View Article Online View Journal

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: R. Linhardt, Q. M. Kainz, R. N. Grass, W. J. Stark and O. Reiser, *RSC Adv.*, 2014, DOI: 10.1039/C3RA46946H.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Palladium Nanoparticles Supported on Ionic Liquid Modified, Magnetic Nanobeads – Recyclable, High-Capacity Catalysts for Alkene Hydrogenation

Roland Linhardt,^a Quirin M. Kainz,^a Robert N. Grass,^b Wendelin J. Stark^b and Oliver Reiser^{*a,c}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

for the recycling of expensive Pd that is readily achieved by magnetic decantation.

Magnetic hybrid materials have been synthesized as recyclable catalysts for alkene hydrogenation. The materials consist of magnetic nanobeads functionalized with imidazolium-based ionic liquids and optional polymer shells. Palladium nanoparticles (NPs) were synthesized on the surface of these supports by two different methods and evaluated as catalysts for alkene hydrogenation. Deposition of palladium(0) onto the magnetic nanobeads by microwave decomposition of Pd₂(dba)₃·CHCl₃ leads to more efficient catalysts than the reduction of a Pd(II) precursor. Reactivity, recycling ability and ease of separation of the catalysts are compared. A hybrid material without polymer shells and a quite flexible ionic liquid was identified as the most promising for stabilizing Pd NPs resulting in a catalyst that shows high activity 15 (TOF up to 330 h⁻¹), good recycling ability, and minor metal leaching into the product. Notably, the activity of this catalyst increases with an enhanced Pd loading, contrasting related systems for which a decrease of activity is observed due to agglomeration. Therefore, this recyclable, high-capacity system is especially attractive for large-scale applications, requiring just a minimal amount of supporting material

20 Introduction

Published on 15 January 2014. Downloaded by St. Petersburg State University on 20/01/2014 15:13:18.

Pd-catalyzed reactions are widely applied in today's organic synthesis.¹ The variety of reactions is enormous ranging from alkylations, oxidations and carbonylations to coupling reactions or hydrogenations. Especially palladium promoted hydrogena-

- ²⁵ tions² and coupling reactions³ play a very important role in pharmaceutical, agrochemical and fine chemical industries. Therefore, the reuse and recycling of palladium and other expensive metals like platinum or gold is a major concern in organic chemistry and especially in industry.⁴
- ³⁰ In recent years, the application of palladium nanoparticles became of strong interest owing to their extremely high surface to volume ratio compared to the bulk phase. Metal nanoparticles exceed the catalytic activity of the bulk metal by far, and consequently, the use of nanoparticles as catalysts can reduce the

^b Institut für Chemie und Bioingenieurwissenschaften, Department Chemie und Angewandte Biowissenschaften, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland. ³⁵ amount of metal needed in organic synthesis. However, aggregation of the nanomaterial to the bulk phase often causes problems during catalysis. To overcome these difficulties, nanoparticles can be stabilized by their immobilization on solid supports^{5,6} or their coating with ionic liquids (ILs).⁷ Additionally a combination
 ⁴⁰ of both strategies is also possible using supported ionic liquids (SILs).⁸

Ionic liquids can stabilize nanoparticles electrostatically or by coordination of the metal.⁹ During recent years, palladium NPs were frequently stabilized by ILs applying either sole ILs,¹⁰ 45 supported ionic liquid phases (SILPs)¹¹ or ILs covalently supported on polymers,¹² silica,¹³ and carbon nanotubes.¹⁴ Activity and recycling ability of these Pd NPs is often significantly increased. However, the ease of recycling often suffers from the need of cost- and time-intensive filtration methods. One concept 50 to solve this problem is the application of magnetic supports allowing the recovery of Pd NPs by simple magnetic decantation.¹⁵ We recently reported Pd NPs deposited on magnetic carbon coated cobalt nanoparticles as catalysts for alkene hydrogenation. However, these catalysts suffered from agglomeration 55 of the Pd NPs on the carbon surface of the magnetic support over time, allowing only small loadings of Pd (<1 wt%) to achieve high activity. Moreover, a significant decrease of activity of these catalysts was observed upon recycling and reuse.¹⁶ Hence, the overall aim of this study is to generate a high-loading Pd nano-60 catalyst by the introduction of stabilizing IL groups and, furthermore, to take advantage of a magnetic support allowing simple magnetic separation.

ARTICLE TYPE

^a Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany. Fax: +49 941 943 4121; Tel: +49 941 943 4631; E-mail: oliver.reiser@chemie.uni-regensburg.de

^c Department of Chemistry, Tokyo Institute of Technology, 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8551 (Japan).

[†] Electronic Supplementary Information (ESI) available: Materials and methods, nomenclature of the nanobeads, ICP-OES analysis, TEM pictures, IR, GC, XRD and NMR data. See DOI: 10.1039/b000000x/

Herein, we describe the synthesis of novel hybrid systems consisting of a magnetic core (carbon-coated Co nanobeads), covalently attached imidazolium ILs and Pd nanoparticles immobilized on the surface. The attachment of ILs on the particles was 5 performed in three different ways: (i) directly on the surface of the nanobeads; (ii) on a polymer coating the nanobeads; (iii) on a flexible spacer which is attached to the nanoparticles (Fig. 1). Our study includes the synthesis and characterization of the novel hybrid materials, comparison of different Pd sources for the nanoparticle synthesis, influence of the different materials on activity/recycling ability, leaching tests, and recycling studies.

Fig. 1 Novel Pd@Co/C hybrid systems: Pd@Co/C 1,²² Pd@PS-IL@Co/C 2, Pd@Bz-IL@Co/C 3, and Pd@Spacer-IL@Co/C 4.

Scheme 1 Synthesis of PS-IL@Co/C 6 from poly(benzyl-chloride)styrene functionalized Co/C NPs 5. Reagents and conditions: (i) methyl imidazole, toluene, microwave heating, 150 °C, 30 min.

