ansa-Ruthenium(II) Complexes of R₂NSO₂DPEN-(CH₂)_n(η⁶-Aryl) Conjugate Ligands for Asymmetric Transfer Hydrogenation of Aryl Ketones

Andrea Kišić,^a Michel Stephan,^{a,b,*} and Barbara Mohar^{a,*}

^b Present address: PhosPhoenix SARL, 115, rue de l'Abbé Groult, 75015 Paris, France E-mail: mstephan@phosphoenix.com

Received: March 23, 2015; Revised: June 10, 2015; Published online: August 3, 2015

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201500288.

Abstract: New 3^{rd} generation designer *ansa*-ruthenium(II) complexes featuring *N*,*C*-alkylene-tethered *N*,*N*-dialkylsulfamoyl-DPEN/ η^6 -arene ligands, exhibited good catalytic performance in the asymmetric transfer hydrogenation (ATH) of various classes of (het)aryl ketones in formic acid/triethylamine mixture. In particular, benzo-fused cyclic ketones furnished 98 to >99.9% *ee* using a low catalyst loading.

Keywords: alcohols; asymmetric catalysis; N ligands; reduction; ruthenium

In asymmetric transfer hydrogenation (ATH) of aryl ketones using HCO₂H/Et₃N mixture, *ansa*-ruthenium(II)-type complexes with intra-covalently tethered diamine and η^6 -arene ligand units (complexes **A**–**D** of Figure 1) have displayed improved turnover rates over the untethered version.^[1,2] In fact, 2nd and 3rd generation designed complexes wherein the η^6 -arene ligand is linked to either SO₂DPEN terminal (available in both enantiomeric forms, DPEN = *trans*-1,2-diphenylethylenediamine) demonstrated enhanced longevity of the catalytic species. This aspect is economically attractive promoting their industrial implementation for the synthesis of enantioenriched α -substituted arylmethanols.^[3]

We have recently introduced a 2^{nd} generation-type {RuCl[(*S*,*S*)-DPEN-SO₂N(Me)(CH₂)_n(η^{6} -aryl)]} complex series (complex **B**)^[4] wherein a *para*-substituted η^{6} -phenyl (e.g., *p*-Tol, *p*-*i*-Pr-C₆H₄) tethered to DPEN with -SO₂N(Me)(CH₂)_n- (n=2 or 3) exhibited an exceptionally high efficiency in the ATH of aryl ketone-s.^[2i,k] Thus, using substrate-to-catalyst ratios (S/Cs) of 200 to 1000, 1-naphthyl ketones, α -tetralone, α -

chloroacetophenone, and 1,3-diaryl β -diketones furnished at 40–60 °C in reasonable times the corresponding alcohols in >98% to virtually perfect *ees* with full conversion. Given the higher activity of the known 3rd generation *ansa*-Ru(II) complexes versus the 2nd generation, we were interested to explore this option using our R₂NSO₂DPEN^[5] ligand.

Herein, we present an *ansa*-Ru(II) complex series **1** in which the η^6 -arene is alkylene-tethered to R₂NSO₂DPEN from the *N'*-terminal (a "transshifted tether" compared to the 2nd generation version) (Scheme 1), and their ATH results against various types of prostereogenic aryl ketones.

The new homochiral (S,S)-R₂NSO₂DPEN- $(CH_2)_n(\eta^6$ -*p*-aryl)-type combined preligands **3**, wherein the " $(CH_2)_n$ " *ansa*-bridge length and the anchored " η^6 -aryl" *para* end-substituent have been systematically varied, were prepared by us following an improved

Scheme 1. Preparation of the active *ansa*-Ru(II)-type catalysts **1**.

procedure adapted from the general one introduced by Wills.^[2e,6] Thus, the triflates of alcohols **2** were employed to selectively mono-*N'*-alkylate (*S*,*S*)- R_2NSO_2DPEN at room temperature leading to **3** in 85–92% isolated yield. Subsequently, the shelf-stable μ -chlorido Ru(II) dimers **4** were readily obtained in 45–55% yield by heating **3**·HCl with RuCl₃·3H₂O in EtOH at 70 °C. Finally, the ATH active *ansa*-Ru(II) catalysts **1** (wherein n=3 or 4, and aryl=Ph, *p*-Tol, *pi*-Pr-C₆H₄) were conveniently generated *in situ* at room temperature within 30 min from the corresponding dimers **4** in the HCO₂H/Et₃N medium.^[7]

