View Article Online

ChemComm

Chemical Communications

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Chang, W. Peng, I. Chen, H. HSU and Y. Wu, *Chem. Commun.*, 2020, DOI: 10.1039/D0CC00435A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Journal Name

Palladium-Catalyzed α -Arylation of Indolin-3-ones

Yu-Hsuan Chang,[†] Wan-Ling Peng,[†] I-Chia Chen,[‡] Hsin-Yun Hsu,[†] and Yen-Ku Wu^{*,†}

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 18 March 2020. Downloaded by University of Reading on 3/18/2020 4:13:10 PM

A method for the catalytic α -arylation of indolin-3-ones was developed. The catalytic system comprising Pd(dba)₂ and PAd₃ was found to be optimal for the transformation. The protocol features broad functional group compatibility in that a range of arylated indoxyl derivatives bearing a fully substituted carbon center was synthesized with high efficiency. A preliminary bioassay study revealed that selected indole-substituted indolin-3-ones exhibit favorable cytotoxic activities against HCT-116 cancer cell line.

Indolin-3-ones (indoxyls) are a key structural motif in naturally occurring alkaloids, bioactive compounds, dyeing agents and fluorescent probes.¹ In particular, 2-aryl-2-alkyl indolin-3-ones constitute a class of small organic molecules with great potential for biomedicinal applications (Figure 1).² To broadly search for new leads from this chemotype, reliable and efficient synthetic methods for accessing indolin-3-ones possessing a C2-fully substituted benzylic carbon are eminently desirable. A conventional route to such frameworks involves oxidative dearomatizations of 2-aryl-substituted indoles,³ but the utilities of these methods are compromised by the limited availability of the starting arylindoles. Alternatively, elegant de novo syntheses of the indolinone scaffold with a concomitant installation of an aryl group at the C2 position have been delineated, typically requiring the use of sophisticatedly tailored precursors.⁴ To gain entry to a wider array of 2arylated indoxyls, we deemed that the direct α -arylation⁵ of indolin-3-ones is a synthetically appealing option for rapid assembly of the compound libraries. The significance of 2-arylindolin-3-ones combined with our interests in the development of α -arylation reactions⁶ motivated us to explore the direct coupling of the title compounds and haloarenes. In

sharp contrast to extensively studied arylation of 2-oxindoles,⁷ related chemistry with indoxyls remains rare. At the outset of this study, published methods for the α -arylation of indolin-3ones only encompass non-catalytic approaches using aryllead triacetates⁸ and diaryliodonium salts,⁹ respectively, as the aryl donors. Until recently, Zhao, Xu, Yang and their co-workers developed an elegant Pd-catalyzed α -arylation of C2unsubstituted indolin-3-ones for the construction of azatertiary benzylic centers, but the substrate scope on heteroaryl electrophiles is rather limited.¹⁰ Mindful of all the above issues, developing an aza-quaternary center-forming arylation, which is still of great challenge in synthesis,¹¹ and establishing broad (hetero)aryl bromide scope were critical а considerations in this study. In the event, a general, highyielding protocol for the palladium-catalyzed α -arylation of indolin-3-ones was developed, and we describe our results below.

Figure 1 Examples of Bioactive Indolin-3-one Natural Products Containing a C2 Benzylic aza-Quaternary Center.

Our exploration commenced with evaluating the α -arylation of a model substrate **1a** with bromobenzene under palladium catalysis (Table 1). An initial screen for ligands in the presence of Pd(OAc)₂ indicated that *in situ* generated tri-*tert*butylphosphine¹² is capable to marginally promote the arylation (entries 1-7). Significant decomposition to intractable materials was occurring in the case with KOt-Bu (entry 8), and the progress of the reaction with K₃PO₄ was sluggish (entry 9). Moving on to the more electron-releasing ligand, tris(1adamantyl)phosphine (PAd₃)¹³ was ultimately identified as the enabling choice (entry 10). On the other hand, switching the

[†]Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan

[†]Department of Cosmetic Applications and Management, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 23143, Taiwan E-mail: venkuwu@nctu.edu.tw

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Published on 18 March 2020. Downloaded by University of Reading on 3/18/2020 4:13:10 PM

Journal Name

palladium source from Pd(OAc)₂ to Pd(dba)₂ posed a favorable effect on yields (entry 11). Attempted variations on solvents, reaction temperature, and a use of lower catalyst loadings led to inferior outcomes (entries 12-16).

