LIBRARY

Synthesis of CBD and Its Derivatives Bearing Various C4'-side Chains with a Late-Stage Diversification Method

Xudong Gong, Changliang Sun, Melkamu Alemu Abame, Wenqiang Shi, Yuanchao Xie, Wanbin Xu, Fuqiang Zhu, Yan Zhang, Jingshan Shen, and Haji Akber Aisa

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02880 • Publication Date (Web): 30 Dec 2019

Downloaded from pubs.acs.org on January 1, 2020

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

[^0]
Synthesis of CBD and Its Derivatives Bearing Various
 C4'-side Chains with a Late-Stage Diversification Method

Xudong Gong, ${ }^{\dagger}, \perp$ Changliang Sun, ${ }^{\S}$ Melkamu Alemu Abame, ${ }^{\ddagger}$ Wenqiang Shi, \ddagger Yuanchao Xie ${ }^{\ddagger}$, Wanbin Xu, ${ }^{\ddagger}$ Fuqiang Zhu, ${ }^{\S}$ Yan Zhang, ${ }^{\ddagger}$ Jingshan Shen, ${ }^{*}$, ${ }^{\ddagger}$ and Haji A. Aisa*, \dagger

${ }^{\dagger}$ The Key Laboratory of Plant Resources and Chemistry in Arid Regions and Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, People's Republic of China
${ }^{\perp}$ University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China.
§Topharman Shanghai Co., Ltd., Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201209, People's Republic of China
*CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China

Abstract

A novel synthetic route for making (-)-CBD and its derivatives bearing various C 4 '-side chains is developed by a late-stage diversification method. Starting from commercially available phloroglucinol, a key intermediate (-)-CBD-2OPiv-OTf is efficiently and regioselectively prepared and further undergoes Negishi cross-coupling to furnish (-)-CBD. This approach allowed an efficient synthesis of (-)-CBD in a five-step total 52% yield on a 10 g scale. Furthermore, diversification on the C 4 'side chain with this method can be realized in a wide range.

Cannabinoids as the hallmark constituents of Cannabis and their analogs have been drawing keen attention from scientists due to their potential medical use. ${ }^{1,2}(-)$-Cannabidiol $((-)-\mathrm{CBD})$ (Figure 1), a nonpsychotropic cannabinoid, has been approved for the treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome in patients 2 years
of age and older, by the United States Food and Drug Administration (U.S. FDA) in June, 2018. ${ }^{3}$ Cannabidivarin (CBDV) is currently in phase II clinical trials for the treatment of epilepsy and in early clinical development for the treatment of autism spectrum disorders. ${ }^{4}$ And other natural and synthetic derivatives of cannabidiol especially those with various C4'-side chains in place of the pentyl group, such as cannabidiorcol (CBD-C1) and KLS-13019, also demonstrate attractive biological activity. ${ }^{1,2,5,6}$ However, the bioactivities of many cannabinoids have not been well-studied, partially due to the lack of availability either by natural product separation or chemical synthesis. ${ }^{5,7}$ Thus a synthetic way to obtain these cannabinoid compounds would enable more understanding of their pharmacological profiles.

Figure 1. (-)-CBD and its natural or synthetic derivatives with various side chains in place of the pentyl group.

At present, CBD for pharmaceutical use is mainly extracted and purified from Cannabis sativa L. plants. ${ }^{8}$ Though studies on CBD chemistry have been going on for about 80 years, ${ }^{9-14}$ no significant progress has been made in this area till now. Conventionally, each of CBD and its derivatives is prepared by Friedel-Crafts alkylation of specific resorcinol which bears a side chain at C5 site with (+)-p-mentha-2,8-dien-1-ol (A). Condensation of olivetol with \mathbf{A} in the presence of boron trifluoride as a weak acid gives the stereospecific CBD. ${ }^{15}$ The acid condition required by this strategy and poor regioselectivity of the aromatic ring, inevitably, contributed to significant formation of byproducts, such as THC and abnormal cannabidiol (abn-cbd), ${ }^{11}$ which is the reason for low yields and why cumbersome purification process is needed to obtain pure CBD. ${ }^{9}$ Furthermore, a specific resorcinol derivative that has to be prepared by multiple steps is required as the starting material for each CBD derivative, which makes the structural modification work of CBD laborious. Hence, a generally applicable modular way allowing late-stage structural diversification would be suitable.

