Efficient One-Pot Synthesis of Some New Pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidines Catalyzed by Magnetically Recyclable Fe₃O₄ Nanoparticles¹

M. Fattahi, A. Davoodnia*, and M. Pordel

Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, 91756-87119 Iran *e-mail: adavoodnia@mshdiau.ac.ir; adavoodnia@yahoo.com

Received February 25, 2017

Abstract—The study is devoted to one-pot reaction of 1,3-dimethylbarbituric acid with aromatic aldehydes and ammonium acetate using Fe_3O_4 nanoparticles as efficient and magnetically recyclable catalysts. Aromatic aldehydes substituted with electron-withdrawing groups or none, reacted successfully with 1,3-dimethylbarbituric acid and ammonium acetate to give new pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidine derivatives (can be also named as pyrido[2,3-*d*:6,5-*d*']dipyrimidines) in high yields over relatively short reaction time. The Knoevenagel condensation products were isolated using aromatic aldehydes bearing electron-donating substituents. The catalyst could be efficiently used for four times without substantial reduction in its activity. The new products were characterized on the basis of FT-IR, ¹H NMR and ¹³C NMR spectral data.

Keywords: pyrimidopyrimidines, pyridodipyrimidines, Fe₃O₄ nanoparticles, magnetically recyclable

DOI: 10.1134/S1070363217040326

INTRODUCTION

Over recent years pyrimidine-fused pyridines, especially pyrido[2,3-*d*]pyrimidines, have been studied intensively due to their important biological activities including antitumor [1, 2], anticonvulsant and antidepressant [3], antibacterial [4], antiviral [5], antiinflammatory [6], antitubercular [7], antifungal [8], cytotoxic [9, 10], and some others.

There are various tricyclic pyrimidopyridopyrimidines including pyrimido[5',4':5,6]pyrido[2,3-d]pyrimidines (1), pyrimido[4',5':5,6]pyrido[3,2-d]pyrimidines (2), and pyrimido[4',5':5,6]pyrido[2,3-d]pyrimidines (3) (see figure), that are constructed from two fused pyridopyrimidine and pyrimidine rings. Among them, pyrimido[5',4':5,6]pyrido[2,3-d]pyrimidines 1, which can be named as pyrido [2,3-d:6,5-d'] dipyrimidines, are of most interest. Derivatives of 1 demonstrated antibacterial [11], antiviral [5] and NAD-type redox catalytic [12] activities. Some of them act as inhibitors of α -glucosidase and α -amylase [13]. Solid-state ribbons have also been described from the self-assembly of an amine derivative of 1, which demonstrates the potential of these heterocyclic compounds in supramolecular synthesis applications [14].

Several methods have been reported for the synthesis of pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidines such as reaction of 1,3-diarylbarbituric acid with pyrrole-2-carbaldehyde and liquor ammonia [11], reaction of 6-amino-1,3-dimethyluracil with aromatic aldehydes followed by oxidation by the air and catalyzed by *p*-TSA in [bmim]Br media [15], SBA-15-SO₃H catalyzed reaction of 6-aminouracil with different aldehydes under solvent-free conditions [16], microwave irradiation of 6-amino-1-methyluracil and aromatic aldehyde in the presence of acetic acid [17], reaction of 2,6-diaminopyrimidin-4(3*H*)-one with isatins in the presence of *p*-TSA [18], reaction of 6amino-2-butylthiopyrimidin-4(3*H*)-one with aryl al-

Structures of various pyrimidopyridopyrimidines.

¹ The text was submitted by the authors in English.

Scheme 1.

Ar = C_6H_5 (a), Ar = 4-ClC₆H₄ (b), Ar = 2-ClC₆H₄ (c), Ar = 4-FC₆H₄ (d), Ar = 4-O₂NC₆H₄ (e), Ar = 4-pyridyl (f), Ar = 4-MeC₆H₄ (g), Ar = 4-MeOC₆H₄ (h), Ar = 4-HOC₆H₄ (i).

dehydes using sulfonic acid supported on hydroxyapatite-encapsulated- γ -Fe₂O₃ [19], and by multistep syntheses [20].

Considering the above facts and due to our interest in the synthesis of new heterocyclic compounds with potential biological activities [21–28], we report here efficient synthetic approach to some new pyrimido [5',4':5,6]pyrido[2,3-*d*]pyrimidine derivatives by onepot cyclocondensation reaction of 1,3-dimethylbarbituric acid with aromatic aldehydes and ammonium acetate using nano Fe_3O_4 as a catalyst (Scheme 1).