Table 1 Evaluation of Conditions.^a

ſ		[Pd]/ligand base (1.3 equiv)		,Ph
لر	N Ac 1a	quiv) THF/dioxane (1:1) 120 °C, 20 h	2a	Ме
entry	[Pd] (mol %)	ligand (mol %)	base	yield (%) ^ь
1	Pd(OAc) ₂ (6)	BINAP (8)	Cs ₂ CO ₃	0
2	Pd(OAc) ₂ (6)	DPPF (8)	Cs_2CO_3	0
3	Pd(OAc) ₂ (6)	Xantphos (8)	Cs_2CO_3	0
4	Pd(OAc) ₂ (6)	PhDavePhos (8)	Cs_2CO_3	0
5	PEPPSI-IPr (6)	-	Cs ₂ CO ₃	0
6	Pd(OAc) ₂ (6)	P(<i>t</i> -Bu) ₃ ·HBF ₄ (8)	Cs_2CO_3	19
7 ^c	Pd(OAc) ₂ (6)	P(<i>t</i> -Bu) ₃ ·HBF ₄ (8)	$Cs_2CO_3^d$	7
8	Pd(OAc) ₂ (6)	P(<i>t</i> -Bu) ₃ ·HBF ₄ (8)	KO <i>t</i> -Bu	0
9	Pd(OAc) ₂ (6)	P(<i>t</i> -Bu) ₃ ·HBF ₄ (8)	$K_3PO_4^d$	13
10	Pd(OAc) ₂ (6)	PAd ₃ (8)	Cs ₂ CO ₃	60
11	Pd(dba) ₂ (6)	PAd ₃ (8)	Cs_2CO_3	67
12 ^e	Pd(dba) ₂ (6)	PAd ₃ (8)	Cs_2CO_3	43
13 ^f	Pd(dba) ₂ (6)	PAd ₃ (8)	Cs_2CO_3	24
14 ^{<i>g</i>}	Pd(dba) ₂ (6)	PAd ₃ (8)	Cs_2CO_3	4
15 ^{<i>h</i>}	Pd(dba) ₂ (6)	PAd ₃ (8)	Cs_2CO_3	0
16 ^{<i>i</i>}	Pd(dba) ₂ (3)	PAd ₃ (4)	Cs_2CO_3	25
-			-	

^aReactions were conducted with 0.2 mmol of 1a. For detailed procedures, see the Supporting Information. ^bYield of isolated product based on 1a. "With THF/toluene (1:1) as the cosolvent. ^d1.1 equiv of base. ^eWith THF as the sole solvent. ^fWith dioxane as the sole solvent. ^gWith dioxane as the sole solvent. The reaction was conducted at 80 °C. ^hThe reaction was conducted at room temperature. The reaction progress is relatively slow; compound **1a** was not fully consumed in 20 h.

With the optimized conditions in hand, we then explored the generality of this catalytic arylation (Table 2). A range of electron-neutral and electron-rich aryl bromides coupled with 1a to give the corresponding products 2b-f in good to excellent yields. The 1 mmol-scale synthesis of 2b is of high efficiency, thus promising the scalability of this reaction (See the Supporting Information). Bromoarenes bearing electronwithdrawing fluoro, ester, and nitro groups are well compatible with the reaction (see 2g-i). Heteroarylated products possessing a 5-indolyl, a 3-thienyl group or a 3-furyl were also prepared in good yields (see 2j-l). Indolin-3-ones 1b**d** having different α -alkyl substituents were uneventfully converted to the target molecules 2m-q. In the example of 1d containing two enolizable carbonyls, relatively acidic C2-H of the indolinone nucleus was chemoselectively arylated. To further probe the scope of this reaction, the parent compound

R1 = crotyl; 1b R¹ = H; **1e**

1e was tested under the developed catalytic system. Since 1e possesses two enolizable protons at C2, 2.1 equivalent of Cs₂CO₃ was applied to ensure a sufficient amount of base is in action for the first enolate formation. The arylation of 1e also tolerated structurally diverse aryl donors (see 2r-w) and is generally faster than the one with 1a. It is noteworthy that 1e with 1-bromo-2,4-dimethoxybenzene reacted smoothly without hampering by the ortho-methoxy group. An

Published on 18 March 2020. Downloaded by University of Reading on 3/18/2020 4:13:10 PM

Journal Name

unprotected bromoindole is a viable coupling partner, showcasing the gentle nature of these conditions (see **2w**). Under the standard conditions, the reaction of a 2-allyl indoxyl **1f** gave an unexpected arylated product **2x'** (Scheme 1), implying an apparent olefin isomerization was engaged in the process. We presumed the palladium complexes-mediated isomerization was driven by thermodynamic factors, as it was not observed in the substrates containing a crotyl group (see **2m** and **2n**). Intriguingly, **2x** was obtained in excellent yield when we applied Pd(OAc)₂ in lieu of Pd(dba)₂ as the catalyst. The rationale for the divergent reaction courses by catalyst control demands further in silico investigations.

Scheme 1 Pd Catalyst-Controlled Reaction Courses.