The ATH of the test substrate acetophenone (S1) using the ansa-Ru(II) catalysts 1 (S/C=1000) was probed under nitrogen atmosphere (with continuous mild sweeping^[8]) varying the HCO₂H/Et₃N ratio (5:2 or 3:2) and temperature (40-80°C) (Table 1). From the start, the Me₂NSO₂-substituted catalyst **1aa** showed a slower reaction rate (an extra 1 h was required for 100% conversion) and afforded a slightly lower *ee* (~1%) compared to the $(CH_2)_5NSO_2$ -substituted analogue 1ba. Complete conversion was reached 8-fold faster with an increase of the temperature from 40 to 80 °C at the expense of a $\sim 2\%$ decrease in ee. Interestingly, the enantioselectivity increased marginally with systematic increase in the bulk of the para-R' substituent (95.3% ee for H, to 95.5% ee for Me, to 96.2% ee for i-Pr), whereas the reduction rate markedly decreased (entries 5, 9 and 10). Reaction rates of **1ba** (3C tether) and **1bd** (4C tether) using an S/C = 30000 at 60 °C were of the same order (entries 8 and 13). Noteworthy, with prolonged reduction times during these latter tests, 1-phenylethanol (95.1% ee) was accompanied with 1-phenylTable 1. ansa-Ru(II) complexes 1 catalyzed ATH of aceto-phenone (S1).^[a]

Advanced 🥏

Catalysis

Synthesis &

Entry	Cat. 1	S/C	HCO ₂ H/ Et ₃ N	Т [°С]	<i>t</i> [h]	Conv. [%]	ee [%]
1	1aa	1000	5:2	60	5	100	93.4
2	1aa	1000	3:2	60	5	100	94.6
3	1ba	1000	5:2	60	3.5	100	94.5
4	1ba	1000	3:2	40	8	100	96.1
5	1ba	1000	3:2	60	3.5	100	95.3
6	1ba	1000	3:2	70	1.5	100	94.7
7	1ba	1000	3:2	80	1	100	94.3
8	1ba	30000	3:2	60	96	83 ^[b]	95.0
9	1bb	1000	3:2	60	7	100	95.5
10	1bc	1000	3:2	60	8.5	100	96.2
11	1bd	1000	5:2	60	3	100	93.6
12	1bd	1000	3:2	60	3	100	95.0
13	1bd	30000	3:2	60	96	80 ^[b]	94.5

^[a] Runs were carried out with acetophenone (1 mmol) in neat HCO₂H/Et₃N (0.5 mL). The *ees* were determined by chiral GC, for details see the Supporting Information.

^[b] 1-Phenylethyl formate (95.1% *ee*, 30% yield) accompanied with 1-phenylethanol.

ethyl formate (95.1% *ee*, 30% yield by GC) and this was converted back to the alcohol upon NaBH₄ reduction. Importantly, employing a HCO₂H/Et₃N of 3:2 proved to be relatively advantageous compared to 5:2 as a modest, yet discernible ~1% increase in *ee* was observed in all runs. The induced *S*-enantioselectivity is in accord with the sense observed with complexes **A**–**D** of Figure 1 implying a similar stereo-chemical control by the elements of the structural stereoarray. Overall, complex **1ba** appeared to be the optimum choice in this screening.

Based on this initial exploration on acetophenone, the results obtained with complex **1ba** parallel closely those of the 3^{rd} generation-type Ru(II) complexes of the Wills 3C-[Teth-TsDPEN-RuCl] (complex **C**) and the Ikariya Ts-DENEB (complex **D**).^[9] Also, an increased activity was noticeable compared to the 2^{nd} generation (complex **B**).

Next, screening at 60 °C on a representative array of acetophenones in HCO₂H/Et₃N 3:2 revealed a useful activity of **1ba** against *o*-, *m*-, or *p*-HO-substituted derivatives (**S2–S4**, **S6**) leading from 93.8 to 95.7% *ee* (Table 2).^[10] A facile upgrading to 99% *ee* by simple crystallization of the **S4** reduction product was also feasible. In addition, **1bb** catalyzed the reduction of 2-acetylpyridine (**S7**) at 40 °C with 96.9% *ee* within 2 h using an S/C=100, while a steady decrease in *ee* and longer reaction times resulted from lowering the catalyst loading.