Results and discussion

Carbon-coated cobalt nanobeads (Co/C) were used as magnetic ²⁰ support for our studies. The highly magnetic material (158 emu/g) is synthesized on large scale via reducing flame spray pyrolysis (> 30 g/h).¹⁷ The graphene-like coating of the beads provides high stability against acids, air/moisture, high temperature and, furthermore, enables facile functionalization of the ²⁵ surface analogous to carbon nanotubes (CNTs). We successfully demonstrated covalent as well as non-covalent methods to immobilize catalysts,¹⁸ scavengers,¹⁹ reagents^{19,20} or fluorescent dyes²¹ on the graphene-like surface. While the loading via direct immobilization is limited to ≈ 0.2 mmol/g,¹⁸ the introduction of poly-

- ³⁰ mer-shells can lead to a higher loading of up to 3 mmol/g.²² This reduces the amount of required support and can even lead to higher activities due to a dendritic-like effect.^{22b} Most recently, we reported the deposition of Pd nanoparticles on the carbon surface of Co/C NPs.¹⁶ This novel material (Fig. 1, 1) showed ³⁵ extremely high activity in alkene hydrogenation reactions (TOF
- up to 11095 h⁻¹) and exceeded other Pd catalysts, especially common Pd/C catalysts, by far. These catalysts could be reused

for six consecutive runs, however, a loss of activity was observed from the second run indicating agglomeration of the nanoparticles 40 deposited on the Co/C support. Furthermore, a quite large amount of supporting material is needed due to the necessity of low palla-

dium loading onto the support in order to achieve high catalytic activities.

Synthesis of Co/C-supported ionic liquids

- ⁴⁵ Since ILs are known to effectively stabilize metal nanoparticles through electrostatic interactions and coordination of the metal,⁸ Co/C-supported ILs could serve as a stabilizing material for Pd nanoparticles and therefore enhance the recycling ability of Pd catalysts. Hence, we synthesized different Co/C nanobeads with
- ⁵⁰ ILs covalently bound to the surface: PS-IL@Co/C **6** having a polymer shell between the Co/C beads and the IL (Scheme 1), Bz-IL@Co/C **9** bearing an IL directly on the Co/C surface, and Spacer-IL@Co/C **12**, having a small, flexible spacer between the Co/C core and the IL (Scheme 2).
- ⁵⁵ The synthesis of PS-IL@Co/C 6 started from poly(benzylchloride)styrene functionalized Co/C NPs 5 (3.1 mmol/g chloride)²² via microwave reaction with methyl imidazole (Scheme 1). The loading of IL on the surface was determined by elemental micro-

Published on 15 January 2014. Downloaded by St. Petersburg State University on 20/01/2014 15:13:18.

analysis as 2.1 mmol/g, indicating 88% displacement of chloride

with the imidazolium moiety.

Scheme 2 Synthesis of Bz-IL@Co/C 9 and Spacer-IL@Co/C 12 from benzyl-alcohol functionalized Co/C NPs 7. Reagents and conditions: (i) SOCl₂, 5 DMF, DCM, 0 °C \rightarrow rt, 12 h; (ii) methyl imidazole, toluene, microwave heating, 150 °C, 30 min; (iii) KHSO₅, MeCN/H₂O, reflux, 24 h; (iv) SOCl₂, reflux, 24 h; (v) amino propyl imidazole, 120 °C, 24 h; (vi) bromo butane, 80 °C, 24 h.

Table 1 Synthesis of Pd@PS-IL@Co/C 2, Pd@Bz-IL@Co/C 3 and Pd@Sp	pacer-IL@Co/C 4 with varying Pd loadings.
---	---

Entry	Index	Pd source	Method of synthe- sis ^a	Mass ratio ^b	Pd incorporated [%] ^c	Pd loading [mmol/g] ^c	Pd content $[wt\%]^c$
1	2a	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:1	56	2.6	28
2	2b	Pd2(dba)3·CHCl3	А	1:0.6	64	2.3	24
3	2c	Pd2(dba)3·CHCl3	А	1:0.2	74	1.2	12
4	2d	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:0.1	69	0.6	6
5	2e	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:0.01	81	0.08	0.8
6	2f	Na ₂ PdCl ₄	В	1:1	100	4.8	50
7	2g	Na ₂ PdCl ₄	В	1:0.6	90	3.2	34
8	2h	Na ₂ PdCl ₄	В	1:0.2	85	1.3	14
9	3a	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:1	91	4.3	45
10	3b	Pd2(dba)3·CHCl3	А	1:0.6	83	2.9	31
11	3c	Pd2(dba)3·CHCl3	А	1:0.2	100	1.6	17
12	3d	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:0.1	86	0.7	8
13	3e	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:0.01	96	0.09	0.9
14	4a	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:1	86	4.0	43
15	4b	Pd2(dba)3·CHCl3	А	1:0.6	90	3.2	34
16	4c	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:0.2	81	1.3	14
17	4d	Pd2(dba)3·CHCl3	А	1:0.1	90	0.8	8
18	4 e	Pd ₂ (dba) ₃ ·CHCl ₃	А	1:0.01	100	0.09	1

^{*a*} Method A: heating under microwave irradiation; method B: reduction with H₂. ^{*b*} Mass ratio of NPs to Pd employed in the synthesis. ^{*c*} Determined by ICP-OES.

- ¹⁰ Bz-IL@Co/C 9 and Spacer-IL@Co/C 12 were synthesized from benzyl-alcohol functionalized Co/C NPs 7 (Scheme 2).^{17a} Benzyl-chloride modified Co/C NPs 8 were generated by substitution reaction of 7 (0.11 mmol/g benzyl alcohol) with SOCl₂. To obtain Bz-IL@Co/C 9, 8 was subsequently heated under microwave
 ¹⁵ irradiation with methyl imidazole. The loading of IL on the surface was 0.09 mmol/g, reflecting 83% of the maximum loading. Spacer-IL@Co/C 12 were synthesized by oxidation of 7, followed by amide formation of the benzoic acid functionalized Co/C NPs 8 with 1-(3-aminopropyl)imidazole. After substitution
- 20 with 1-bromobutane following the lead of Lee et al.¹⁴ Spacer-

IL@Co/C **12** were generated with a loading of 0.05 mmol/g, reflecting 47% of the maximum loading after three steps.