RESULTS AND DISCUSSIONS

Treatment of 1,3-dimethylbarbituric acid 1 (2 mmol) and 4-chlorobenzaldehyde **2b** (1 mmol) with ammonium acetate **3** (1.2 mmol) in the presence of Fe₃O₄ nanoparticles in aqueous ethanol, followed by refluxing of the mixture gave the corresponding pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidine **5b** in high yield (Table 1). A mixture EtOH–H₂O (50 : 50) proved to be much better media than the others tested including EtOH, H₂O, CHCl₃, and solvent-free conditions. The latter solvents supported formation of the target product in moderate yield within long reaction time. The optimal amount of the catalyst was determined to be 0.75 g (Table 1, entry 11). The higher amount of the catalyst had no significant effect on the yield and reaction time. To demonstrate the efficiency of the catalyst of choice, a blank reaction was carried out in the absence of Fe₃O₄ nanoparticles. Refluxing in EtOH, H₂O, or EtOH–H₂O lasted for 180 min and led to moderate yields of **5b** (Table 1).

The scope of the reaction was further studied with different aromatic aldehydes under the optimized reaction conditions (Table 2). Aromatic aldehydes substituted with electron-withdrawing group or none gave pyrimido[5',4':5,6]pyrido[2,3-d]-2a-2f pyrimidines 5a-5f in high yields within short reaction time. The reaction with electron-rich aldehydes did not give the expected tricyclic products even upon prolonged reaction time, instead, the Knoevenagel condensation reaction occurred and the products 4g-4i were isolated in high yields (Table 2). Formation of the products 5a-5f probably proceed via Knoevenagel intermediates 4a-4f that reacted with second equivalent of 1,3-dimethylbarbituric acid 1 and ammonium acetate 3. Under these conditions, attempts to isolate the intermediates 4a-4f failed. To prove this hypothesis, 1,3-dimethylbarbituric acid 1 (1 mmol) was allowed to interact with aromatic aldehydes 2a-2i in the absence of ammonium acetate 3 under the same reaction conditions. In that case Knoevenagel products 4a-4i were isolated. Finally, the reaction of 4a-4f with 1.3-dimethylbarbituric acid 1 and ammonium acetate 3, conducted under similar conditions, gave 5a-5f in high yields.

Entry no.	Catalyst, g	Solvent	<i>T</i> , °C	Time, min	Yield ^b , %
1	_	EtOH	Reflux	180	45
2	_	H ₂ O	Reflux	180	47
3	_	EtOH-H ₂ O	Reflux	180	52
4	0.050	EtOH	Reflux	180	70
5	0.075	EtOH	Reflux	120	76
6	0.050	H_2O	Reflux	120	73
7	0.075	H_2O	Reflux	90	78
8	0.075	CHCl ₃	Reflux	240	68
9	0.025	EtOH–H ₂ O	Reflux	105	78
10	0.050	EtOH-H ₂ O	Reflux	40	80
11	0.075	EtOH-H ₂ O	Reflux	30	89
12	0.075	EtOH-H ₂ O	50	70	72
13	0.075	EtOH–H ₂ O	Room temperature	120	68
14	0.100	EtOH–H ₂ O	Reflux	30	87
15	0.075	_	100	50	78
16	0.075	_	120	40	80

Table 1. Optimization of conditions for synthesis of **5b** catalyzed by Fe_3O_4 nanoparticles^a

^a Reaction conditions: 1,3-dimethylbarbituric acid 1 (2 mmol), 4-chlorobenzaldehyde 2b (1 mmol) and ammonium acetate 3 (1.2 mmol).
^b Isolated yields.

isolated yields.

Structures of new products **5a–5f** were elucidated on the basis of spectral data. For example, ¹H NMR spectrum of **5e** in DMSO- d_6 and D₂O demonstrated a singlet at 3.15 ppm assigned to four methyl groups. A singlet at 6.25 ppm (methine group), as well as two doublets in the aromatic region assigned to *para*substituted aromatic ring indicated formation of the compound **5e**. IR spectrum of **5e** demonstrated a band at 3425 cm⁻¹ (NH) and a strong band at 1693 cm⁻¹ (C=O). The ¹³C NMR spectrum was consistent with the assigned structure.