The arylation reactions of the indoxyls **1g-j** bearing substituents at the aromatic backbone were also successfully executed (Scheme 2). The isolated yields of these reactions are synthetically useful yet lower as compared with those obtained with the parent compounds (see **1a** and **1e**). These comparisons indicate that the electronic perturbation of the aryl scaffold could subtly cause a reactivity difference.

Scheme 2 The arylation reactions of substituted indolin-3-ones.

We showed a base-promoted cyanomethylation of **2r** resulted in the formation of **3** in good yield (Scheme 3). This sequence represents a complementary, modular approach to set up the fully substituted benzylic carbon center. The

acetyl group could be quantitatively removed cle thus granting flexibility in further N-function മിമർവർഗ്ഗ് CO0435A

Scheme 3 Synthetic Derivatization of Compound 2r.

Finally, we examined cytotoxicity of selected compounds against colon (HCT-116) and breast (MCF-7) cancer cells by MTT assay. The preliminary data revealed that 2j and 2v exhibit favorable cytotoxic activities against HCT-116 at an IC_{50} = 15.8 and 19.9, respectively. It is worth noting that these two molecules structurally resemble a bioactive indole alkaloid, metagenebiindole A (Figure 1) which demonstrates moderate cytotoxicities against CNE2, Bel7402 and HT1080 cell lines at IC_{50} values = 34.3, 43.6 and 35.8 µg/mL respectively.^{2a} Interestingly, we also found both 2j and 2v are selectively potent against colon-derived carcinoma but not breast-derived ones, indicating the likely tissue-specific activities. Overall, these results point out a promising direction to explore structure-activity relationship (SAR) based on chemical modifications of the 2-indolyl-indolin-3-one core.

Table 3. In Vitro Activities of the Indole-containing Compounds against Cancer Cell Lines (HCT-116 and MCF-7).^{*a*}

		$\text{IC}_{50}\left(\mu\text{g}/\text{mL}\right)$ against the cell line			
com	ipound	HCT-116	MCF-7		
	2f	>100	>100		
	2g	>100	>100		
	2h	34.9	36.9		
	2i	95.5	>100		
	2j	15.8	>100		
	2q	>100	>100		
	2v	19.9	63.1		
	2w	63.0	74.1		
nc (hal	f maximal inhi	l inhibitory concentration) was determined b			

^aIC₅₀ (half maximal inhibitory concentration) was determined by MTT assay. HCT-116 = human colorectal carcinoma; MCF-7 = human breast adenocarcinoma.

In summary, we have developed a general protocol for the palladium-catalyzed α -arylation of indolin-3-ones. A wide array of (hetero)arylated indoxyl derivatives were synthesized in good to excellent yields. Selected indole-substited substrates display promising bioactivity profiles against HCT-116. These works encouraged an ongoing SAR investigation, and the results will be reported in due course.

We thank the Young Scholar Fellowship Program by the

Ministry of Science and Technology in Taiwan (MOST108-2636-M-009-003) for financial support of this work.

Conflicts of interest

There are no conflicts of interests to declare.

Notes and references

1 (a) C.-J. Tan, Y.-T. Di, Y.-H. Wang, Y. Zhang, Y.-K. Si, Q. Zhang, S. Gao, X.-J. Hu, X. Fang, S.-F. Li, X.-J. Hao, *Org. Lett.*, 2010, **12**, 2370-2373; (b) J. H. Lee, J.-H. So, J. H. Jeon, E. B. Choi, Y.-R. Lee, Y.-T. Chang, C.-H. Kim, M. A. Bae, J. H. Ahn, *Chem. Commun.*, 2011, **47**, 7500-7502; (c) L. M. Benicio, A. S. Simionato, C. R. Novello, J. R. Guimarães, I. Felicidade, A. G. de Oliveira, J. C. P. de Mello, M. S. Mantovani, A. L. Chryssafidis, G. Andrade, I. M. de Syllos Colus, M. T. de Oliveira, *Sci. Rep.*, 2018, **8**, 12781.

2 (a) X. Yan, X.-X. Tang, L. Chen, Z.-W. Yi, M.-J. Fang, Z. Wu, Y.-K. Oiu, *Mar. Drugs*, 2014, **12**, 2156-2163; (b) L. Yu, Z. Hu, Z. Hu, Z. Ma, *Curr. Microbiol.*, 2015, **71**, 706-712; (c) B. J. P. Atienza, L. D. Jensen, S. L. Noton, A. K. V. Ansalem, T. Hobman, R. Fearns, D. J. Marchant, F. G. West, *J. Org. Chem.*, 2018, **83**, 6829-6842; (d) W. Gu, Y. Zhang, X.-J. Hao, F.-M. Yang, O.-Y. Sun, **S.** L. Morris-Natschke, K.-H. Lee, Y.-H. Wang, C.-L. Long, *J. Nat. Prod.*, 2014, **77**, 2590-2594; (e) J.-F. Liu, Z.-Y. Jiang, R.-R. Wang, Y.-T. Zheng, J.-J. Chen, X.-M. Zhang, Y.-B. Ma, *Org. Lett.*, 2007, **9**, 4127-4129.