Synthesis of Pd@IL@Co/C with varying Pd loadings

In a second step palladium NPs were deposited on IL modified ²⁵ Co/C NPs (IL@Co/C). Different mass ratios of palladium to IL@Co/C were used in the synthesis to determine an effect of the palladium loading on the catalytic activity.

The deposition of palladium NPs on IL@Co/C was carried out using two different methods. Urriolabeitia *et al.*⁶ reported a pro-30 cedure to immobilize palladium NPs on CNTs using $Pd_2(dba)_3$ ·CHCl₃ as Pd(0) source in dry toluene under microwave heating in just two minutes. Alternatively Lee *et al.*¹⁴ reported a procedure reducing Na₂PdCl₄ under hydrogen atmosphere to deposit palladium NPs on ionic liquid functionalized CNTs.

The tendency of Pd₂(dba)₃·CHCl₃ to rapidly form Pd NPs upon decomposition was recently intensely discussed by the group of Ananikov.²³ The nanoparticles are not just formed under heating conditions, but also at room temperature upon storing for longer time. The amount of decomposed complex furthermore depends ¹⁰ on the commercial source or the applied method of synthesis, respectively. The nanoparticles formed at room temperature were found to have a size of 60-200 nm with minor amounts of smaller ones (10-20 nm). The complex we used for our studies was commercially available (see supporting information), which was ¹⁵ determined by the method of Ananikov to contain 68% of Pd₂(dba)₃·CHCl₃ along with Pd-NPs, being in good agreement with the results reported for commercial sources.²³

Fig. 2 Comparison of Pd incorporation depending on A) the support ²⁰ (Method A) and B) the deposition method.

Applying the two described methods we synthesized catalysts with varying palladium loadings for PS-IL@Co/C **6**, Bz-IL@Co/C **9**, and Spacer-IL@Co/C **12** (Table 1). For PS-IL@Co/C **6** dry toluene was replaced by a mixture of dry tolu-²⁵ ene/MeOH in order to increase the swelling of the polystyrene coating. The amount of palladium used in the synthesis is given as the mass ratio of ionic-liquid functionalized Co/C NPs to Pd. E.g. a mass ratio of 1:0.1 means 100 mg NPs to 10 mg Pd. The Pd content for the resulting hybrid materials was determined by ³⁰ ICP-OES analysis.

Thus, hybrid materials were obtained with Pd contents ranging from 0.8-50 wt% (Pd@PS-IL@Co/C, **2a-h**), 0.9-45 wt% (Pd@Bz-IL@Co/C, **3a-e**) and 1-43 wt% (Pd@Spacer-IL@Co/C,

4a-e). The palladium incorporation into the polystyrene coated ³⁵ platforms PS-IL@Co/C **6** is not as effective as the deposition on Bz-IL@Co/C **9** and Spacer-IL@Co/C **12** (Fig. 2A). Especially with an increasing amount of palladium used in the synthesis the gap of Pd incorporation between polymeric and non-polymeric NPs is increasing. Furthermore, the results with PS-IL@Co/C **6** ⁴⁰ show that the palladium incorporation starting from a Pd(II) source is much more effective than starting from a Pd(0) source (Fig. 2B). This is probably due to the higher polarity of the solvent used in the synthesis, being consistent with the synthesis of **2** starting from Pd₂(dba)₃·CHCl₃, where a solvent mixture of dry ⁴⁵ toluene/MeOH leads to a better swelling and dispersibility than in pure toluene.

The novel hybrid materials were characterized using transmission electron microscopy (TEM) and x-ray powder diffraction (XRD) techniques. TEM pictures clearly show the existence of ⁵⁰ Pd nanoparticles (5-15 nm) on the surface of the Co/C nanobeads (see supporting information), while XRD proves the presence of Pd and Co both in oxidation state ±0: For Co(0) the characteristic peaks at 20 of 44.25°, 51.5°, and 75.81° and for Pd the characteristic peaks at 20 of 40.06°, 46.49°, 67.94°, and 81.85° were ob-⁵⁵ served (see supporting information). However, at Pd contents lower than 10 wt% the characteristic Pd(0) peaks could not be distinguished from the background any longer.

As the nanoparticles we observed on the surface of the supports are between 5-15 nm, we can conclude that Pd NPs which ⁶⁰ were already present in the Pd₂(dba)₃·CHCl₃ complex (10-200 nm)²³ were crushed under the high temperature microwave conditions applied.

Hydrogenation of trans-stilbene

To evaluate the activity of the different catalysts and the effects of varying Pd loading the hydrogenation of *trans*-stilbene with molecular hydrogen was chosen as test reaction. The amount of catalyst was adjusted to ensure either 0.1 mol% or 1 mol% of Pd in each reaction.

Table 2 shows the results of the catalytic tests. Starting with ⁷⁰ catalyst **2**, we observed a higher activity of those stemming from the Pd(0) source.²⁴ For example, comparing catalyst **2c** (12 wt% Pd, Table 2, entry 4) with **2h** (14 wt% Pd, Table 2, entry 9) the activity is almost four times higher in case of the material prepared from the Pd(0) precursor. In both cases the activity of the ⁷⁵ materials increases with a higher Pd content on the surface which is opposite to what was observed in case of carbon stabilized Pd NPs (Pd@Co/C).²² The maximum turn over frequency for the polymeric material **2** was 100 h⁻¹.

⁸⁰ Using the non-polymer coated catalyst Pd@Bz-IL@Co/C **3** we observed an increase in activity by a factor of nine (Table 2, entry 14) and could even reach a turn over frequency of 4000 h⁻¹ applying a hydrogen pressure of 10 bar (Table 2, entry 15). The loading/activity relationship in this case is reversed compared to the ⁸⁵ polystyrene coated catalyst **2**. The material with the lowest loading shows the highest activity in the hydrogenation (Table 2, entry 14). The activity of Pd@Spacer-IL@Co/C **4** turned out to be in between **2** and **3**, the maximum TOF was observed for **4a** (333 h⁻¹, Table 2, entry 16). Activity increases again with an ⁹⁰ increase in loading as previously seen for the polystyrene coated particles **2**.