Recyclability and reusability of Fe_3O_4 nanoparticles were studied in the synthesis of compound **5b** under optimized conditions. Fe_3O_4 Nanoparticles were readily recovered from the reaction mixture using the procedure outlined in the experimental section. The catalyst could be used at least four times with only a slight reduction in activity. Retention of the structure

Table 2. Synthesis of pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidines **5a–5f** and Knoevenagel products **4g–4i** using Fe_3O_4 nanoparticles as the catalyst^a

no.		Time, min	Yield ^b , %	mp, ⁰C		
Comp.	Ar			found	calculated	
4g	4-MeC ₆ H ₄	30	93	144–146	142–142.5 [29]	
4h	4-MeOC ₆ H ₄	25	95	151–153	149–151 [30]	
4i	4-HOC ₆ H ₄	20	91	291–293	293–295 [30]	
5a	C_6H_5	35	80	186–188	New	
5b	4-ClC ₆ H ₄	30	89	187–189	New	
5c	2-ClC ₆ H ₄	35	80	226–228	New	
5d	$4\text{-FC}_6\text{H}_4$	20	85	159–161	New	
5e	$4-O_2NC_6H_4$	20	91	210–212	New	
5f	4-Pyridyl	25	82	245-246	New	

⁴ Reaction conditions: 1,3-dimethylbarbituric acid 1 (2 mmol), an aromatic aldehyde 2a-2i (1 mmol), ammonium acetate 3 (1.2 mmol), Fe₃O₄ nanoparticles (0.075 g), EtOH/H₂O (5 mL, 50 : 50), reflux.

^b Isolated yields.

of the catalyst was confirmed by comparing FT-IR spectra of the recovered catalyst after the fourth run with that of the fresh catalyst used in the model reaction. The spectra were almost identical.

EXPERIMENTAL

Nanosize Fe_3O_4 was purchased from Tecnan Spanish company. All other chemicals were purchased from Merck and Aldrich and used without purification. Melting points were measured on a Stuart SMP3 melting point apparatus. IR spectra were recorded on a Tensor 27 Bruker spectrophotometer in KBr disks. ¹H and ¹³C NMR spectra were measured on a Bruker 300 spectrometer at 300 and 75 MHz.

General procedure for the synthesis of pyrimido-[5',4':5,6]pyrido[2,3-d]pyrimidine 5a-5f and Knoevenagel products 4g-4i catalyzed by Fe_3O_4 nanoparticles. A mixture of 1,3-dimethylbarbituric acid 1 (2 mmol) with an aromatic aldehyde 2a-2i(1 mmol), ammonium acetate 3 (1.2 mmol) and Fe₃O₄ nanoparticles (0.075 g) in EtOH–H₂O (2.5 : 2.5 mL) was refluxed for 20–35 min. The reaction was monitored by TLC. Upon completion of the process, the catalyst was separated using an external magnet. The reaction mixture was cooled down to room temperature. The crude product was filtered off and crystallized from ethanol to give compounds **5a–5f** and **4g–4i** in high yields. The isolated catalyst was washed with hot ethanol, dried at 60°C under vacuum for 1 h and reused in the following similar experiments. The synthesized earlier products **4g–4i** were characterized by IR and ¹H NMR spectra and their melting points were close to those of authentic samples [29, 30].

1,3-Dimethyl-5-(4-methylbenzylidene)pyrimidine-2,4,6(1*H***,3***H***,5***H***)-trione (4g). IR spectrum, v, cm⁻¹: 1664 (C=O). ¹H NMR spectrum (CDCl₃), \delta, ppm: 2.36 s (3H, CH₃), 3.30 s (3H, NCH₃), 3.34 s (3H, NCH₃), 7.20 d (***J* **= 7.8 Hz, 2H, H_{arom}), 7.98 d (***J* **= 7.8 Hz, 2H, H_{arom}), 8.47 s (1H, =CH).**

5-(4-Methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H***,3***H***,5***H***)-trione (4h). IR spectrum, v_{max}, cm⁻¹: 1665 (C=O). ¹H NMR spectrum (CDCl₃), \delta, ppm: 3.39 s (3H, NCH₃), 3.41 s (3H, NCH₃), 3.91 s (3H, OCH₃), 6.98 d (J = 8.7 Hz, 2H, H_{arom}), 8.33 d (J = 8.7 Hz, 2H, H_{arom}), 8.50 s (1H, =CH).**