Ketone		Cat. 1	HCO ₂ H/ Et ₃ N	<i>Т</i> [°С]	<i>t</i> [h]	ee [%]
0	S2 : <i>o</i> -	1ba	3:2	60	2	94.5
	S3 : <i>m</i> -	1ba	3:2	60	5	95.7
HO	S4 : <i>p</i> -	1ba	3:2	60	10	93.8
R O	S5 : R=H	1ba	3:2	60	6	93.6
	S6 : $R = OH$	1ba	3:2	60	2	93.6
		1bb	3:2	60	3	94.7
0	S7	1bb ^[b]	3:2	40	2	96.9
_ N _S ∕		1bb ^[c]	3:2	40	6	94.2
		1bb	3:2	40	15	93.0
		1aa	5:2	60	3.5	92.1
		1ba	5:2	40	15	98.3
Ö		1ba	3:2	40	15	97.3
	S8	1ba	5:2	60	3	97.4
		1bb	5:2	60	5	94.1
		1bc	5:2	60	5	97.0
		1bd	5:2	60	3.5	96.9
		1ba	5:2	40	15	94.0
Me	S 9	1ba	5:2	60	4	91.4
0	S10	1ha	3.2	60	2	95 1
$\sim \sim$	510	1bb 1bb	5.2	60	3	85.6
		166 166	3:2	60 60	3	96.9
	§ 11	1ha	2.2	40	15	06.8
0	311	10a 1ba	2.2	+0 60	15	90.0
< ^s √		10a 164	5:Z	60	3.3 7	93.9 05 2
_ <i>\</i>		100	5:Z	00	/	95.Z
		1bc	3:2	60	12	95.7
0	S12	1ba	3:2	60	7	95.0
⟨ ^S ⟩ ^I		1bd	3:2	60	9	94.1
s of	S13	1ba	3:2	60	3	95.5

Table 2. ansa-Ru(II) complexes 1 catalyzed ATH of varioushet(aryl) ketones.^[a]

Advanced 🦻

Catalysis

Synthesis &

^[a] Runs were carried out on 1 mmol scale of ketone in neat HCO_2H/Et_3N (0.5 mL) with an S/C = 1000 for the time indicated (100% conversion). Isolated yields after work-up were 1–4% lower. The *ees* were determined by chiral GC or HPLC. (*S*)-Configured corresponding alcohols were obtained. For details, see the Supporting Information.

Further on, a set of 2-acetylfurans and 2-acetylthiophenes (**S8–S13**) underwent ATH with the catalyst series **1** at 40–60 °C affording *ees* in the range of 94– 98%. Reduction at 60 °C was several times faster than at 40 °C, and the absence of a *p*-substituent on the η^{6} -aryl of **1** (catalyst **1ba**) was also favorable in these cases.

Finally, the ATH catalyzed by 1 (S/C = 1000) of benzo-fused 5-7-membered cyclic ketones such as 1indanones (S14–S19), α -tetralones (S20–S24) and oxygen-, sulfur- or SO₂-containing analogues (4-chromanones S25-S28, thiochroman-4-one (S29) and its 1,1-dioxide \$30), and 1-benzosuberone (\$31) was particularly efficient (Table 3; a comprehensive testing was carried out with catalysts 1 but only selected results are presented). These data emphasize the catalyst-substrate structure dependence as a specific catalyst 1 constitutes the optimum match for a given substrate of interest. On top of that, the reaction conditions set needed to be adjusted on a case-by-case basis for a maximized catalysis effect by incremental improvement of enantioselectivity and kinetics. Importantly, operating at 60 °C, the corresponding (S)-alcohols were readily formed in excellent ees within few hours.

To the best of our knowledge, these results represent one of the highest enantioselectivities obtained for such ketones *via* reduction and advantageously applying a low catalyst loading.^[11,12] In particular, various catalyst systems have been employed for the reduction of α -tetralones with a varying degree of success. Most notably, under ATH conditions in HCO₂H/ Et₃N 5:2, Ts-DENEB (complex **D**) and 3C-[Teth-TsDPEN-RuCl] (complex **C**) complexes afforded α tetralol in >99% *ee* (S/C=1000, 60 °C, 5 h, 100% conversion)^[2g] and 99.8% *ee* (S/C=500, 40 °C, 5 h, 100% conversion),^[21] respectively. Also, RuCl₂[(S)-XylBI-NAP][(R)-IPHAN] catalyst (S/C=3000, 25 °C) led to 99% *ee* (>99% conversion) under 9 atm of H₂.^[13]

Notably, post-reduction selective functionalization of the free phenolic OH group (e.g., etherification of the reduction product of **S16**; see Table 3, footnote [b]) further extends the scope of applicability of this transformation.