Published on 15 January 2014. Downloaded by St. Petersburg State University on 20/01/2014 15:13:18.

especially the ones with high Pd content, took several minutes ⁵ applying a 1.2 T neodymium based magnet (Fig. 3A). However, hybrid materials **3** (Fig. 3B) and **4** (Fig. 3C) were separated from the reaction mixture within seconds.

Table 2Hydrogenation of *trans*-stilbene using Pd@PS-IL@Co/C 2,Pd@Bz-IL@Co/C 3 and Pd@Spacer-IL@Co/C 4.^a

10		_	Ph	Catalyst		/	Ph
		Ph	H ₂	(1 atm), ⁱ PrC	DH, rt	Ph	
-	Entry	Catalyst	Pd [wt%]	Catalyst [mol%]	t [min]	Conversion [%] ^b	$TOF[h^{-1}]^c$
	1	2a	28	1.0	60	87	87
	2	2b	24	1.0	60	100	100
	3	2b	24	0.1	60	5	50
	4	2c	12	1.0	60	91	91
	5	2d	6	1.0	60	52	52
	6	2e	0.8	1.0	60	1	1
	7	2f	50	1.0	60	48	48
	8	2g	34	1.0	60	22	22
	9	2h	14	1.0	60	23	23
	10	3a	45	0.1	60	15	150
	11	3b	31	0.1	60	19	190
	12	3c	17	0.1	60	33	330
	13	3d	8	0.1	60	61	610
	14	3e	0.9	0.1	60	88	880
	15 ^d	3e	0.9	0.1	15	100	4000
	16	4a	43	0.1	90	50	333
	17	4a	43	1.0	75	100	80
	18	4b	34	0.1	90	34	200
	19^{d}	4b	34	0.1	90	58	387
	20	4b	34	1.0	120	100	50
	21	4c	14	0.1	90	16	107
	22	4d	8	0.1	90	10	93
	23	4e	1	0.1	90	1	7

^a Stilbene (2 mmol) in ⁱPrOH (20 mL) was hydrogenated by 2 μmol (0.1 mol%) or 20 μmol (1 mol%) of catalyst using dodecane as internal GC standard. ^b Determined by GC analysis using internal standard. ^c Mol of ¹⁵ substrate transformed per mol catalyst per hour. ^d 10 bar of H₂ pressure.

Fig. 3 Collecting the nanocatalysts from the reaction mixture by an external magnet. A) Pd@PS-IL@Co/C 2b, B) Pd@Bz-IL@Co/C 3b, C) Pd@Spacer-IL@Co/C 4b.

Recycling studies

20

We next investigated the recycling ability of the three different hybrid materials (Fig. 4). Recycling experiments in all cases were ²⁵ performed with the two high-loading catalysts of each material, i.e. with Pd@PS-IL@Co/C **2a** and **2b**, Pd@Bz-IL@Co/C **3a** and **3b**, and Pd@Spacer-IL@Co/C **4a** and **4b**. Reactions were carried out with an initial palladium amount of 1 mol% and stopped in each case after reaching full conversion in the first run. For fur-

³⁰ ther runs the reaction time was held constant. In cases of 2 and 3 a drop of activity is observed after the first or the second run, respectively. This indicates that these materials are not effectively stabilizing the Pd NPs on the surface resulting in aggregation of the Pd NPs and/or leaching of Pd. However, the material

³⁵ with the more flexible ionic liquid on the surface shows much better results. In case of **4a** we also see a decrease in yield after the first run, whereas for **4b** recycling is possible for at least five runs without loss of activity demonstrating the efficient stabilization of Pd NPs on the surface of the hybrid material. The observa-

⁴⁰ tion of a slight decrease for catalyst **4a** is probably caused by agglomeration due to higher Pd contents. From now on **4b** was used as catalyst for further leaching/recycling studies.

Published on 15 January 2014. Downloaded by St. Petersburg State University on 20/01/2014 15:13:18.

Fig. 4 Recycling studies with Pd@PS-IL@Co/C (2a, 2b), Pd@Bz-IL@Co/C (3a, 3b) and Pd@Spacer-IL@Co/C (4a, 4b). Reaction times are given below the columns; yields in % are given above every single column.

Run	Reaction time to full conversion [min] ^b	Pd leaching [ppm] ^c	Co leaching [ppm] ^c
1	120	9	17
2	120	11	9
3	120	20	13
4	120	11	8
5	120	16	17
6	120	28	14
7	120	19	17
8	120	8	21
9	120	11	14
10	120	28	13
11	120	64	22
12	150	48	15

5 Table 3 Recycling studies of Pd@Spacer-IL@Co/C (34 wt%, 4b) in the hydrogenation of *trans*-stilbene.^a

^a Stilbene (2 mmol) in ⁱPrOH (20 mL) was hydrogenated by 20 μmol (1 mol%) of catalyst **4b**. ^b Reaction was monitored by GC analysis and stopped at full conversion. ^c In μg per g of product. Determined by ICP-10 OES.