1,3-Dimethyl-5-(4-hydroxybenzylidene)pyrimidine-2,4,6(1*H***,3***H***,5***H***)-trione (4i). IR spectrum, v, cm⁻¹: 3199 (OH), 1642 (C=O). ¹H NMR spectrum (DMSOd_6), \delta, ppm: 3.20 s (3H, NCH₃), 3.22 s (3H, NCH₃), 6.89 d (J = 8.7 Hz, 2H, H_{arom}), 8.28 d (J = 8.7 Hz, 2H, H_{arom}), 8.32 s (1H, =CH), 10.85 s (1H, OH).**

1,3,7,9-Tetramethyl-5-phenyl-5,10-dihydropyrimido[5',4':5,6]pyrido[2,3-*d*]**pyrimidine-2,4,6,8-**(*1H,3H,7H,9H*)-tetraone (5a). IR spectrum, v, cm⁻¹: 3545 (NH), 1663 (C=O). ¹H NMR spectrum (DMSO*d*₆-D₂O), δ , ppm: 3.15 s (12H, 4NCH₃), 6.14 s (1H, CH), 7.01–7.17 m (5H, H_{arom}). ¹³C NMR spectrum (DMSO-*d*₆-D₂O), δ , ppm: 28.4, 33.8, 91.5, 124.9, 127.2, 128.0, 144.6, 151.9, 163.2.

5-(4-Chlorophenyl)-1,3,7,9-tetramethyl-5,10dihydropyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidine-2,4,6,8(1*H*,3*H*,7*H*,9*H*)-tetraone (5b). IR spectrum, ν, cm⁻¹: 3541 (NH), 1630 (C=O). ¹H NMR spectrum (DMSO-*d*₆-D₂O), δ, ppm: 3.16 s (12H, 4NCH₃), 6.18 s (1H, CH), 7.05 d (J = 7.2 Hz, 2H, H_{arom}), 7.14 d (J =7.2 Hz, 2H, H_{arom}). ¹³C NMR spectrum (DMSO-*d*₆- D₂O), δ, ppm: 28.5, 34.4, 91.5, 125.1, 127.1, 128.0, 144.2, 152.0, 163.5.

5-(2-Chlorophenyl)-1,3,7,9-tetramethyl-5,10dihydropyrimido[5',4':5,6]pyrido[2,3-*d***]pyrimidine-2,4,6,8(1***H,3H,7H,9H***)-tetraone (5c).** IR spectrum, v, cm⁻¹: 3434 (NH), 1680 (C=O). ¹H NMR spectrum (DMSO-*d*₆–D₂O), δ , ppm: 3.12 s (12H, 4NCH₃), 5.96 s (1H, CH), 7.06–7.35 m (4H, H_{arom}). ¹³C NMR spectrum (DMSO-*d*₆–D₂O), δ , ppm: 28.3, 34.2, 89.6, 126.2, 127.1, 129.6, 130.9, 133.1, 142.5, 151.9, 162.8.

5-(4-Fluorophenyl)-1,3,7,9-tetramethyl-5,10dihydropyrimido[5',4':5,6]pyrido[2,3-*d***]pyrimidine-2,4,6,8(1***H***,3***H***,7***H***,9***H***)-tetraone (5d). IR spectrum, ν, cm⁻¹: 3489 (NH), 1670 (C=O). ¹H NMR spectrum (DMSO-***d***₆–D₂O), \delta, ppm: 3.14 s (12H, 4NCH₃), 6.07 s (1H, CH), 6.89–7.08 m (4H, H_{arom}). ¹³C NMR spectrum (DMSO-***d***₆–D₂O), \delta, ppm: 28.4, 33.4, 91.4, 114.6, 128.8, 140.4, 151.8, 158.9, 162.1, 166.4.**