Demonstrating the practical applicability of this new catalyst system, the ATH of 4-chromanone (S25) using 1bd with an S/C=30000 and affording (S)-4-chromanol in 99.5% *ee* and full conversion within 30 h, is highlighted in Scheme 2.

Moreover, ATH at 60 °C of benzil (**S33**) and 1,3-diphenyl-1,3-propanedione (**S34**) in the presence of HCO_2H/Et_3N (3.4:2 for **S33**^[14] and 3:2 for **S34**) using **1ba** led respectively to (*R*,*R*)-hydrobenzoin with *dl:meso* 96:4 and 99% *ee*, and (*S*,*S*)-1,3-diphenyl-1,3-propanediol with *dl:meso* >99.9 and >99.9% *ee* (Scheme 3; ATH conditions for **S34**: 1 mmol substrate, 500 µL HCO_2H/Et_3N 3:2, 1.5 mL PhCl).

In conclusion, we have presented a new ATH 3^{rd} generation *ansa*-Ru(II) complex series **1** wherein the η^6 -arene is 1,3-propylene- or 1,4-butylene-tethered to

^[b] S/C = 100.

^[c] S/C = 500.

Table 3. (Continued)

fused cyclic ke	etones. ^[4]						Ketone	Cat.	HCO ₂ I
Ketone		Cat. 1	HCO ₂ H/ Et ₃ N	Т [°С]	<i>t</i> [h]	ee [%]	° \$28	1 1ba	Et_3N 3.2
	S14 : R=H	1ba	3:2	60	4	98.9		1bd	3:2
	S15 :	1bd 1ba	3:2 5:2	60 60	3 6	99.1 98.8			
$R = \frac{6}{5} \frac{7}{5} \frac{0}{5}$	R=6- OH S16 : R=7- OH	1ba	3:2	60	6	94.6 ^[b]	S29	1ba	5:2
	S17: R = 5- $Br^{[c]}$	1bb 1bb	3:2 3:2	60 60	7 5	95.0 ^[b] 97.3		1bd	3:2
	DI	1bd	3:2	60	2	98.1	S31	1ba	5:2
	S18 ^[c]	1ba 1bb	5:2 5:2	60 40	4 24	86.8 91.6		1bd	5:2
	S19	1ba 1bd	3:2	60	9	99.4 ^[d]	S32	1ba 1bb 1 bb	5:2 5:2 5:2
CO₂M	e	104	5.2	00	0	99 . 0**	^[a] ATH conditions as yields after work-up	in Ta were	uble 2 (1–4% le
	S20 : R=H	1ba	5:2	60	6	98.7	^[b] The <i>ee</i> was determine	s were ed afte	obtaine r convei
	S21 : R=6-	1bd 1bd	5:2 5:2	60 60	3 8	>99.9 99.4	indanol (<i>conditions</i> : M ^[c] EtOAc (2 mL) used a ^[d] <i>cis:trans</i> > 99.9.	1eI/K ₂ s co-so	CO ₃ /Me lvent.
6	ОМе S22 : R=7- ОМе	1bd	5:2	60	4	99.2	[f] $cis:trans=93:7$ with 1 [g] $S/C=100$ and 95% co [h] 1,2-Dichloroethane (1	Iba ; 98 ba and nversio .5 mL)	90:10 w 90:10 w on.) used as
O Me	S23	1ba 1bd	3:2 3:2	60 60	20 ^[e] 20 ^[e]	99.6 ^[f] 99.5 ^[f]		d (S/C =	= 30 000)
	S24	1ba	5:2	60	48 ^[g]	97.6	S25 97%	;O ₂ H/Et 60 °C, 3 100% co ∕₀ isolate	₃ N 5:2 30 h onv. ed yield
~ ~	S25 :	1ha	5.2	60	2	00 /	Scheme 2. <i>ansa</i> -Ru(II) conchromanone (S25).	ompley	(1bd c
R ↓ ↓ ↓	R = H	1ba 1bd	5:2	60	2	99.7			
Ľ_L₀J	S26 : R = Cl	1ba	5:2	60	2	99.5	R_2NSO_2DPEN from S/C=1000, enantioseld	the N ectivit	"-termini ies up t
	S27	1ba	3:2	60	10	99.1	mixture for a variety	of (he	t)aryl k
() ()		1bd	3:2	60	5	99.5	fused cyclic ketones. I selectivities were obta none, thiochroman-4-	In par ined for	ticular, for α -te and 1.