Next, another reaction batch with **4b** was run without internal standard in order to determine the contents of Pd and Co in the product by ICP-OES analysis (Table 3). Contamination of the product is possible either by leaching of Pd or Co from the cata-¹⁵ lyst or by particles that are not separated from the reaction mixture effectively. The material was recycled for 11 runs without any need of increasing the reaction time (120 min). In run 12 the reaction time had to be increased to 150 min to reach full conversion. After these 12 runs the Pd retained on the hybrid material ²⁰ was determined as 87% of the starting value. TEM pictures do

- not show any significant change of the nanocatalysts (see supporting information). The Pd and Co contents in the products were in the first 10 runs between 8 and 28 ppm, whereas the Pd content increases in run 11 and 12 to 64 and 48 ppm.
- ²⁵ We also carried out leaching studies with **4b** using 0.1 mol% Pd under additional 10 bar of hydrogen pressure (Table 4). The particles could be recycled for 10 consecutive runs with reactions

times from 180 to 300 mins. In this case, we observed Pd contents of < 10 ppm and Co contents of < 8 ppm with two excep-³⁰ tions (17 ppm Pd in run 7 and 14 ppm Co in run 8). These results are also promising for industrial uses as the acceptable palladium limits are reported to be between 10 and 20 ppm.²⁵

Catalyst **4b** is additionally attractive due to its very high capacity in palladium, requiring only little amounts of supporting ³⁵ material, which is also important for the recycling of expensive metals like Pd. For experiments using a Pd content of 0.1 mol% only 0.7 mg of catalyst **4b** were needed in order to generate 20 mmol of product within 10 runs. This would in scale up lead to 30 mol of product (or 5 kg in case of *trans*-stilbene) applying 1 g ⁴⁰ of catalyst **4b**.

Table 4 Recycling studies of Pd@Spacer-IL@Co/C (34 wt%, 4b) in the
hydrogenation of <i>trans</i> -stilbene under 10 bar H ₂ -pressure. ^a

Run	Reaction time to full conversion [min] ^b	Pd leaching [ppm] ^c	Co leaching [ppm] ^c
1	180	10	2
2	180	2	1
3	180	4	2
4	210	6	3
5	210	6	4
6	210	5	3
7	210	17	7
8	240	8	14
9	240	3	4
10	300	6	7

^a Stilbene (2 mmol) in ⁱPrOH (20 mL) was hydrogenated by 2 μmol (0.1
 ⁴⁵ mol%) of catalyst 4b under 10 bar of H₂-pressure. ^b Reaction was monitored by GC analysis and stopped at full conversion. ^c In μg per g of product. Determined by ICP-OES.

Recycling experiments varying the substrate

We also investigated the scope of the reaction with catalyst **4b** by ⁵⁰ reusing the particles and changing the substrate after each run (Table 5). Various styrene derivatives were hydrogenated in short reaction times of 15-60 minutes (Table 5, run 2-6) bearing elec-

C Advances Accepted Manuscript

tron withdrawing (Table 5, run 5) as well as electron donating functional groups (Table 5, run 6). Additionally, chalcones and cinnamic esters were hydrogenated selectively (Table 5, run 7+8), which was additionally proved by ¹H-NMR and ¹³C-NMR. Fur-

⁵ thermore, strained compounds like norbornene were hydrogenated in very short reaction times (Table 5, run 9) as well as nitro compounds bearing electron donating (Table 5, run 10) or electron withdrawing groups (Table 5, run 11).

Conclusion

¹⁰ In this report, we successfully developed novel hybrid materials consisting of magnetic ionic liquids and stabilized Pd nanoparticles. The catalyst with a quite flexible ionic liquid on the surface turned out to be the most promising regarding the stabilization of Pd NPs. It showed high activity in the hydrogenation of *trans*tibles is active accessible and furthermore use recovered for at

¹⁵ stilbene, is easily separable, and furthermore was recycled for at least 11 runs without significant loss of activity. Furthermore, we could show that the leaching of Pd and Co into the product was not noticeably high if a Pd amount of 0.1 mol% was used. Recycling of the catalyst was also possible varying the substrate after ²⁰ each run.

This novel catalyst is especially interesting regarding the point of sustainability as one can recycle expensive Pd with a very small amount of supporting material. This makes it especially attractive for industry where not only costs of catalyzing metal a but also of supporting material play an important role.

25 but also of supporting material play an important role.

Table 5 Recycling of catalyst Pd@Spacer-IL@Co/C (34 wt%,	4b) in	the
hydrogenation of olefins and nitro compounds. ^a		

Run	Substrate	Product	t [min]	$\begin{array}{c} \text{Conversion} \\ \left[\%\right]^{b} \end{array}$
1	Ph	Ph Ph	120	100
2	Ph	Ph	15	100
3	Ph	Ph Ph	50	100
4	Ph	Ph	60	100
5	CI	CI	15	100
6	MeO	мео	15	100
7	Ph	Ph	420	100
8	Ph	Ph	40	100
9			10	100
10	MeO-NO2	MeO	2 20	100
11			20	100

^a Substrate (2 mmol) in iPrOH (20 mL) was hydrogenated by 20 μmol (1
 ³⁰ mol%) of catalyst **4b** using dodecane as internal GC standard.
 ^b Determined by GC analysis using internal standard.

Experimental

45

Benzyl-chloride functionalized carbon coated cobalt nanoparticles (8, Bz-Cl@Co/C)

- ³⁵ 450 mg (0.12 mmol/g) Bz-OH@Co/C (7) and 1.4 μ L (18 μ mol) dry DMF were predispersed in 4.5 mL dry dichloromethane for 10 min under N₂-atmosphere using an ultrasonic bath. The dispersion was cooled to 0 °C and 65.3 μ L (0.9 mmol) SOCl₂ was added slowly. The reaction mixture was allowed to warm to r
- ⁴⁰ and stirred over night. After magnetic decantation the particles were washed with dichloromethane (5 x 5 mL) and dried in vacuo to obtain Bz-Cl@Co/C (440.8 mg, 0.11 mmol/g).

IR (v/cm⁻¹): 1676, 1596, 1503, 1263, 1015, 778; elemental microanalysis (%): C, 8.54; H, 0.14; N, 0.07; Cl, 0.40.

Benzyl-methyl imidazolium chloride functionalized carbon coated cobalt nanoparticles (9, Bz-IL@Co/C)

400 mg (0.12 mmol/g) Bz-Cl@Co/C (8) and 4 mL dry toluene

were introduced to a microwave vial and sonicated for 10 min under N₂-atmosphere using an ultrasonic bath. After adding 24 μ L (0.3 mmol) *N*-methyl-imidazole the reaction mixture was heated in a focused microwave oven to 150 °C for 30 min. After ⁵ removing the supernatant by magnetic decantation the particles

s removing the supernatant by magnetic decantation the particles were washed with toluene (5 x 5 mL), and dichloromethane (3 x 5 mL) and dried under vacuum at 80 °C yielding 9 (397.6 mg, 0.09 mmol/g).

