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Highly π electron-rich macro-aromatics.  

Bis(p-aminophenyl)-carbo-benzenes and their DBA acyclic references# 
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A series of stable quadrupolar bis(p-aminophenyl)-carbo-

benzenes, featuring both donor-donor-donor π-frustration and 

central macro-aromaticity, is described and compared to the 10 

acyclic dibutatrienylacetylene (DBA) reference series. 

4,4’’-Diamino-p-terphenyl (DATP) is a valuable motif for the 

design of electroluminescent devices.1 From the fundamental 

viewpoint, the π-donating character of the two nitrogen atoms 

flanking the π-electron-rich terphenyl rod makes it an a priori 15 

“π-frustrated” motif,2 which ground state is stabilized by local 

aromaticity of π-independent phenylene rings, while low lying 

excited states may acquire global aromaticity in a coplanar 

geometry.3 The invoked aromaticity can be quantified by 

aromatic stabilization energies (ASEs) between the π-cyclic 20 

structure and acyclic reference components (Fig. 1).4,5 While 

many ASEs have been theoretically devised, their generality 

vs the substitution pattern and their experimental realization 

have been scarcely addressed in an explicit manner.5 A 

chemically relevant simple definition for the range of 25 

quadrupolar benzene derivatives relies on an eliminative [4+2] 

retro-Diels-Alder process, where the C4 moiety preserves a π-

conjugation between electro-active ends. For DATPs, the C4 

components are di(p-aminophenyl)butadienes (DAPBs), that 

have long been used as key chromophoric units as well.6 30 

 
Fig. 1 Simple carbo-meric ASE equations for the central ring of 

quadrupolar terphenyl derivatives (DATPs) and carbo-mers thereof. 

The relevance of ASE definitions is also submitted to the 

condition that their absolute value should vanish, or at least 35 

decrease, with the ring size.4 A ring-expanded version of 

DATP is its central ring carbo-mer,7 i.e. bis(p-aminophenyl)-

carbo-benzene (carbo-DATP). Although most of the known 

carbo-benzenes are aryl-subtituted (derivatives of 1a, Fig. 1),7 

the aromaticity of the C18 ring has been long regarded as a key 40 

stabilization factor.8 Recently, however, π-acyclic dibuta-

trienylacetylene (DBA) sub-motifs (carbo-mers of butadiene) 

were also found to be quite stable.9 This allows the “macro-

aromaticity” of carbo-DATPs to be addressed by comparison 

to their DBA-type components, here denoted as carbo-45 

DAPBs. “Macro-aromaticity” is indeed commonly invoked for 

porphyrins,10 in which frontier electronic excitations exhibit 

strong analogy with those of carbo-benzenes:11 this was 

illustrated for the dianisyl derivative 1b, a moderately “π-

frustrated”2 parent of the di(aminophenyl) series disclosed 50 

below, and consisting in two sub-series: the anilinyl type, and 

the indolylphenyl type (Scheme 1).  

 
Scheme 1 Synthesis of carbo-DATPs. 

Macrocyclic carbo-DATPs were prepared from the known 55 

[6]pericyclynedione 2,11,12 which was reacted with anilinyl 

Grignard reagents (4-NR2-C6H4MgBr, R = TMS, Me) to give 

the acid-sensitive [6]pericyclynediols 3a and 3b as crude 

materials only. The more stable indolyl and carbazolyl 

derivatives 4 and 5, respectively generated from Grignard and 60 

lithium reagents, were purified as mixtures of stereoisomers.13 

The [6]pericyclynediols 3-5 were then treated with SnCl2/HCl 
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in either DCM or Et2O,9b followed by aq. NaOH (Scheme 1). 