Table 3. ansa-Ru(II) complexes 1 catalyzed ATH of benzofused cyclic ketones.[a]

H/Τ ee t [°C] [h] [%] 4 99.4 60 2 99.7 60 99.7 60 2 60 2 98.7 7 97.6 60 60 7 98.4 2 82.1 60 91.8 15 40 60 2 87.6

S/C = 1000). Isolated ower. (S)-Configured ed.

rsion to 7-methoxy-1-₂CO, 50 °C).

version with 1bd.

ith 1bd.

co-solvent.

atalyzed ATH of 4-

nal. Employing an to >99.9% coupled ed in HCO₂H/Et₃N ketones and benzoexcellent enantioetralone, 4-chroma-3-diphenyl-1,3-propanedione.

Such a conformationally rigid catalyst structure 1 having embedded diversity-oriented ligands with varied electronic and steric features, offers an inter-

Adv. Synth. Catal. 2015, 357, 2540-2546

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 3. *ansa*-Ru(II) complex **1ba** catalyzed ATH of benzil (**S33**) and 1,3-diphenyl-1,3-propanedione (**S34**).

esting opportunity to improve catalysis outcome through cooperative interactions.

Experimental Section

Preparation of ansa-Ruthenium(II) Catalysts 1

A round-bottom flask equipped with a magnetic stir bar was charged successively with the (S,S)-DPEN-derived Ru(II) dimer **4** and HCO₂H/Et₃N (5:2 or 3:2 depending on the ketone) then the mixture was stirred at room temperature for 30 min. The green-colored solution was used directly in catalysis.

Tests with S/C=100: Ru(II) dimer 4 (0.005 mmol based on Ru atom), HCO₂H/Et₃N (250 μ L), ketone (0.5 mmol).

Tests with S/C=500: Ru(II) dimer 4 (0.001 mmol based on Ru atom), HCO₂H/Et₃N (250 μ L), ketone (0.5 mmol).

Tests with S/C = 1000: Ru(II) dimer 4 (0.002 mmol based on Ru atom), HCO_2H/Et_3N (1.0 mL), ketone (2.0 mmol).

Tests with S/C = 30000: Ru(II) dimer 4 (0.667 µmol based on Ru atom), HCO₂H/Et₃N (10 mL), ketone (20.0 mmol).

ATH Procedure

The above HCO_2H/Et_3N solution of Ru(II) catalyst **1** was added to the ketone and the mixture was stirred at the temperature and time as indicated in the Tables.

Work-up: the reaction mixture was partitioned between EtOAc (10 mL) and H₂O (5 mL). The organic layer was successively washed with H₂O (5 mL) and brine (5 mL), filtered through a bed of silica gel/Na₂SO₄ then concentrated. In the case of hydroxy-substituted ketones, the reaction mixtures were acidified with 1 M HCl (pH 4-5) then extracted with EtOAc. In the case of 6-methoxy-1-tetralone, 7-methoxy-1tetralone, 2-benzofuryl methyl ketone, 2-acetylpyridine and 2-tetralone, the reaction mixtures were basified with 1M NaOH (pH 8-9) then extracted with EtOAc. The residue was analyzed by ¹H NMR (for determination of conversion and dr) and chiral GC or HPLC (for ee). Absolute configurations were assigned by comparison of optical rotations of the isolated products and/or of the $t_{\rm R}$ of chiral GC or HPLC analysis with the literature data (see the Supporting Information).

(S)-4-Chromanol

A solution of Ru(II) dimer 4bd (0.93 mg, 1.33 µmol Ru atom) in HCO₂H/Et₃N 5:2 (20 mL) was stirred at room temperature for 30 min under an N₂ atmosphere then 4-chromanone (5.926 g, 40.0 mmol) was added. After stirring at 60 °C for 30 h with continuous mild N_2 sweeping, the mixture was partitioned between EtOAc (80 mL) and H₂O (50 mL), the organic layer washed successively with H₂O (50 mL) and brine (50 mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated. An almost colorless oil was obtained which solidified upon standing; yield: 5.826 g (97%). ¹H NMR: $\delta = 1.72$ (br s, 1H), 1.95–2.22 (m, 2H), 4.19–4.40 (m, 2H), 4.80 (t, J=4.0 Hz, 1H), 6.77-7.02 (m, 2H), 7.17-7.24 (m, 1H), 7.31 (dd, J = 7.6 and 1.4 Hz, 1H); $[\alpha]_{D}^{23}$: -78 (c 1.0, EtOH), 99.5% *ee* {*R*-isomer:^[2g] $[\alpha]_D^{20}$: +70.2 (*c* 1.0, EtOH), 99.0% ee]. The ee was determined by chiral HPLC [Chiralcel OD-H column (25 cm); eluent hexane/2-PrOH= 95/5, flow rate 1.0 mLmin⁻¹, $\lambda = 220$ nm]: $t_{\rm R}$: 10.0 min (S), $11.7 \min(R)$.