IR (v/cm⁻¹): 2920, 2852, 2363, 1214, 1161, 1014, 814, 654; ele-¹⁰ mental microanalysis (%): C, 8.98; H, 0.16; N, 0.23; Cl, 0.27.

Poly(benzyl-methyl imidazolium chloride)styrene functionalized carbon coated cobalt nanoparticles (6, PS-IL@Co/C)

500 mg (3.1 mmol/g) PS-Cl@Co/C (**5**) and 5 mL dry toluene ¹⁵ were introduced to a microwave vial and sonicated for 10 min under N₂-atmosphere using ultrasonic bath. 309 μ L (3.88 mmol) *N*-methyl-imidazole was added and the reaction mixture heated in a focused microwave oven to 150 °C for 30 min. After magnetic decantation the particles were washed with toluene (5 x 5 mL), ²⁰ dichloromethane (3 x 5 mL) and dried under vacuum at 80 °C

yielding **6** (637.2 mg, 2.1 mmol/g). IR (v/cm⁻¹): 3373, 2927, 2851, 1562, 1511, 1449, 1422, 1158,

1018; elemental microanalysis (%): C, 43.95; H, 4.62; N, 5.75; Cl, 7.41.

Benzoic acid functionalized carbon coated cobalt nanoparticles (10, Ph-COOH@Co/C)

1.3 g (0.26 mmol of benzylalcohol units) Bz-OH@Co/C (7) were sonicated in 30 mL MeCN/H₂O (1:1) for 10 min using an ultra-³⁰ sonic bath. After adding 479.5 mg (0.78 mmol) oxone the mixture was refluxed for 24 h. Another portion of oxone (479.5 mg, 0.78 mmol) was added after 12 h. After magnetic decantation the particles were washed with MeCN/H₂O (3 x 20 mL), MeCN (3 x 20 mL) and dried under vacuum to obtain Ph-COOH@Co/C ³⁵ (1.18 g).

IR (v/cm⁻¹): 2358, 2330, 1731, 1360, 1219; elemental microanalysis (%): C, 8.71; H, 0.28; N, 0.30.

(*N*-Imidazole)propyl-benzamide functionalized carbon coated 40 cobalt nanoparticles (11)

- 1.0 g Ph-COOH@Co/C (10) were stirred in 5.0 mL SOCl₂ under N₂-atmosphere for 24 h. After magnetic decantation the particles where washed with dry THF (5 x 5 mL) and dried under vacuum. Subsequently 5.0 mL 1-(3-aminopropyl)imidazole were intro-
- ⁴⁵ duced under N₂-atmosphere and the mixture heated to 120 °C for another 24 h. After magnetic decantation the particles were washed with THF (3 x 5 mL), 1M HCl (1 x 5 mL), saturated NaHCO₃ solution (1 x 5 mL), H₂O (1 x 5 mL) and EtOH (3 x 5 mL). After drying the particles in vacuo **11** (934.7 mg, 0.07 ⁵⁰ mmol/g) was obtained.
- IR (v/cm⁻¹): 2893, 2840, 1564, 973, 867, 848, 835, 819, 752, 698, 689, 656; elemental microanalysis (%): C, 9.32; H, 0.19; N, 0.60.

Benzamidopropyl-butyl-imidazolium bromide functionalized 55 carbon coated cobalt nanoparticles (12, Spacer-IL@Co/C)

900 mg (0.063 mmol of imidazole units) of **11** were sonicated in 15 mL freshly distilled 1-bromobutane under N₂-atmosphere using an ultrasonic bath. The reaction mixture was stirred for 24 h at 80 °C. The particles were separated by an external magnet and 60 washed with dry THF (5 x 10 mL) and dried under vacuum to obtain **12** (909.2 mg, 0.05 mmol/g).

IR (v/cm⁻¹): 2913, 2850, 1738, 1455, 1366, 1222, 1217, 1160, 753; elemental microanalysis (%): C, 9.40; H, 0.24; N, 0.51.

65 Representative procedure for the microwave deposition of Pd nanoparticles on PS-IL@Co/C nanobeads (Method A)

100 mg PS-IL@Co/C (6) and 1 mL of a mixture dry toluene/MeOH were introduced to a microwave vial and sonicated in an ultrasonic bath for 10 min under N₂-atmosphere. 4.9 mg (4.7 $_{70}$ µmol) Pd₂(dba)₃·CHCl₃ was added and the reaction mixture

heated in a focused microwave oven to 110 °C for 2 min. After magnetic decantation the particles were washed with dichloromethane (5 x 5 mL) and dried under vacuum to obtain Pd@PS-IL@Co/C (**2e**) (96.9 mg). The loading of Pd was determined by 75 ICP-OES (0.08 mmol/g, 81%).

Representative procedure for the microwave deposition of Pd nanoparticles on Bz-IL@Co/C nanobeads (Method A)

100 mg Bz-IL@Co/C (9) and 1 mL dry toluene were introduced 80 to a microwave vial and sonicated in an ultrasonic bath for 10

min under N₂-atmosphere. 4.9 mg (4.7 μmol) Pd₂(dba)₃·CHCl₃ was added and the reaction mixture heated in a focused microwave oven to 110 °C for 2 min. After magnetic decantation the particles were washed with dichloromethane (5 x 5 mL) and dried ⁸⁵ under vacuum to obtain Pd@Bz-IL@Co/C (**3e**) (99.8 mg). The loading of Pd was determined by ICP-OES (0.089 mmol/g, 96%).