1,3,7,9-Tetramethyl-5-(4-nitrophenyl)-5,10dihydropyrimido[5',4':5,6]pyrido[2,3-*d***]pyrimidine-2,4,6,8(1***H***,3***H***,7***H***,9***H***)-tetraone (5e). IR spectrum, v, cm⁻¹: 3425 (NH), 1693 (C=O). ¹H NMR spectrum (DMSO-***d***₆–D₂O), δ, ppm: 3.15 s (12H, 4NCH₃), 6.25 s (1H, CH), 7.30 d (***J* **= 7.8 Hz, 2H, H_{arom}), 8.03 d (***J* **= 7.8 Hz, 2H, H_{arom}). ¹³C NMR spectrum (DMSO-***d***₆–D₂O), δ, ppm: 28.5, 34.6, 91.0, 123.4, 128.4, 145.5, 151.8, 154.2, 163.1.**

1,3,7,9-Tetramethyl-5-(4-pyridyl)-5,10-dihydropyrimido[5',4':5,6]pyrido[2,3-*d***]pyrimidine-2,4,6,8-**(*1H,3H,7H,9H*)-tetraone (5f). IR spectrum, v, cm⁻¹: 3481 (NH), 1690 (C=O). ¹H NMR spectrum (DMSO*d*₆-D₂O), δ , ppm: 3.15 s (12H, 4NCH₃), 6.38 s (1H, CH), 7.77 d (*J* = 6.6 Hz, 2H, H_{arom}), 8.63 d (*J* = 6.6 Hz, 2H, H_{arom}). ¹³C NMR spectrum (DMSO-*d*₆-D₂O), δ , ppm: 28.5, 35.9, 89.6, 125.7, 141.0, 151.8, 163.0, 167.9.

CONCLUSIONS

Fe₃O₄ nanoparticles were used as the efficient catalyst in the synthesis of new pyrimido[5',4':5,6]pyrido[2,3-*d*]pyrimidine derivatives by one-pot reaction of 1,3-dimethylbarbituric acid, aromatic aldehydes substituted with electron-withdrawing group or none, and ammonium acetate under refluxing in EtOH–H₂O leading to high yields within short reaction time. Under the same conditions the use of an aromatic aldehyde substituted with electron-donating group gave the corresponding Knoevenagel products. Fe₃O₄ Nanoparticles can be magnetically separated from the reaction mixture and recycled without significant loss of catalytic activity.

ACKNOWLEDGMENTS

The authors express their gratitude to the Islamic Azad University, Mashhad Branch, Iran for its financial support.

REFERENCES

- Behalo, M.S. and Mele, G., J. Heterocycl. Chem., 2017, vol. 54, p. 295. doi 10.1002/jhet.2581
- Fares, M., Abou-Seri, S.M., Abdel-Aziz, H.A., Abbas, S.E.-S., Youssef, M.M., and Eladwy, R.A., *Eur. J. Med. Chem.*, 2014, vol. 83, p. 155. doi 10.1016/ j.ejmech.2014.06.027
- Zhang, H.-J., Wang, S.-B., Wen, X., Li, Jdoi Z., and Quan, Zdoi S., *Med. Chem. Res.*, 2016, vol. 25, p. 1287. doi 10.1007/s00044-016-1559-1
- Saikia, L., Das, B., Bharali, P., and Thakur, A.J., *Tetrahedron Lett.*, 2014, vol. 55, p. 1796. doi 10.1016/ j.tetlet.2014.01.128
- Nasr, M.N. and Gineinah, M.M., Arch. Pharm., 2002, vol. 335, p. 289. doi 10.1002/1521-4184
- Babatin, M.M., Said, M.M., Hafez, H.N., and El-Gazzar, Adoi R.B.A., *Int. J. Pharm. Sci. Rev. Res.*, 2010, vol. 4, p. 25.
- Satasia, S.P., Kalaria, P.N., and Raval, D.K., Org. Biomol. Chem., 2014, vol. 12, p. 1751. doi 10.1039/ c3ob42132e
- Abu-Zied, K.M., Mohamed, T.K., Al-Duiaj, O.K., and Zaki, M.E.A., *Heterocycl. Commun.*, 2014, vol. 20, p. 93. doi 10.1515/hc-2013-0199
- Elsaedany, S.K., AbdEllatif Zein, M., AbedelRehim, E.M., and Keshk, R.M., J. Heterocycl. Chem., 2016, vol. 53, p. 1534. doi 10.1002/jhet.2460
- Moreno, E., Plano, D., Lamberto, I., Font, M., Encío, I., Palop, J.A., and Sanmartín, C., *Eur. J. Med. Chem.*, 2012, vol. 47, P. 283. doi 10.1016/j.ejmech.2011.10.056
- Suresh, T., Nandha Kumar, R., and Mohan P.S., *Heterocycl. Commun.*, 2003, vol. 9, p. 203. doi 10.1515/ HC.2003.9.2.203
- Nagamatsu, T., Yamato, H., Ono, M., Takarada, S., and Yoneda, F., *J. Chem. Soc. Perkin Trans*, 1992, vol. 1, p. 2101. doi 10.1039/P19920002101
- Toobaei, Z., Yousefi, R., Panahi, F., Shahidpour, S., Nourisefat, M., Doroodmand, M.M., and Khalafi-Nezhad, A., *Carbohydr. Res.*, 2015, vol. 411, p. 22. doi 10.1016/j.carres.2015.04.005
- 14. Petersen, P.M., Wu, W., Fenlon, E.E., Kim, S., and