(R,R)-Hydrobenzoin

A solution of Ru(II) dimer 4ba (6.87 mg, 10 µmol Ru atom) in HCO₂H/Et₃N 3.4:2 (4.60 g) was stirred at room temperature for 30 min under an N_2 atmosphere then DMF (10 mL) and benzil (2.100 g, 10.0 mmol) were sequentially added. After stirring at 60°C for 4 h with continuous mild N₂ sweeping, the mixture was partitioned between Et₂O (60 mL) and H₂O (30 mL), the organic layer washed successively with H_2O (3×30 mL) and brine (30 mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated. An off-white solid was obtained; yield: 2.035 g (96%). ¹H NMR: $\delta = 2.79$ (s, 2 H), 4.73 (s, 2 H) [4.48 (s, 2 × CH, meso)], 7.13– 7.25 (m, 10H); $[\alpha]_D^{23}$: +83 (c 1.0, EtOH), 99% ee, {S,S-enantioner: $[^{2g]} [\alpha]_{D}^{2i}$: -91.4 (c 1.0, EtOH), 99% ee}; dl:meso 96:4 (by ¹H NMR). The ee was determined by chiral HPLC analysis [Chiralcel OJ-H column (25 cm); eluent hexane/2-PrOH = 90/10, flow rate 0.5 mLmin⁻¹, $\lambda = 220$ nm]: t_{R} : 27.9 min (S,S), 31.4 min (R,R), 38.5 min (meso).

(S,S)-1,3-Diphenyl-1,3-propanediol

A solution of Ru(II) dimer 4ba (13.7 mg, 20 µmol Ru atom) in HCO₂H/Et₃N 3:2 (5.0 mL) was stirred at room temperature for 30 min under an N₂ atmosphere then chlorobenzene and $(15 \, \text{mL})$ 1,3-diphenyl-1,3-propanedione (2.243 g. 10.0 mmol) were sequentially added. After stirring at 60 °C for 6 h with continuous mild N2 sweeping, the mixture was partitioned between EtOAc (60 mL) and H₂O (30 mL), the organic layer successively washed with H_2O (30 mL) and brine (30 mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated. Off-white crystals were obtained; yield: 2.214 g (98%). ¹H NMR: $\delta = 2.19$ (t, J = 5.8 Hz, 2H), 2.80 (br s, 2H), 4.99 (t, J = 4.7 Hz, 2H), 7.23–7.42 (m, 10H); $[\alpha]_{D}^{23}$: -71 (c 1.0, CH₃OH), >99.9% ee; {*S,S*-enantiomer:^[15] $[\alpha]_{D}^{28}$: -68.2 (c 1.12, CH₃OH), 99% ee}; dl:meso >99 (by ¹H NMR). The *ee* was determined by chiral HPLC analysis [Chiralcel OD-H column (25 cm); eluent hexane/2-PrOH = 95/5, flow rate 1.0 mL min⁻¹, $\lambda = 220$ nm]: $t_{\rm R}$: 24.9 min (S,S), 29.9 min (*R*,*R*), 37.4 min (*meso*).

2544

asc.wiley-vch.de

Acknowledgements

This work was supported by the Ministry of Higher Education, Science, and Technology of the Republic of Slovenia (Grant No. P1-242).