3 For selected examples, see: (a) A. S. Bourlot, E. Desarbre, J.-Y. Mérour, *Synthesis*, 1994, 411-416; (b) C.-S. Chien, T. Suzuki, T. Kawasaki, M. Sakamoto, *Chem. Pharm. Bull.*, 1984, **32**, 3945-3951; (c) C.-S. Chien, A. Hasegawa, T. Kawasaki, M. Sakamoto, *Chem. Pharm. Bull.*, 1986, **34**, 1493-1496; (d) X. Ding, C.-L. Dong, Z. Guan, Y.-H. He, *Angew. Chem. Int. Ed.*, 2019, **58**, 118 -124; (e) X. Liu, X. Yan, Y. Tang, C.-S. Jiang, J.-H. Yu, K. Wang, H. Zhang, *Chem. Commun.*, 2019, **55**, 6535-6538; (f) X. Jiang, B. Zhu, K. Lin, G. Wang, W.-K. Su, C. Yu, *Org. Biomol. Chem.*, 2019, **17**, 2199-2203; (g) L. Bu, J. Li, Y. Yin, B. Qiao, G. Chai, X. Zhao, Z. Jiang, *Chem. Asian J.*, 2018, **13**, 2382-2387; (h) X. Liu, X. Yan, J.-H. Yu, Y.-D. Tang, K. Wang, H. Zhang, *Org. Lett.*, 2019, **21**, 5626-5629.

4 For selected examples, see: (a) P. S. Dhote, C. V. Ramana, *Org. Lett.*, 2019, **21**, 6221-6224; (b) J.-S. Li, Y.-J. Liu, S. Li, J.-A. Ma, *Chem. Commun.*, 2018, **54**, 9151-9154; (c) Z. Deng, X. Peng, P. Huang, L. Jiang, D. Ye, L. Liu, *Org. Biomol. Chem.*, 2017, **15**, 442-448; (d) Z. Xia, J. Hu, Y.-Q. Gao, Q. Yao, W. Xie, *Chem. Commun.*, 2017, **53**, 7485-7488; (e) L. Kong, M. Wang, F. Zhang, M. Xu, Y. Li, *Org. Lett.*, 2016, **18**, 6124-6127. (f) See also ref 2c.

5 (a) S. T. Sivanandan, A. Shaji, I. Ibnusaud, C. C. Johansson

Seechurn, T. J. Colacot, *Eur. J. Org. Chem.*, 2015, 38-49; (b) P. Novák, R. Martin, *Curr. Org. Chem.*, 2011, **15**, 3233-3262.

6 (a) W.-Y. Hou, Y.-K. Wu, *Org. Lett.*, 2017, **19**, 1220-1223; (b) Y.-C. Yang, Y.-C. Lin, Y.-K. Wu, *Org. Lett.*, 2019, **21**, 9286-9290.

7 (a) M. J. Durbin, M. C. Willis, *Org. Lett.*, 2008, **10**, 1413-1415; (b) A. M. Taylor, R. A. Altman, S. L. Buchwald, *J. Am. Chem. Soc.*, 2009, **131**, 9900-9901; (c) J. Duan, F. Y. Kwong, *J. Org. Chem.*, 2017, **82**, 6468-6473 and references cited therein.

8 J.-Y. Mérour, L. Chichereau, J.-P. Finet, *Tetrahedron Lett.*, 1992, 33, 3867-3870.

9 Y. Zhang, J. Han, Z.-J. Liu, *Synlett*, 2015, **26**, 2593-2597.

10 Y.-L. Zhao, Y.-Q. Tang, X.-H. Fei, T. Xiao, Y.-D. Lu, X.-Z. Fu, B. He, M. Zhou, C. Li, P.-F. Xu, Y.-Y. Yang, *RSC Adv.*, 2018, **8**, 25292-25297.

11 Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Christoffers, J., Baro, A. Eds.; Wiley-VCH: Weinheim, 2005.

12 M. R. Netherton, G. C. Fu, Org. Lett., 2001, 3, 4295-4298.

13 (a) L. Chen, P. Ren, B. P. Carrow, *J. Am. Chem. Soc.*, 2016, **138**, 6392-6395. (b) B. P. Carrow, L. Chen, *Synlett*, 2017, **28**, 280-288

A general route to C2-(hetero)arylated indolin-3-ones bearing a fully substituted α -center was established.