Zimmerman, S.C., *Bioorg. Med. Chem.*, 1996, vol. 4, p. 1107. doi 10.1016/0968-0896(96)00103-4

- Dabiri, M., Arvin-Nezhad, H., Khavasi, H.R., and Bazgir, A., *Tetrahedron*, 2007, vol. 63, p. 1770. doi 10.1016/j.tet.2006.12.043
- Rostamizadeh, S., Tahershamsi, L., and Zekri, N., J. Iran. Chem. Soc., 2015, vol. 12, p. 1381. doi 10.1007/ s13738-015-0604-1
- Lin, Z., Hu, H., You, X., Zhang, X., and Gao, Y., J. Heterocyclic. Chem., 2014, vol. 51, p. 277. doi 10.1002/jhet.1647
- Jadidi, K., Ghahremanzadeh, R., and Bazgir, A., *Tetrahedron*, 2009, vol. 65, p. 2005. doi 10.1016/ j.tet.2009.01.013
- Mohsenimehr, M., Mamaghani, M., Shirini, F., Sheykhan, M., Abbaspour, S., and Shafei Sabet, L., J. Chem. Sci., vol. 127, p. 1895. doi 10.1007/s12039-015-0964-1
- Borzsonyi, G., Beingessner, R. L., and Fenniri, H., J. Heterocyclic. Chem., 2009, vol. 46, p. 79. doi 10.1002/jhet.37
- Khashi, M., Davoodnia, A., and Prasada Rao Lingam, V.S., *Res. Chem. Intermed.*, 2015, vol. 41, p. 5731. doi 10.1007/s11164-014-1697-3
- Dehghan, M., Davoodnia, A., Bozorgmehr, M.R., and Bamoharram, F.F., *Russ. J. Gen. Chem.*, 2017, vol. 87, p. 311. doi 10.1134/S1070363217020268
- Davoodnia, A., Yadegarian, S., Nakhaei, A., and Tavakoli-Hoseini, N., *Russ. J. Gen. Chem.*, 2016, vol. 86, p. 2849. doi 10.1134/S1070363216120495
- Davoodnia, A., Zhiani, R., Roshani, M., Bakavoli, M., and Bashash, M., *Phosphorus, Sulfur, Silicon Relat. Elem.*, 2007, vol. 182, p. 1219. doi 10.1080/ 10426500601160462
- Davoodnia, A., Behmadi, H., Zare-Bidaki, A., Bakavoli, M., and Tavakoli-Hoseini, N., *Chin. Chem. Lett.*, 2007, vol. 18, p. 1163. doi 10.1016/j.cclet.2007.07.024
- Davoodnia, A., Bakavoli, M., Pooryaghoobi, N., and Roshani, M. *Heterocycl. Commun.*, 2007, vol. 13, p. 323. doi 10.1515/HC.2007.13.5.323
- Davoodnia, A., Bakavoli, M., Bashash, M., Roshani, M., and Zhiani, R., *Turk. J. Chem.*, 2007, vol. 31, p. 599.
- Davoodnia, A., Rahimizadeh, M., Rivadeh, S., Bakavoli, M., and Roshani, M., *Indian J. Heterocycl. Chem.*, 2006, vol. 16, p. 151.
- 29. Akabori, S., *Chem. Ber.*, 1933, vol. 66, p. 139. doi 10.1002/cber.19330660212
- Shi, D., Shi, J., and Rong, S., Chin. J. Chem., 2010, vol. 28, p. 791. doi 10.1002/cjoc.201090148