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A novel sulfonylureido pyridine series exemplified by compound 19 yielded potent inhibitors of FBPase
showing significant glucose reduction and modest glycogen lowering in the acute db/db mouse model for
Type-2 diabetes. Our inhibitors occupy the allosteric binding site and also extend into the dyad interface
region of tetrameric FBPase.
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Targeting fructose-1,6-bisphosphatase (FBPase) is a potentially
viable approach for glucose control in Type-2 diabetes (T2D).
Numerous publications have recently appeared describing FBPase
inhibitors1 and, furthermore, molecules from Metabasis Inc. have
been advanced to human clinical trials.2 Besides its role in gluco-
neogenesis control, FBPase has also been implicated in glucose
sensing and in regulating insulin secretion in b-cells.3 We have pre-
viously described our aminothiazole class of small molecule inhib-
itors of FBPase which were shown to significantly lower fasting
glucose levels in a transgenic mouse model of T2D.4 During the
optimization phase we investigated the liability of advanced mol-
ecules to be oxidized to thioureas which have been associated with
lipidosis. Although, we concluded that the very low level of thio-
urea metabolite measured in this study not to be a potential risk,
we also identified six-membered (hetero)aromatic bioisosteres of
aminothiazoles as potent FBPase inhibitors, which are the subject
of this paper.

As previously outlined, our series occupy the allosteric AMP
binding site and reach through the sulfonylureido linker into a
ll rights reserved.

+41 61 6886459.
second binding region, at the dyad interface of tetrameric FBPase.4

In the interface region, there are direct p-stacking interactions
between the terminal thiazole rings of two adjacent ligands as well
as several strong van der Waals interactions between highly polar-
izable ligand substituents, such as –Br, –SMe, or –Cl and the side
chains of Met18A/C (Fig. 1, left panel). Activity in the thiazole ser-
ies could be increased by up to a factor of 80 by these specific sub-
stitutions. In this paper, we will focus on the replacement of the
aminothiazole motif while trying to satisfy the main recognition
motifs (p-stacking of aromatic ring, polarizable substituent close
to Met18) and discuss the evolving SAR.5 The structure–activity
relationship of the (hetero)aromatic sulfonylureido moiety occu-
pying the AMP binding site paralleled that of the aminothiazole
series and could be transferred to a considerable extent to the
new series reported here. We mainly use 3-Cl substituted phenyl
and 5-(2-methoxy-ethyl)-4-methyl substituted thiophenyl (Table
1), which have been identified as high affinity fragments in our
previous publication.4 While both meta-Cl in the phenyl and
b-methyl in the thiophene series occupy the back pocket in the
AMP binding site, the methoxyethyl substituent in the a-position
of the thiophene ring makes additional non-polar interactions with
Leu30 and Val160 of human liver FBPase (X-ray structure not
shown) further enhancing the binding affinity in this series.
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Figure 1. Left: X-ray structure of human liver FBPase with compound 1 (cyan). The meta-chlorophenyl ring occupies the AMP binding region while the bromothiazole moiety
is involved in interactions at the dyad interface, including contacts to a neighboring ligand (green). Solvent-accessible surfaces of the two protein chains A and C are colored
white and gold, respectively. Right: X-ray structure of FBPase dyad interface region in complex with two ligands 10 (cyan, green). Hydrogen bonds of the urea-substituted
pyridines are depicted with red, dashed lines.6
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FBPase inhibition: N-heterocycle analoguesa
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Table 1 (continued)

Entry R1 R2 HL IC50 (lM) ML IC50 (lM) mEC50 (lV)
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Table 1 (continued)

Entry R1 R2 HL IC50 (lM) ML IC50 (lM) mEC50 (lV)

20
S

OH

N

F F
F

0.35 4 8.3

21
S

O

O N

F F
F

0.52 7.3 5.1

22 S
O

N

F F
F 1.7 8.3 19

a HL IC50 and ML IC50 values represent potency of FBPase inhibitors against human liver and mouse liver FBPase, respectively, as determined in enzyme inhibition assays
described previously.9 mEC50 values are a measure of efficacy of FBPase inhibitors in cultivated primary mouse hepatocytes to suppress glucose production.10
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Scheme 1. Outlining sulfonamide approach for the preparation of FBPase inhibitor 19.
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The dichlorophenyl analog 2 was a first example of a thiazole
replacement with modest enzymatic activity against both human
and mouse isoforms of FBPase although exhibiting poor efficacy
in the mouse hepatocyte assay (Table 1). Due to the strong, positive
impact of –Br substitution on FBPase binding, we performed a vir-
tual screen of available building blocks that would position the Br
atom close to the Met18 side chains. From this exercise, 6-Br-
substituted indoles and subsequently indazoles could be identified.
Compound 6 showed both impressive activities in the enzymatic as
well as the cellular assay, with a mouse EC50 of 6.1 lV. As part of the
multi-dimensional optimization process, compounds were rou-
tinely submitted to safety assays such as the AMES test for genotox-
icity where positive results were obtained for FBPase inhibitors
bearing the indazole moiety.7 Typically, a greater than two-fold
induction of mutant colonies was found in the TA98 strain after
metabolic activation. Blocking the vulnerable 5-position on the
indazole ring with Cl reduced the AMES activity but abolished
FBPase inhibition as well. Replacing the indazole by imidazopyri-
dine 7 removed the AMES activity but yielded also only modest
inhibition of the enzyme.

