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ABSTRACT
Allyl alkynoic esters were synthesized by the reaction of allyl amines
and alkynoic acids via deaminative esterification. The reaction of allyl
alkynoic esters with Pd(dba)2 and Xantphos in digylme at 110 �C for
12 h afforded the desired decarboxylated allyl alkynes in good yields.
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Introduction

Decarboxylative coupling reactions have received considerable attention for the synthesis
of key molecules in the pharmaceutical, agricultural, and materials industries.[1]

Decarboxylative coupling of alkynoic acids has been widely used to introduce alkynyl
groups into target molecules.[2] This approach affords several advantages compared to
the Sonogashira coupling reaction, which employs terminal alkynes as the alkyne source.
Aryl alkynoic acid derivatives are readily prepared via direct coupling of propiolic acid
and aryl halides (or pseudo halides) and are easily purified and isolated through aque-
ous workup.[3] Alkynoic acids are also stable and the reaction releases only carbon diox-
ide, which is relatively nontoxic compared to the organometallic waste generated at the
end of the coupling reaction. A variety of coupling partners have been employed for the
formation of C–C, C–N, and C–P bonds in decarboxylative coupling reactions.[4]

Transition-metals such as Pd, Ni, Cu, and Ag are generally used as the catalysts, and
metal-free conditions have also been reported.[5]

Allyl alkynes are one of the useful building blocks in organic synthesis.[6] Several
methods employing the transition-metal-catalyzed allylation of alkynes have been
reported.[7] We reported the synthesis of allyl alkynes via nickel-catalyzed decarboxyla-
tive coupling of alkynoic acids and allyl acetates.[8] While this was the first example of
the intermolecular decarboxylative allylation of an alkyne, intramolecular decarboxyl-
ation of allyl esters was reported by Tunge and coworkers.[9] Although they reported
palladium-catalyzed intramolecular decarboxylation, they provided only a few examples
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of the decarboxylation of allyl alkynoic esters. Therefore, general methods of intramo-
lecular decarboxylation for the synthesis of allyl alkynes are in demand.
A variety of synthetic methods for the preparation of esters have been developed. It

is well known that allyl and benzyl primary amines react with carboxylic acids to give
the corresponding allyl and benzyl esters via deamination in the presence of NaNO2.

[10]

During our studies of decarboxylative coupling reactions, we found that the preparation
of allylic alkynoic esters from the reaction with allyl amines has not been reported. In add-
ition, only a few examples of the intramolecular decarboxylative coupling of allylic alkynoic
esters have been documented.[9] Herein, we report the synthesis of allyl alkynes via the
intramolecular decarboxylation of alkynoic esters, which were prepared by deamination.

Results and discussion

To accomplish this goal, we evaluated the optimal conditions for the formation of allyl
esters from allyl amines and phenyl propiolic acid. When allyl amine (1) was reacted
with NaNO2 and phenylpropiolic acid in the presence of several solvents containing
water, the desired allyl phenyl propiolate (3a) was formed in low yields (entries 1–3).
The reactions were carried out in dried solvents, such as dioxane, CH3CN, and toluene
to give the desired product 3a in 52, 26, and 31% yield, respectively (entries 4–6).
When the amount of phenylpropiolic acid was increased to three equivalents, 3a was
formed in 86% yield (entry 7). By employing HCl instead of additional phenylpropiolic
acid, the desired product was obtained in 92% yield when the reaction was conducted
with one equivalent of HCl (entry 8). However, the addition of two equivalents of HCl
with 1.0 equivalent of phenylpropiolic acid did not provide a satisfactory result (entry
9). The optimal conditions for the preparation of allyl alkynoic esters are as follows:
allyl amine (1.0 equiv), HCl (1.0 equiv), and NaNO2 (2.0 equiv) were reacted at 0 �C for
30min; alkynoic acid (2.0 equiv) was then added to the reaction mixture and stirred at
25 �C for 6 h (Table 1).

Table 1. Optimal conditions for deaminative esterificationa.

