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ABSTRACT: An efficient method for the enantioselective synthesis of cyclic ureas has been developed through Pd-catalyzed
asymmetric allylic cycloaddition of readily accessible nitrogen-containing allylic carbonates with isocyanates. By using a
palladium complex in situ generated from Pd2(dba)3·CHCl3 and phosphoramidite L1 or L3 as a ligand under mild reaction
conditions, the process afforded imidazolidinones and tetrahydropyrimidinones with high yields and high levels of
enantioselectivities.

The Pd-catalyzed allylic cycloaddition via zwitterionic
allylpalladium intermediates has been extensively studied

for the preparation of a variety of cyclic frameworks.1 Various
allylic donors have been productively applied in the trans-
formations with diverse unsaturated electrophiles. Since the
pioneering work of Ohfune on the Pd-catalyzed allylic
cycloaddition of vinylaziridines with carbon monoxide in
1991,2 vinylaziridines have served as efficient 1,3-C,N-dipoles
in the Pd-catalyzed allylic cycloaddition with various unsatu-
rated electrophiles to afford functionalized aza-heterocycles,3

and the asymmetric variants have also been documented
recently (Scheme 1a).4 5-Vinyloxazolidin-2-ones as the vinyl-
aziridine equivalent have recently been applied to Pd-catalyzed
decarboxylative allylic cycloadditions with unsaturated electro-
philes with high efficiency (Scheme 1a).5 Most recently, Tunge
and Wang reported Pd-catalyzed asymmetric allylic cyclo-
addition of vinyl benzoxazinanones with Michael acceptors to
provide hydroquinolines with high enantio- and diastereose-
lectivities.6 Subsequently, vinyl benzoxazinanones have served
as useful 1.4-C,N-dipoles in Pd-catalyzed decarboxylative allylic
cycloadditions with a variety of reaction partners to form aza-
heterocycles with diverse functionalities (Scheme 1b).7

Even though these three types of nitrogen-containing allylic
donors have successfully been applied in the Pd-catalyzed allylic
cycloaddition, some limitations have emerged, such as limited
structural diversity and/or multistep preparation for the allylic
substrates.
Most recently, our group developed vinylethylene carbonates

(VECs) as stable and readily accessible C,O-dipoles and
achieved the Pd-catalyzed asymmetric decarboxylative allylic
cycloaddition of VECs with various unsaturated electrophiles to

afford diverse oxo-heterocycles in high efficiencies.8 Based on
these research results, we are interested in the development of
readily accessible nitrogen-containing allylic donors and their
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Scheme 1. Pd-Catalyzed Allylic Cycloaddition of C,N-
Dipoles
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applications in the Pd-catalyzed allylic cycloaddition to afford
aza-heterocycles. In 1996, Trost reported intramolecular allylic
cycloaddition of nitrogen-containing linear allylic donors to
form five- to seven-membered N-heterocycles (Scheme 1c).9 In
contrast with this report, we envisioned that the N-containing
allylic carbonates 1 (n = 1 or 2) could afford stable zwitterionic
allylpalladium intermediates (Scheme 1d). The intermediates
could be intercepted by unsaturated electrophiles to form five-
or six-membered aza-heterocycles. Allylic carbonates 1 can be
readily synthesized by cross-metathesis of allylic or homoallylic
amines with Boc-protected 2-butene-1,4-diol. However, to the
best of our knowledge, there have been no reports for the allylic
cycloaddition using this type of readily accessible allylic donors.
Herein, we report Pd-catalyzed asymmetric allylic cycloaddition
of nitrogen-containing allylic carbonates with isocyanates, a
practical and efficient approach which allows rapid access to
imidazolidinones and tetrahydropyrimidinones as useful chiral
building blocks10 in high yields with high levels of
enantioselectivities.
Initial studies were focused on the investigation of the allylic