With the help of molecular modeling and searches in the small
molecule X-ray Cambridge Structural Database8 we identified
urea-substituted pyridines as potential bioisosteres of indazoles.
These replacements (Table 1, compounds 8–10) were well toler-
ated provided that the terminal nitrogen atom carried at least
one hydrogen atom. The hypothesis that, in the binding conforma-
tion, this hydrogen atom was involved in an intramolecular hydro-
gen bond was nicely confirmed by X-ray crystallography (Fig. 1,
right panel). The crystal structure further revealed a hydrogen
bond between the proximal nitrogen atom of the urea substituent
with the O@C backbone of Thr27 from a neighboring subunit (li-
gand A with Thr27C and ligand C with Thr27A, respectively), and



Table 2
ADME profile and mouse PK/PD parameters of selected aminopyridines

FBPase inhibitors 16 18 19 20 21

Mouse EC50 (lM) 8.9 2.7 5.9 8.3 5.1
Cl(human)a (ll/min/mg protein) 10.0 Unstable nd 28 Unstable
Cl (mice)a (ll/min/mg protein) 12.1 Unstable 31 10 Unstable
Solubility (mg/mL) 0.53 0.16 >0.49 >0.57 >0.62
PAMPAb Pe (�10�6/s) 4.0 ndc 1.7 0.7 1.4
Plasma levels at 6 h (ng/mL) 4091 nd 2794 6799 nd
Liver-to-plasma ratio 17.4 nd 10.5 8.9 nd
Glucose reduction after 6 hd (%) 31f 16e 38f 36f 29f

Liver glycogen reduction after 6 h (%) 18 Increased by 21 33f 8 5

a Microsomal intrinsic clearance.
b PAMPA is a prediction assay for oral absorption.13

c nd = not determined measurement.
d Acute glucose lowering in db/db mouse model [dose = 100 mg/kg po].
e Acute glucose lowering in db/db mouse model [dose = 200 mg/kg po].
f Significantly different from vehicle (p <0.05).
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nicely illustrates the planarity of the urea-substituted pyridine
resulting in extended p-stacking of both heterocycles. Thus, de-
spite having formally two more hydrogen-bonding groups, the ure-
ido analog 8 acts as a bioisostere of the bicyclic indazole 6.

Simplifying the structure to the aminopyridine 11 maintained
strong FBPase inhibition but induced again AMES activity. Amine
alkylation however, as in 12, fixed this flaw. The mutagenicity po-
tential was also consistently overcome when 4-Br replacements
were identified such as thiomethoxy in 13, methoxy- in 14 and
the CF3 group in compound 15. The 4-trifluoromethyl aminopyri-
dines were further pursued and gave efficacious compounds not
requiring the amine functionality such as 19 and 20. The esterase
labile acetates 18 and 21 were prepared to explore the potential
modulation of pharmacokinetic properties of the parent alcohols
17 and 20, respectively. Interestingly, no significant loss of
in vitro efficacy was observed following this transformation.

Our general and straightforward synthetic approach to the ami-
nopyridine series can be exemplified with the CF3-substituted
derivative 19 (Scheme 1). 2-Bromo-3-methyl-thiophene was trans-
formed to the corresponding Grignard reagent which was treated
with toluene-4-sulfonic acid 2-methoxyl ethyl ester affording com-
pound 23 in a modest 51% yield. Formation of the sulfonyl chloride
24 using the DMF–sulfur trioxide complex followed by chlorina-
tion of the resultant sulfonate with thionyl chloride was achieved
in an overall 88% yield. Ammonolysis yielded sulfonamide 25
which was finally coupled to the phenyl-carbamate derivative of
6-methyl-4-trifluoromethyl-pyridin-2-ylamine 26 using triethyl-
amine as base.

A series of 4-trifluoromethyl aminopyridines with promising
properties (high aqueous solubility and PAMPA permeability) and
good efficacy in primary hepatocytes were further profiled in the
acute, db/db mouse model for T2D.11 Compounds were p.o. admin-
istered (100 mg/kg or 200 mg/kg) to 15 week-old db/db mice 4 h
after food removal (in the morning). Surprisingly and in contrast
to our previously described aminothiazole series, aminopyridines
16, 19, and 20 that were in vivo tested showed high liver partition-
ing. Furthermore, all the selected FBPase inhibitors 16, 19–21, ex-
cept 18, decreased significantly blood glucose levels in comparison
to vehicle at 6 h post-dosing (overall, reduction reached 29–38%
compared to vehicle, p <0.05, see Table 2).12 Liver glycogen was
significantly decreased after treatment with compound 19.

Looking at derisking the potential for toxic metabolite forma-
tion from our original aminothiazole FBPase inhibitor series, we
proceeded to successfully identify N-heterocycle isosteres that
maintained strong in vitro activity against this important enzyme
in the gluconeogenesis pathway. Furthermore, robust glucose
reduction in an acute mouse model for T2D was demonstrated
with a set of CF3-substituted aminopyridines.
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