Crude samples of 3a and 3b were thus converted to the acid-

sensitive carbo-DATPs 6 (after concommitant N-desilylation) 

and 7, in 26 % and 6 % yield from 2, respectively, while pure 

4 and 5 afforded the stable carbo-DATPs 8 and 9 in ca 70 % 5 

yield. Both 7 and 9 proved poorly soluble, and full 13C NMR 

analysis of 9 required CP-MAS techniques. All the carbo-

DATPs 6-9 are highly crystalline materials, but only crystals 

of 6 were found suitable for X-ray diffraction (XRD) analysis 

(Fig. 2). In spite of a disorder between phenyl and anilinyl 10 

substituents, quite accurate data were obtained in the classical 

range for the C18 macrocycle.8a-b,11 In solution, the macro-

aromaticity of 6-9 was confirmed by the deshielding of the 

ortho-1H nuclei of the aryl rings in the range 9.2-9.6 ppm. 

 15 

Fig. 2 Molecular views of the carbo-DATP 6 (left) and carbo-DAPB 17 

(right. For 18, see Fig. S1 in the SI). 

 The carbo-DAPB acyclic counterparts of 6-9 (Fig. 1) were 

targeted from the triynedial 10,12 via the pentaynediol 11 and 

pentaynedione 12, which reacted with selected Grignard or 20 

lithium reagents to give the diols 13-16 (Scheme 2). As in the 

cyclic series, while the acid-sensitive anilinyl derivatives 13 

and 14 could not be purified, the indolylphenyl counterparts 

15 and 16 were isolated in good yields. 

25 

Scheme 2 Four-step synthesis of the carbo-DAPBs 17-20. 

Treatment of 13-16 with SnCl2/HCl, followed by aq. NaOH, 

was optimized from insights gained in the carbo-DATP series. 

Reaction of crude 13 in DCM thus afforded the N-desilylated 

carbo-DAPB 17 as a dark-blue material in 53 % yield from 30 

12. Reduction of 14, 16 to 18, 20 was found more efficient in 

Et2O (29-52 % yields), while reduction of 15 to 19 was 

optimized to a 74 % yield in DCM over a short reaction time. 

Whereas NMR spectroscopy indicated that 17-20 occured as 

mixtures of isomers, XRD analysis of crystals of 17 (Fig. 2) 35 

and 18 (Fig. S1 in the SI) showed the all-trans isomers only. 

Absorption spectra of the carbo-DATPs 6-9 and carbo-

DAPBs 17-20 are shown in Fig. 3. The influence of the 

aminophenyl substituents on the λmax value is similar in both 

series, the higher bathochromic shift occuring for the 40 

dimethylaniline derivatives 7 and 18. The intrinsic aromaticity 

of the indolyl substituents makes them more innocent toward 

the central core (8-9 and 19-20 giving the same lowest λmax 

values of 486.5±0.5 and 598±1 nm in each series), and the 

more donating the substituent, the stronger the bathochromic 45 

shift. The range of variation of λmax is twice as wide in the 

carbo-DAPB series (∆λmax = 72 nm for 18-20) as in the 

carbo-DATP series (∆λmax = 35 nm for 7-8). The λmax values 

are also higher for carbo-DAPBs than for carbo-DATPs (by at 

least 113 nm, for 8 and 19). These observations are consistent 50 

with the aromatic character of the carbo-benzene core, which 

should thus be more “insulating” than the more substituent-

sensitive acyclic DBA core. Although no rationale is obvious, 

the bathochomic effect of the donating character is found 

prolounged beyond the aminophenyl series to the anisyl and 55 

phenyl substituents (λmax(1b) = 482 nm > λmax(1a) = 472 

nm).8a,11 As observed for other carbo-benzenes, the carbo-

DATPs also exhibit a secondary band at higher wavelength 

(with relative intensity 7 > 6 > 8 ≈ 9), close to the λmax value 

of their DBA homologue in the range 600-650 nm. 60 

 
Fig. 3 UV-vis spectra (in CHCl3) of the carbo-DATPs 6-9 (left) and 

corresponding carbo-DAPBs 17-20 (right). 