Entry
Ratio

1a/NaNO2/2a Solvent Yield (%)d

1 1/2/2 Dioxane/H2O 19
2 1/2/2 CH3CN/H2O 12
3 1/2/2 Toluene/H2O Trace
4 1/2/2 Dioxane 52
5 1/2/2 CH3CN 26
6 1/2/2 Toluene 32
7 1/2/3 Dioxane 86
8b 1/2/2 Dioxane 92
9c 1/2/1 Dioxane 45
aReaction conditions: 1a (0.3 mmol) and NaNO2 were reacted at 0 �C for 30min; 2a was then added and the reaction
proceeded at 25 �C for 6 h.

bHCl (0.3mmol) was added.
cHCl (0.6mmol) was added.
dDetermined by 1H NMR with internal standard.
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Further, the conditions for the intramolecular decarboxylation were optimized. When
Pd(PPh3)4 was employed and the reaction was allowed to proceed at 100 �C for 12 h,
the desired decarboxylated allyl alkyne 4a was formed in 77% yield (entry 1). The use
of Pd(dba)2 as a palladium source for reaction with ligands like PPh3, 1,4-bis(diphenyl-
phosphino)butane (dppb), and Xantphos afforded the desired product 4a in 60, 67, and
82% yields, respectively (entries 2–4). The highest product yield was obtained with
digylme as the solvent (entries 5–7) (Table 2).
Under the optimal conditions, various aryl alkynoic acids were evaluated for the for-

mation of allyl alkynoic esters. As expected, when phenylpropiolic acid was employed
under the optimal conditions, the desired product 3a was obtained in 90% isolated
yield. The reactions with ortho-, meta-, and para-methyl substituted phenylpropiolic
acids afforded the allylated products 3b, 3c, and 3d in 62, 85, and 65% yields. In add-
ition, the reactions with ortho-, meta-, and para-methoxy-substituted phenylpropiolic
acids also afforded good yields of the allylated congeners. 4-Biphenyl and 1-naphthyl
propiolic acids gave the corresponding products 3h and 3i in 63 and 80% yields,
respectively. 4-Bromophenylpropiolic acid gave 3j in 63% yield. Phenylpropiolic acids
having ketone and ester groups provided the desired products 3k and 3l, respectively,
in good yields (Scheme 1).
The intramolecular decarboxylation was conducted with these allyl alkynoic esters.

Phenylpropiolic acid provided the desired allyl alkyne 4a in 90% isolated yield. Methyl-
and methoxy-substituted allyl phenylpropiolates afforded the desired products in good
yields. Allyl 4-biphenylpropiolate 3h gave 4h in 72% yield. Allyl 4-acetylphenylpropio-
late 3k also provided 4k in 55% yield. However, the desired products were not obtained
in pure form via reactions with other allyl propiolates, such as 3i, 3j, and 3l. They all
showed many unidentified spots in TLC (Scheme 2).

Conclusion

In summary, allyl alkynoic esters were synthesized via deaminative esterification. The
reaction of an allyl amine, NaNO2, HCl, and alkynoic acid in a ratio of 1:2:1:2 afforded
the desired allyl alkynoic esters in good yields. Pd(dba)2/Xantphos was the optimal cata-
lytic system for intramolecular decarboxylation in the synthesis of allyl alkynes.

Table 2. Optimal conditions for intramolecular decarboxylationa.

Entry Pd Ligand Solvent Yield (%)b

1 Pd(PPh3)4 – Toluene 77
2 Pd(dba)2 PPh3 Toluene 60
3 Pd(dba)2 Dppb Toluene 67
4 Pd(dba)2 Xantphos Toluene 82
5 Pd(dba)2 Xantphos Diglyme 91
6 Pd(dba)2 Xantphos DMSO 24
7 Pd(dba)2 Xantphos DMF 47
aReaction conditions: 3a (0.3mmol), Pd (0.03mmol), and ligand (0.06mmol) were reacted in solvent (1.0mL) at 110 �C for 12h.
bDetermined by 1H NMR with internal standard.
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Experimental details

All solvents and reagents were purchased and used without further purification. Thin-
layer chromatography (TLC) on precoated plated of silica gel was performed on TLC
silica gel 60 F254 with ethyl acetate/n-hexane (2:8) systems. Preparative flash chroma-
tography was performed by elution from columns of silica gel (230–400 mesh size). The
TLC plates were visualized by shortwave (254 nm) UV light. Melting points were deter-
mined on a capillary melting point apparatus and are uncorrected using electrothermal
melting point apparatus. 1H NMR (500MHz) and 13C NMR (125MHz) spectra were
recorded in CDCl3 using VARIAN VnmrJ. Chemical shifts are given in parts per mil-
lion (ppm) downfield from tetramethylsilane (TMS) as an internal reference and cou-
pling constants (J-values) are in hertz (Hz).