Representative procedure for the microwave deposition of Pd nanoparticles on Spacer-IL@Co/C nanobeads (Method A)

⁵⁰ 50 mg Spacer-IL@Co/C (**12**) and 1 mL dry toluene were introduced to a microwave vial and sonicated in an ultrasonic bath for 10 min under N₂-atmosphere. 2.5 mg (2.4 μmol) Pd₂(dba)₃·CHCl₃ was added and the reaction mixture heated in a focused microwave oven to 110 °C for 2 min. After magnetic decantation the

⁹⁵ particles were washed with dichloromethane (5 x 5 mL) and dried under vacuum to obtain Pd@Spacer-IL@Co/C (4e) (50.1 mg). The loading of Pd was determined by ICP-OES (0.093 mmol/g, 100%).

Representative procedure for the deposition of Pd nanoparticles on PS-IL@Co/C nanobeads by H₂-reduction (Method B) To a schlenk tube 20 mg PS-IL@Co/C (6) and 4 mL of a freshly

prepared Na₂PdCl₄ solution (Pd conc. 1 mg/mL) were introduced. The reaction mixture was stirred vigorously for 30 min followed ¹⁰⁵ by 30 min under 1 atm H₂ pressure (balloon). After magnetic decantation the particles were washed with H₂O (5 x 3 mL), MeOH (3 x 3 mL), and acetone (2 x 3 mL) and dried under vacuum to obtain Pd@PS-IL@Co/C (**2h**) (15.8 mg). The loading of Pd was determined by ICP-OES (1.3 mmol/g, 85%).

General procedure for the hydrogenation using Pd@IL@Co/C catalysts

To a schlenk tube Pd@IL@Co/C (1 mol% Pd, 20 μmol), substrate (2 mmol), iPrOH (20 mL), and dodecane (1 mmol) as ¹¹⁵ internal standard were introduced. The reaction mixture was sonicated in an ultrasonic bath for 10 min and subsequently stirred vigorously under 1 atm H₂-pressure (balloon). The progress of the reaction was monitored by GC analysis. For recycling experiments the particles were separated by an external Published on 15 January 2014. Downloaded by St. Petersburg State University on 20/01/2014 15:13:18.

magnet and after magnetic decantation washed with ¹PrOH (2 x 5 mL) and dichloromethane (2 x 5 mL). After drying in vacuo the catalyst was reused for further runs.

Acknowledgements

⁵ This work was funded by the Deutsche Forschungsgemeinschaft (Re 948/8-1, "GLOBUCAT"), the IDK NANOCAT (Elitenetzwerk Bayern), and PITN-GA-2012-290248_Magneticfun. We thank Turbobeads Llc for generously providing the magnetic nanobeads and gratefully acknowledge the help of Joachim Re-¹⁰ witzer.

References

- 1 G. Poli, G. Giambastiani and A. Heumann, *Tetrahedron*, 2000, 56(33), 5959.
- 2 a) D. Duca, F. Frusteri, A. Parmaliana and G. Deganello, Appl. Catal.
- A: General, 1996, 146(2), 269. b) E. Auer, A. Freund, J. Pietsch and T. Tacke, Appl. Catal. A: General, 1998, 173(2), 259. c) B. Chen, U. Dingerdissen, J. Krauter, H. Lansink Rotgerink, K. Möbus, D. Ostgard, P. Panster, T. Riermeier, S. Seebald, T. Tacke and H. Trauthwein, Appl. Catal. A: General, 2005, 280(1), 17.
- ²⁰ 3 a) M. Beller, A. Zapf and W. Mägerlein, *Chem. Eng. Technol.*, 2001, 24(6), 575. b) M. Beller and A. Zapf in *Handbook of Organopalladium Chemistry for Organic Synthesis*, John Wiley & Sons, Inc, 2003, p 1209. c) C. Torborg and M. Beller, *Adv. Synth. Catal.*, 2009, 351(18), 3027. d) A. Dumrath, C. Lübbe and M. Beller
- 25 in Palladium-Catalyzed Coupling Reactions, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, p 445.
- 4 a) C. Nowottny, W. Halwachs and K. Schügerl, *Sep. Purif. Technol.*, 1997, 12(2), 135. b) M. A. Barakat, M. H. H. Mahmoud and Y. S. Mahrous, *Appl. Catal. A: General*, 2006, 301(2), 182.
- ³⁰ 5 a) S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa, Y. Monguchi and H. Sajiki, *J. Mol. Catal. A: Chemical*, 2009, 307(1-2), 77. b) F.-X. Felpin and E. Fouquet, *Chem. Eur. J.*, 2010, 16(41), 12440. c) C. M. Cirtiu, A. F. Dunlop-Brière and A. Moores, *Green Chem.*, 2011, 13(2), 288. d) M. Lim, K. A. de Castro, S. Oh, K. Lee,
- 35 Y.-W. Chang, H. Kim and H. Rhee, *Appl. Organometal. Chem.*, 2011, 25(1), 1.
- 6 M. Cano, A. Benito, W. K. Maser and E. P. Urriolabeitia, *Carbon*, 2011, 49(2), 652.
- 7 a) J. Dupont and J. D. Scholten, *Chem. Soc. Rev.*, 2010, 39(5), 1780.
- 40 b) Z. Ma, J. Yu and S. Dai, Adv. Mater., 2010, 22(2), 261. c) C. Vollmer and C. Janiak, Coordin. Chem. Rev., 2011, 255(17-18), 2039.
- 8 a) Y. Gu and G. Li, *Adv. Synth. Catal.*, 2009, 351(6), 817. b) T. Selvam, A. Machoke and W. Schwieger, *Applied Catalysis A:* 45 *General*, 2012, 445-446, 92.
- 9 a) N. D. Clement, K. J. Cavell, C. Jones and C. J. Elsevier, Angew. Chem., 2004, 116(40), 1297; N. D. Clement, K. J. Cavell, C. Jones and C. J. Elsevier, Angew. Chem. Int. Ed., 2004, 43(40), 1277. b) J. Dupont and J. Spencer, Angew. Chem., 2004, 116(40), 5408; J.
- Dupont and J. Spencer, *Angew. Chem. Int. Ed.*, 2004, 43(40), 5296.
 c) L. S. Ott, M. L. Cline, M. Deetlefs, K. R. Seddon and R. G. Finke, *J. Am. Chem. Soc.*, 2005, 127(16), 5758.
- 10 a) J. Durand, E. Teuma, F. Malbosc, Y. Kihn and M. Gómez, *Catal. Commun.*, 2008, 9(2), 273. b) J. H. Cha, K. S. Kim and H. Lee,
- 55 Koren J. Chem. Eng., 2009, 26(3), 760. c) E. Raluy, I. Favier, A. M. López-Vinasco, C. Pradel, E. Martin, D. Madec, E. Teuma and M. Gómez, *Phys. Chem. Chem. Phys.*, 2011, 13(30), 13579.
- 11 a) M. Ruta, G. Laurenczy, P. J. Dyson and L. Kiwi-Minsker, J. Phys. Chem. C, 2008, 112(46), 17814. b) K. V. Kovtunov, V. V.
- 60 Zhivonitko, L. Kiwi-Minsker and I. V. Koptyug, *Chem. Commun.*, 2010, 46(31), 5764. c) L. Rodríguez-Pérez, C. Pradel, P. Serp, M. Gómez and E. Teuma, *ChemCatChem*, 2011, 3(4), 749.
- a) D. Zhao, Z. Fei, W. H. Ang and P. J. Dyson, *Small*, 2006, 2(7), 879. b) X. Yang, Z. Fei, D. Zhao, W. H. Ang, Y. Li and P. J. Dyson, *Inorg. Chem.*, 2008, 47(8), 3292. c) Y. Zeng, Y. Wang, Y. Xu, Y.
 - Inorg. Chem., 2008, 47(8), 3292. c) Y. Zeng, Y. Wang, Y. Xu, Y.