cycloaddition of nitrogen-containing allylic carbonate 1a11 with
commercially available benzyl isocyanate 2a as typical reaction
partners using palladium(0) catalyst bearing different chiral
phosphoramidite12 ligands (Table 1). To our delight, the
reaction proceeded smoothly with phosphoramidite-derived
Binol ligand (R)-L1 at 20 °C in THF for 15 h, affording
imidazolidinone 3aa with 80% yield and 87% ee (entry 1). It is
observed that the enantioselectivity could be enhanced using the
ligand (S,R,R)-L3 (93% ee, entry 3). However, Zhou’s spiro-
type phosphoramidite,13 Phox-type L7, and Segphos ligands
showed no reactivity under the reaction conditions (entries 4−
8). Lower yields and enantioselectivities were observed using
Binap or the Trost ligand for the reaction (entries 9 and 10). By
further screening of solvent (entries 11−18), we found that the
reaction was very sensitive to the reaction solvent. When the
reaction proceeded in 1,2-dimethoxyethane (DME), the yield
was improved to 94% without the deterioration of enantiose-
lectivity (entry 18). The enantioselectivity could be further
improved when the reaction was performed at 0 °C (93% yield,
96% ee, entry 19). The enantioselectivities were remarkably
decreased when the reaction proceeded at higher temperature
(entries 20 and 21).
With optimal conditions in hand, we evaluated the generality

of this process by the reaction of nitrogen-containing allylic
carbonate 1a with various substituted isocyanates (Scheme 2).
The reaction proceeded smoothly with 2-phenylethylisocyanate
2b to afford imidazolidinone 3ab in 85% yield with 93% ee. The
functional group of chloride 3ac and allylic group 3ad could also
be introduced with high yields with good to high enantiose-
lectivities. A wide range of phenyl-substituted isocyanates
bearing different electronic and steric properties was tolerated
under the reaction conditions, affording the corresponding
imidazolidinones 3ae−3al in high yields with good to excellent
enantioselectivities.
Next, we investigated the allylic cycloaddition of N-containing

allylic carbonate 1b11 with isocyanates. Under the optimal
conditions (Table 1, entries 19), the cycloaddition of 1b with
benzyl isocyanate 2a proceeded smoothly to afford tetrahy-
dropyrimidinone 3ba in 83% yield, albeit with moderate
enantioselectivities (65% ee). After further condition optimiza-
tions (see Supporting Information), we found that the reaction
with phosphoramidite (R)-L1 as the ligand under otherwise
identical conditions with Scheme 2 gave the cycloadduct 3ba in

84% yield with excellent enantioselectivity (99% ee, Scheme 3).
The allylic cycloaddition of 1b with various isocyanates was
examined with (R)-L1 as ligand (Scheme 3). The reaction of 1b
with alkyl-substituted isocyanates gave cycloadducts 3bb and
3bd with high yields with good to excellent enantioselectivities.
The allylic cycloaddition of 1b with phenyl-substituted
isocyanates bearing different electronic and steric properties
performed smoothly to afford the corresponding tetrahydropyr-
imidinones 3be−3bj in high yields with good enantioselectiv-
ities. Interestingly, the opposite stereochemistry was observed
for the allylic cycloaddition of 1b in comparison to that of 1a.
We next investigated the allylic cycloaddition of N-containing

allylic carbonate 1c11 with benzyl isocyanate 2a under optimal
conditions, as described in Table 1 (entry 19). However, the
reaction provided pyrrolidine 4 in 72% yield with 43% ee. The
desired cycloadduct 3ca was not observed (Scheme 4). This
result implied that the allylic carbonate 1c (n = 3) underwent
zwitterionic allylpalladium intermediate, which occurs intra-
molecular cycloaddition to afford favored pyrrolidine rather
than intercepted by isocyanate 2a.
The synthetic utility of the protocol has been demonstrated

by the gram-scale transformation and product elaboration
(Scheme 5). Under the standard conditions, the allylic