General procedure for the synthesis of ally alkynoic esters

The aqueous solution of HCl (1.0mmol) and NaNO2 (2.0mmol) was mixed with allyl
amine (1.0mmol) in 1,4-dioxane (5mL). The resulting mixture was stirred about 30min
at 0 �C. After that, phenylpropiolic acid (2.0mmol) was added to the mixture and
stirred at room temperature for 6 h. The reaction mixture was diluted with EtOAc, and

Scheme 1. Synthesis of allyl alkynoic estersa. aReaction conditions: 1 (1.0mmol), NaNO2 (2.0mmol),
and HCl (1.0mmol) were reacted at 0 �C for 30min and reacted with 2 (2.0mmol) at 25 �C for 6 h.
Numbers in parentheses are isolated yields.
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washed with water for three times. The organic layer was dried over MgSO4 and then
the solvent was evaporated under reduced pressure. The crude mixture was purified by
column chromatography on silica gel (hexane:EtOA ¼ 10:1).
Aryl allyl propiolate (1.0mmol), Pd(dba)2 (0.1mmol) and Xantphos (0.2mmol) were

mixed in diglyme at 110 �C for 12 h. The resulting mixture was diluted with EtOAc and
washed with water. The organic layer was dried over MgSO4 and then the solvent was
evaporated under reduced pressure. The crude mixture was purified by column chroma-
tography on silica gel (hexane:EtOA ¼ 20:1).

Selected product

Allyl 3-phenylpropiolate (3a)

Propiolic acid (146.0mg, 1.0mmol) afforded 3a (167.4mg, 0.9mmol, 90% yield) as col-
orless oil. 1H NMR (400MHz, CDCl3) d 7.61–7.58 (m, 2H), 7.49–7.36 (m, 3H), 5.98
(ddt, J¼ 17.1, 10.4, 5.9Hz, 1H), 5.44–5.38 (m, 1H), 5.34–5.30 (m, 1H), 4.74–4.72 (m,
2H); 13C NMR (101MHz, CDCl3) d 153.8, 133.1, 131.2, 130.7, 128.6, 119.54, 119.49,
86.6, 80.4, 66.6; MS (EI) m/z: 186; Anal. Calcd for for C12H10O2: C, 77.40; H, 5.41;
Found: C, 77.51; H, 5.55.[11]

Pent-4-en-1-ynyl benzene (4a)

Allyl 3-phenylpropiolate (186.2mg, 1.0mmol) afforded 4a (127.8mg, 0.9mmol, 90%) as
colorless oil. 1H NMR (400MHz, CDCl3) d 7.45–7.40 (m, 2H), 7.31–7.26 (m, 3H),

Scheme 2. Synthesis of allyl alkynesa. aReaction conditions: 3 (1.0mmol), Pd(dba)2 (0.1mmol), and
Xantphos (0.2mmol) were reacted in diglyme at 110 �C for 12 h. Numbers in parentheses are iso-
lated yields.
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5.96–5.84 (m, 1H), 5.44–5.38 (m, 1H), 5.19–5.15 (m, 1H), 3.20 (dt, J¼ 5.3, 1.8Hz, 2H);
13C NMR (101MHz, CDCl3) d 132.5, 131.6, 128.2, 127.8, 123.7, 116.3, 86.6, 82.9, 23.7;
MS (EI) m/z: 142; Anal. Calcd for C11H10: C, 92.91; H, 7.09; Found: C, 92.88;
H, 7.12.[9b]

Full experimental detail and 1H and 13C NMR spectra have been provided in
supporting information. This material can be found via the “Supplementary Content”
section of this article’s webpage.
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