References

- For reviews, see: a) S. Gladiali, E. Alberico, *Chem. Soc. Rev.* 2006, *35*, 226–236; b) T. Ikariya, K. Murata, R. Noyori, *Org. Biomol. Chem.* 2006, *4*, 393–406; c) T. Ikariya, A. J. Blacker, *Acc. Chem. Res.* 2007, *40*, 1300–1308; d) C. Wang, X. Wu, J. Xiao, *Chem. Asian J.* 2008, *3*, 1750–1770; e) T. Ikariya, *Bull. Chem. Soc. Jpn.* 2011, *84*, 1–16.
- [2] For ansa-Ru(II) complexes, see: a) J. Hannedouche, G. J. Clarkson, M. Wills, J. Am. Chem. Soc. 2004, 126, 986-987; b) A. M. Hayes, D. J. Morris, G. J. Clarkson, M. Wills, J. Am. Chem. Soc. 2005, 127, 7318-7319; c) F. K. (K.) Cheung, A. M. Hayes, J. Hannedouche, A. S. Y. Yim, M. Wills, J. Org. Chem. 2005, 70, 3188-3197; d) D. J. Morris, A. M. Hayes, M. Wills, J. Org. Chem. 2006, 71, 7035-7044; e) F. K. Cheung, C. Lin, F. Minissi, A. L. Crivillé, M. A. Graham, D. J. Fox, M. Wills, Org. Lett. 2007, 9, 4659-4662; f) F. K. Cheung, A. M. Hayes, D. J. Morris, M. Wills, Org. Biomol. Chem. 2007, 5, 1093-1103; g) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, T. Saito, Y. Kayaki, T. Ikariva, J. Am. Chem. Soc. 2011, 133, 14960-14963; h) V. Parekh, J. A. Ramsden, M. Wills, Catal. Sci. Technol. 2012, 2, 406-414; i) A. Kišić, M. Stephan, B. Mohar, Org. Lett. 2013, 15, 1614-1617; j) R. Soni, K. E. Jolley, G. J. Clarkson, M. Wills, Org. Lett. 2013, 15, 5110-5113; k) A. Kišić, M. Stephan, B. Mohar, Adv. Synth. Catal. 2014, 356, 3193-3198; 1) R. Hodgkinson, V. Jurčík, A. Zanotti-Gerosa, H. G. Nedden, A. Blackaby, G. J. Clarkson, M. Wills, Organometallics 2014, 33, 5517-5524.
- [3] a) M. Miyagi, J. Takehara, S. Collet, K. Okano, Org. Process Res. Dev. 2000, 4, 346–348; b) M. Gelo-Pujic, F. Le Guyader, T. Schlama, Tetrahedron: Asymmetry 2006, 17, 2000–2005; c) J. Zhang, P. G. Blazecka, M. M. Bruendl, Y. Huang, J. Org. Chem. 2009, 74, 1411–1414; d) W. P. Hems, W. P. Jackson, P. Nightingale, R. Bryant, Org. Process Res. Dev. 2012, 16, 461–463; e) Z. Luo, F. Qin, S. Yan, X. Li, Tetrahedron: Asymmetry 2012, 23, 333–338; f) C. M. Bligh, L. Anzalone, Y. C. Jung, Y. Zhang, W. A. Nugent, J. Org. Chem. 2014, 79, 3238– 3243.
- [4] The structure B depicted in Figure 1 is suggested based on the X-ray-characterized analogous complex A of Wills et al.^[2a]
- [5] For a preparation of (S,S)-R₂NSO₂DPEN, see: D. Šterk, M. Stephan, B. Mohar, *Tetrahedron: Asymmetry* 2002, 13, 2605–2608.
- [6] The following improved adapted protocol uses less amounts of reagents and obviates the need for Et_3N resulting in higher yields: To a cold (0°C) solution of **2** (1.19 equiv.) and 2,6-lutidine (1.44 equiv.) in CH₂Cl₂ is added a solution of triflic anhydride (1.22 equiv.) in CH₂Cl₂ at a such a rate that the temperature does not

rise above 0°C. After stirring for 30 min at such a temperature and for 1 h at room temperature, a cold (0°C) solution of (S,S)-N-(1-piperidylsulfonyl)DPEN (1.00 equiv.) in CH₂Cl₂ is added and stirred overnight at room temperature. After a standard CH₂Cl₂-extractive work-up, 85–92% of pure **3** is obtained. See also the Supporting Information.