Emission spectra of 8-9 and 19-20 were compared to those of 

the respective diol precursors 4-5 and 15-16 serving as 65 

standards of the π-isolated fluorophoric units (λEm ≈ 330 nm 

for phenylindole,14 λEm ≈ 340, 360 nm for phenylcarbazole).15 

For the carbo-DATPs 8-9, the wavelengths are similar in both 

absorption (486.5±0.5 nm) and emission (596±1 nm), and 

markedly different from those of 4-5, in accordance with the 70 

increase of the conjugation extent and with previous results on 

N-arylcarbazole conjugates.16 The fluorescence intensity of 8-

9 is also much lower than that of 4-5, as expected from the 

reciprocal increase of the absorbance intensity. The same 

trends were observed for the carbo-DAPBs 19-20 vs 15-16. 75 

Table 1 Absorption (λmaxAbs) and emission (λEm, vs λexc) wavelengths of p-

N-indolyl- and p-N-carbazolyl-phenyl-substituted chromophores.a,b 

 
a In CHCl3 solutions, in nm units. Secondary bands are given in brackets. 
b λEm values do not vary upon shifting the λexc values to the λmaxAbs values. 

Noteworthy, the λEm values of 19-20 (500±1 nm) are lower 80 
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than the λmaxAbs values, with formal anti-Stokes shifts of –

98±2 nm, thus confirming that the fluorescence of 19-20 

arises from electronic transitions corresponding to secondary 

bands of the absorption spectra, vibronically independent 

from the DBA core-centered allowed main transition.9c,11  5 

Electrochemical properties were finally investigated by 

square-wave (SWV) and cyclic (CV) voltammetry (Table 2). 

Similar reduction behaviors were observed in both series, with 

two reversible waves (except for 7 and, perhaps, 9), possibly 

accompanied with an irreversible one. The first potential 10 

varies over a broader range in the carbo-DAPB series (from –

0.75 V for 20 to –0.95 V for 18) than in the carbo-DATP 

series (from –0.71 V for 8 to –0.85 V for 7), thus confirming 

that the DBA core is more sensitive to substituent effects than 

the carbo-benzene core. The indole derivatives (8-9, 19-20) 15 

are more readily reduced than the aniline analogues (6, 17), 

and still more than the dimethylaniline derivatives (7, 18). 

This is consistent with the relative π-donating character of the 

substituents. While indolyl substituents appear slightly less 

electron-donating than OMe substituents (E1/2(1b) = 0.77 20 

V),11 the limit of reducibility (even at scan rate of 10 V.s-1) is 

reached for the most π-frustrated carbo-DATP 7. 

In the oxidation regime, the cations of the less π-frustrated 

carbo-DATPs 6 (Ep = 0.576 V), 8 (Ep = 1.050 V) and 9 (Ep = 

1.416 V), were found to deposit on the electrode, as observed 25 

for 1b which value (Ep = 0.90 V) confirms the intermediate 

donating character of anisyl substituents vs anilinyl and 

indolylphenyl substituents.11 The dimethylanilinyl homologue 

7 is the most π-frustrated carbo-benzene reported to date, and 

undergoes a reversible oxidation at 0.512 V. Finally, the first 30 

oxidation potentials of the carbo-DAPBs 17-18 and 20 are 

reversible and close to those of their carbo-DATP parents.‡ 

Table 2 CV and SWV data for carbo-DATPs and carbo-DAPBs.a 

 
a Measurements at r.t. in DCM, 0.1 M [n-Bu4N][PF6]; electrodes: Pt 

(working), SCE (reference);  scan rate: 0.2 V.s-1 unless otherwise noted. b 35 

0.1 V.s-1. c Observed at 10 V.s-1. d Undetermined reversibility due to the 

poor solubility of 9. e The oxidation product deposited on the electrode. 

Two series of “π-frustrated” carbo-benzenes and DBA acyclic 

references have been compared.2 The relative stability of the 

latter illustrates a secondary effect of the macro-aromaticity of 40 

the former. Beyond the fundamental aspects, the “carbo-mer 

principle”7 now calls for the study of their electro-optical 

properties by comparison to their DATP and DAPB parents. 
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