y.; Hu, H. W. Synthesis 1995, 245.
 (b) Hu, Y. M.; Zhou, J.; Lian, H. Z.; Zhu, C. J.; Pan, Y. Synthesis 2003, 8, 1177. (c) Hu, Y. M.; Zhou, J.; Long, X. T.; Han, J. L.; Zhu, C. J.; Pan, Y. Tetrahedron Lett. 2003, 44, 5009. (d) Wang, L. S.; Pan, Y.; Jiang, X.; Hu, H. W. Tetrahedron Lett. 2000, 41, 725.
- (6) (a) Cole, S. T.; Alzari, P. M. Science 2005, 307, 214.
 (b) Rubin, E. J. N. Engl. J. Med. 2005, 352, 933. (c) Ji, B.; Jarlier, V. Antimicrob. Agents Chemother. 2006, 50, 1558.
- (7) Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H. W. H.; Neefs, J.-M.; Winkler, H.; Gestel, J. V.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. Science **2005**, *307*, 223.
- (8) Typical Procedure for the Synthesis of N-Acetyl-N-[2-(bromomethyl)phenyl]acrylamide (1a) Acryloyl chloride (0.99 g, 11 mmol) was dropped slowly to the mixture of 2-[(trimethylsilyloxy)methyl]benzamine (1.95 g, 10 mmol) and 1 equiv Et₃N in CH₂Cl₂ at 0 °C. After the reaction was complete, the solvent was removed, and the white solid was dissolved in MeOH, and then K₂CO₃ (2 equiv) was added. The reaction mixture was stirred for additional 2 h at r.t. and concentrated. The residue was dissolved in EtOAc and washed with H₂O. The organic extracts were dried (Na₂SO₄) and concentrated in vacuo.

Flash chromatography (EtOAc–light PE = 20:80) of the residue gave N-[2-(hydroxymethyl)phenyl]acrylamide (1.45 g, 8.19 mmol) in 81.9% yield as a white solid. Then, PBr₃ (1 equiv) was dropped slowly to the solution of N-[2-(hydroxymethyl)phenyl]acrylamide in CH_2Cl_2 at 0 °C and stirred for 30 min. The reaction mixture was quenched with H₂O, and the aqueous layer was extracted with additional CH₂Cl₂, and the combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash chromatography on SiO_2 by using 10% EtOAc-light PE as eluent to give N-[2-(bromomethyl)phenyl]acrylamide in 73% yield as a white solid. Then acetyl chloride (3 equiv) was added to N-[2-(bromomethyl)phenyl]acrylamide (5 mmol, 1.195 g) and CaH₂ (3 equiv), and stirred in dry THF for 24 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on SiO₂ by using 8% EtOAc-light PE as eluent to give acrylamide N-acetyl-N-[2-(bromomethyl)phenyl]acrylamide in 90% vield as a white solid.

- (9) Acetyl protection of acrylamide **1a** is necessary to increase its activity.
- (10) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolf, J. P.; Sandighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.
- (11) Lee, C. G.; Lee, K. Y.; Lee, S. K.; Kim, J. N. *Tetrahedron* 2005, 61, 1493.
- (12) Typical Procedure for the Cyclization of N-Acetyl-N-[2-(bromomethyl)phenyl]acrylamide Under the nitrogen atmosphere, the mixture of acrylamide derivative N-acetyl-N-[2-(bromomethyl)phenyl]acrylamide (1 mmol, 0.281 mg), Pd₂(dba)₃ (2.5 mol%), dppf (5 mol%), and Et₃N (3.0 equiv) was stirred in 5 mL refluxing MeCN for 5 h. Then, DBU (1 equiv) was added and the reaction mixture was refluxed for an additional 3 h. Solvent was removed and the residue was purified by flash chromatography on SiO₂ by using 20% EtOAc–light PE as eluent to give 2a in 91% yield as a white solid.

(13) Analytical Data of 3-(3-Nitrobenzyl)quinolin-2(1*H*)-one (2c)

$$\begin{split} R_f &= 0.25 \ (25\% \ \text{EtOAc-light PE}); \ \text{mp } 206\text{-}209 \ ^\circ\text{C}. \ ^1\text{H NMR} \\ (300 \ \text{MHz}, \text{CDCl}_3): \ \delta &= 12.27 \ (\text{s}, 1 \ \text{H}, \text{NH}), \ 8.29 \ (\text{s}, 1 \ \text{H}, \text{ArH}), \ 8.10\text{-}8.07 \ (\text{d}, 1 \ \text{H}, \text{ArH}), \ 7.73\text{-}7.70 \ (\text{d}, 1 \ \text{H}, \text{ArH}), \ 7.63 \ (\text{s}, 1 \ \text{H}, \text{ArH}), \ 7.52\text{-}7.44 \ (\text{m}, 3 \ \text{H}, \text{ArH}), \ 7.32\text{-}7.19 \ (\text{m}, 2 \ \text{H}, \text{ArH}), \ 4.10 \ (\text{s}, 2 \ \text{H}, \text{CH}_2). \ ^{13}\text{C NMR} \ (300 \ \text{MHz}, \text{CDCl}_3): \ \delta &= 163.8, \ 148.3, \ 141.5, \ 138.2, \ 137.8, \ 135.4, \ 131.6, \ 130.2, \ 129.3, \ 127.4, \ 124.2, \ 122.8, \ 121.6, \ 119.9, \ 115.7, \ 36.4. \ \text{ESI-MS}: \ m/z \ \text{calcd for } C_{16}\text{H}_{12}\text{N}_2\text{O}_3: \ 280.0848; \ \text{found: } 281.0921 \ [\text{M} + \text{H}]. \end{split}$$