Advanced

Catalysis

Synthesis &

- [7] Although we failed to isolate any monomeric Ru(II) structure 1, their formation as such is evidenced by the resulting high catalyst activity and enantioselectivity. In addition, a coordination-induced proximity effect should favor the formation of such monomeric structures in this case by analogy to the Wills et al. C3-[(R,R)-Teth-TsDPEN-RuCl] (complex C) and the Ikariya et al. (R,R)-Ts-DENEB (complex D) complexes.
- [8] Operating in an open flask (i.e., in the absence of N_2 sweeping) and with an S/C=1000, the reduction stagnated at < 50% conversion without affecting the *ee*.
- [9] C3-[(*R*,*R*)-Teth-TsDPEN-RuCl] (complex **C**) and (*R*,*R*)-Ts-DENEB (complex **D**) (S/C=1000) afforded 95% *ee* (5 h for 100% conversion at 40°C) and 97% *ee* (3 h for >99% conversion at 60°C), respectively. In our hands, testing the commercially available C3-[(*R*,*R*)-Teth-TsDPEN-RuCl] (complex **C**) and (*R*,*R*)-Ts-DENEB (complex **D**) at 60°C gave 94.4% *ee* (3 h for 100% conversion) and 96.3% *ee* (4 h for >99% conversion), respectively.
- [10] a) For additional ATH results of substituted acetophenones, see the Supporting Information (Table S1).
 b) For asymmetric hydrogenation of *m*-hydroxyacetophenone (S3) catalyzed by Ir-(S)-SpiroPAP-3-Me and affording 97% *ee*, see: P.-C. Yan, G.-L. Zhu, J.-H. Xie, X.-D. Zhang, Q.-L. Zhou, Y.-Q. Li, W.-H. Shen, D.-Q. Che, *Org. Process Res. Dev.* 2013, *17*, 307–312. c) For comparative literature ATH results of hetaryl ketones, see the Supporting Information (Table S2).
- [11] For indicative literature results on metal-catalyzed ATH or asymmetric hydrogenation of benzo-fused cyclic ketones of Table 3, see the Supporting Information (Table S3). For example, (*R*,*R*)-Ts-DENEB (complex **D**)-catalyzed ATH (S/C=1000, HCO₂H/Et₃N 5:2, 60 °C) of 1-indanone (**S14**) afforded 98% *ee* with 97% conversion (5 h), and 4-chromanone led to >99% *ee* with >99% conversion (5 h).^[2g]
- [12] For relevant articles to the work presented in Table 3 regarding α -tetralone and analogues (S20–S26, S29), see: a) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 2521-2522; b) P. N. Liu, P. M. Gu, F. Wang, Y. Q. Tu, Org. Lett. 2004, 6, 169–172; c) D. S. Matharu, D. J. Morris, G. J. Clarkson, M. Wills, Chem. Commun. 2006, 3232-3234; d) J. Wettergren, A. Bøgevig, M. Portier, H. Adolfsson, Adv. Synth. Catal. 2006, 348, 1277-1282; e) D. S. Matharu, J. E. D. Martins, M. Wills, Chem. Asian J. 2008, 3, 1374–1383; f) C. V. Manville, G. Docherty, R. Padda, M. Wills, Eur. J. Org. Chem. 2011, 6893-6901; g) B. Zhang, H. Wang, G.-Q. Lin, M.-H. Xu, Eur. J. Org. Chem. 2011, 4205-4211; h) L. Tang, Z. Lin, Q. Wang, X. Wang, L. Cun, W. Yuan, J. Zhu, J. Deng, Tetrahedron Lett. 2012, 53, 3828-3830; i) K. E. Jolley, A. Zanotti-Gerosa, F. Hancock, A. Dyke, D. M. Grainger, J. A. Medlock, H. G. Nedden, J. J. M. Le Paih, S. J.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Roseblade, A. Seger, V. Sivakumar, I. Prokes, D. J. Morris, M. Wills, *Adv. Synth. Catal.* **2012**, *354*, 2545–2555.

- [13] T. Ohkuma, T. Hattori, H. Ooka, T. Inoue, R. Noyori, *Org. Lett.* 2004, 6, 2681–2683 [(R)-IPHAN = (2R,3R,4R,5R)-3,4-O-Isopropylidenehexane-2,5-dia-mine].
- [14] We have noticed that substrate concentration in addition to the co-solvent nature affects markedly the dia-

stereoselectivity. The ATH conditions were adopted from: K. Murata, K. Okano, M. Miyagi, H. Iwane, R. Noyori, T. Ikariya, *Org. Lett.* **1999**, *1*, 1119–1121. ATH using Ts-DENEB (complex **D**) leading to *dl:meso* 97.2:2.8 (>99% ee) is mentioned in ref.^[2g]

[15] M. Watanabe, K. Murata, T. Ikariya, J. Org. Chem. 2002, 67, 1712–1715.