Song, J. Jiang and Z. Jin, *Catal. Lett.*, 2013, 143(2), 200. d) W. Zhu, Y. Yu, H. Yang, L. Hua, Y. Qiao, X. Zhao and Z. Hou, *Chem. Eur. J.*, 2013, 19(6), 2059.

- 13 a) Y. Kume, K. Qiao, D. Tomida and C. Yokoyama, *Catal. Commun.*, 2008, 9(3), 369. b) B. Karimi, D. Elhamifar, J. H. Clark and A. J. Hunt, *Org. Biomol. Chem.*, 2011, 9(21), 7420. c) M. Gruttadauria, L. F. Liotta, A. M. P. Salvo, F. Giacalone, V. La Parola, C. Aprile and R. Noto, *Adv. Synth. Catal.*, 2011, 353(11-12), 2119.
- 75 14 Y. S. Chun, J. Y. Shin, C. E. Song and S.-g. Lee, *Chem. Commun.*, 2008(8), 942.
- a) A. J. Amali and R. K. Rana, *Green Chem.*, 2009, 11(11), 1781. b)
 Y. Kim and M.-J. Kim, *Bull. Korean Chem. Soc.*, 2010. c) F. Zhang,
 J. Jin, X. Zhong, S. Li, J. Niu, R. Li and J. Ma, *Green Chem.*, 2011, 13(5), 1238.
- 16 Q. M. Kainz, R. Linhardt, R. N. Grass, G. Vilé, J. Pérez-Ramírez, W. J. Stark and O. Reiser, *Adv. Funct. Mat.*, 2013, DOI: 10.1002/adfm.201303277.
- R. N. Grass, E. K. Athanassiou and W. J. Stark, *Angew. Chem.*, 2007, 119(26), 4996; R. N. Grass, E. K. Athanassiou and W. J. Stark, *Angew. Chem. Int. Ed.*, 2007, 46(26), 4909.
- 18 a) A. Schätz, R. N. Grass, W. J. Stark and O. Reiser, *Chem. Eur. J.*, 2008, 14(27), 8262. b) A. Schätz, R. N. Grass, Q. Kainz, W. J. Stark and O. Reiser, *Chem. Mater.*, 2010, 22(2), 305. c) S. Wittmann, A.
- Schätz, R. N. Grass, W. J. Stark and O. Reiser, *Angew. Chem.*, 2010, 122(10), 1911; S. Wittmann, A. Schätz, R. N. Grass, W. J. Stark and O. Reiser, *Angew. Chem. Int. Ed.*, 2010, 49(10), 1867.
- 19 Q. M. Kainz, M. Zeltner, M. Rossier, W. J. Stark and O. Reiser, *Chem. Eur. J.*, 2013, 19(30), 10038.
- 95 20 Q. M. Kainz, R. Linhardt, P. K. Maity, P. R. Hanson and O. Reiser, *ChemSusChem*, 2013, 6(4), 721.
 - 21 Q. M. Kainz, A. Schätz, A. Zöpfl, W. J. Stark and O. Reiser, *Chem. Mater.*, 2011, 23(16), 3606.
- a) S. Wittmann, J.-P. Majoral, R. N. Grass, W. J. Stark and O. Reiser, *Green Process. Synth.*, 2012, 1(3), 275. b) M. Keller, A. Perrier, R. Linhardt, L. Travers, S. Wittmann, A.-M. Caminade, J.-P. Majoral,
 O. Reiser and A. Ouali, *Adv. Synth. Catal.*, 2013, 355(9), 1748.
- 23 S. S. Zalesskiy and V. P. Ananikov, Organometallics, 2012, 31(6), 2302.
- 105 24 The same trend was observed for Pd@Co/C nanobeads (see reference 22).
 - a) C. E. Garrett and K. Prasad, *Adv. Synth. Catal.*, 2004, 346(8), 889.
 b) V. L. Budarin, P. S. Shuttleworth, J. H. Clark and R. Luque, *Curr. Org. Synth.*, 2010, 7(6), 614.

This journal is © The Royal Society of Chemistry [year]

Palladium Nanoparticles Supported on Ionic Liquid Modified, Magnetic Nanobeads – Recyclable, High-Capacity Catalysts for Alkene Hydrogenation

TOC one sentence

Ionic liquid modified magnetic nanobeads allow the support of high concentrations of palladium nanoparticles (34 wt%) with consistent high activity in alkene hydrogenations.