Table 1. Condition Optimizationa

entry ligands solvents T (°C) yield (%)b ee (%)c

1 (R)-L1 THF 20 80 −87
2 (S,S,S)-L2 THF 20 trace
3 (S,R,R)-L3 THF 20 77 93
4 (R)-L4 THF 20 trace
5 (R,R,R)-L5 THF 20
6 (S,R,R)-L6 THF 20
7 L7 THF 20
8 (R)-Segphos THF 20 trace
9 (R)-Binap THF 20 35 −20
10 Ph-Trost THF 20 52 −26
11 (S,R,R)-L3 toluene 20 34 60
12 (S,R,R)-L3 DCM 20 60 78
13 (S,R,R)-L3 Et2O 20 12 49
14 (S,R,R)-L3 CyH 20
15 (S,R,R)-L3 dioxane 20 trace
16 (S,R,R)-L3 CH3CN 20 83 90
17 (S,R,R)-L3 MTBE 20 60 23
18 (S,R,R)-L3 DME 20 94 93
19 (S,R,R)-L3 DME 0 93 96
20 (S,R,R)-L3 DME 40 95 53
21 (S,R,R)-L3 DME 60 95 43

aReaction conditions: Pd2(dba)3·CHCl3 (2.5 mol %), ligand (10 mol
%), 1a (0.2 mmol), 2a (0.2 mmol), solvent (1.0 mL), 15 h. bIsolated
yields. cDetermined by HPLC using a chiral stationary phase. The
minus sign means the obtained product with opposite configuration.
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cycloaddition of 1a or 1b with benzyl isocyanate 2a at the 3.0
mmol scale performed smoothly to furnish corresponding

cycloadducts 3aa and 3ba in high yields with excellent
enantioselectivities. Reduction of 3aa and 3ba in the presence
of LiAlH4 gave diamines 5 and 6, respectively, in high yields.14

N-Allylic-substituted cycloadducts 3ad and 3bd could convert
into the bicyclic heterocycles 7 and 8, respectively, through ring-
closing metathesis using Grubbs first generation catalyst.
In conclusion, we have developed an efficient method for the

enantioselective synthesis of imidazolidinones and tetrahydro-
pyrimidinones via Pd-catalyzed allylic cycloaddition of readily
accessible N-containing allylic carbonates with isocyanates. By
using a palladium complex generated in situ from Pd2(dba)3·
CHCl3 and phosphoramidite L3 or L1 as a catalyst under mild
conditions, the process afforded formal [3 + 2] and [4 + 2]
cycloadducts in high yields with good to excellent enantiose-
lectivities. The synthetic utility of the protocol has been
demonstrated by the gram-scale transformation and the product
derivatizations. Further studies on extending the scope of the
cycloaddition of nitrogen-containing allylic carbonates with
other unsaturated electrophiles are currently underway and will
be reported in due course.
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Scheme 2. Pd-Catalyzed Asymmetric Allylic Cycloaddition of
1a with Isocyanates 2a

aReaction conditions: Pd2(dba)3·CHCl3 (2.5 mol %), (S,R,R)-L3 (10
mol %), 1a (0.2 mmol), 2 (0.2 mmol), DME (1.0 mL), 0 °C, 15 h.
The enantiomeric excesses were determined by HPLC using a chiral
stationary phase. The absolute configuration of 3ae was confirmed by
X-ray crystallography (see Supporting Information). Those of the
other products were assigned by analogy.

Scheme 3. Pd-Catalyzed Asymmetric Allylic Cycloaddition of
1b with Isocyanates 2a

aReaction conditions: Pd2(dba)3·CHCl3 (2.5 mol %), (R)-L1 (10 mol
%), 1a (0.2 mmol), 2 (0.2 mmol), DME (1.0 mL), 0 °C, 15 h. The
enantiomeric excesses were determined by HPLC using a chiral
stationary phase. The absolute configuration of 3bj was confirmed by
X-ray crystallography (see Supporting Information). Those of the
other products were assigned by analogy.

Scheme 4. Pd-Catalyzed Allylic Cycloaddition of 1c with 2a

Scheme 5. Gram-Scale Transformation and Product
Elaboration
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