Through retrosynthetic analysis, we proposed our synthetic strategy for $(-)$-CBD and its C4'-substituted derivatives as outlined in Scheme 1. Considering that 5-substituted resorcinol displayed poor regioselectivity between the two nucleophilic substitution sites, we selected commercially available symmetric phloroglucinol, which has been used in the synthesis of THC and its analogs ${ }^{16-19}$ as the starting material, to avoid the generation of positional isomers (abnormal CBDs) during the synthesis of $\mathbf{1}$. In addition, the key intermediate $\mathbf{3}$ could be prepared from 1 in two steps through regioselective triflation and activation/protection. Finally, (- - CBD and its derivatives could directly derive from $\mathbf{3}$ by late-stage cross-coupling chemistry. Herein, we reported a detailed study on this elegant approach to construct CBD and its analogs using (-)-CBD-2OPiv-OTf as a building block for the late-stage introduction of side chains by Negishi cross-coupling reaction.

Scheme 1 Synthesis of (-)-CBD and its derivatives bearing various C4'-side chains with a late-stage diversification strategy

As Friedel-Crafts alkylation of phloroglucinol with \mathbf{A} in a ratio of 1:1.5 gave the target compound 1 only in 50% yield, similar to the result of a patent method, ${ }^{20}$ we started our study with the aim of improving the yield of this step. A considerable number of experiments have shown that double alkylation of phloroglucinol was the major side reaction, so a large excess of phloroglucinol (10 eq), which can be recovered after the reaction by simple filtration, was used to avoid double alkylation, leading to the desired product $\mathbf{1}$ in an excellent 80% yield (Scheme 2).

Regioselective triflation of the C4' phenolic hydroxyl group of $\mathbf{1}$ has never been reported previously, despite the fact that various ways of sulfonylation have been developed over the past years. ${ }^{18,}{ }^{19,}{ }^{21-24}$ We hypothesized that the C 4 ' phenolic hydroxyl group can be differentiated from the other two at C2' and C6' positions due to the steric hindrance of the terpenoid moiety and thus selective functionalization of the least hindered para-hydroxy group at C4' position would be possible. Accordingly, we performed an extensive investigation on the regioselective triflation. The result revealed that aryl triflate $\mathbf{2}$ could be smoothly prepared by treatment of $\mathbf{1}$ with $\mathrm{Tf}_{2} \mathrm{O}$ in the presence of 2,6-lutidine at -30 to -20 ${ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. We used 1.5 equiv of $\mathbf{1}$, which could be recycled after reaction, to prevent double triflation. Finally, triflate 2 was isolated by silica gel column chromatography in 78.1\% yield (Scheme 2).

Scheme 2 The Synthetic Route of Triflate 2

Transition metal-mediated reactions such as Stille cross-coupling, Kumada cross-coupling, Suzuki-Miyaura cross-coupling, and especially Negishi cross-coupling reaction, which was discovered in the 1970s, have been widely utilized for carbon-carbon bond formation, including bond formation between trifluoromethanesulfonate and alkyl group. ${ }^{25-32}$ To prepare CBD efficiently, initially, we attempted to introduce the pentyl side chain to 2 directly via $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ bond formation (Table 1, entry 1). Disappointingly, although cross-coupling reactions
using known Pd or Fe catalysts and various ligands and solvents have been carried out, unsatisfied yields were obtained (data not shown). The highest yield obtained was about 20% by treating 2 with excess $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}(10 \mathrm{eq})$ in the presence of LiCl and a catalytic amount of $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$. We presumed that it was difficult to form the organopalladium intermediate state through the oxidative addition of a metal to the electron-rich phenolate state of $\mathbf{2}$ in the basic enviroment of the coupling reaction. ${ }^{17,33}$ Taking into account this problem, we adopted the phenolic hydroxyl protection strategy to investigate whether the Negishi cross-coupling could be influenced by the phenolic protecting groups of $\mathbf{3}$ (Table 1).

Table 1. Protecting group survey in Negishi cross-coupling reaction

entry	PG	products, yield $(\%)^{a}$	products, yield $(\%)^{a, b}$
1	H	$/$	$\mathbf{C B D}, 20$
2	Me	$\mathbf{3 a}, 80$	$\mathbf{4 a a}, 56^{c}$
3	Ac	$\mathbf{3 b}, 95$	$\mathbf{4 b a}, 20$
4	$p-\mathrm{NO}_{2}-\mathrm{Bz}$	$\mathbf{3 c}, 96$	$\mathbf{4 c a}, 0$
5	Boc	$\mathbf{3 d}, 99$	$\mathbf{4 d a}, 50$
6	Piv	$\mathbf{3 e}, 95$	$\mathbf{4 e a}, 90^{d}$
7	Ts	$\mathbf{3 f}, 95$	$\mathbf{4 f a}, 81$

${ }^{a}$ The isolated yields were calculated after purified by column chromatography unless otherwise mentioned. ${ }^{b}$ The reactions were conducted on a $0.5-1 \mathrm{mmol}$ scale unless otherwise noted. ${ }^{c}$ Reaction was conducted with the same condition except using 3 equiv of $\mathrm{C}_{5} \mathrm{H} 11 \mathrm{ZnCl}$ and 3 equiv of LiCl . ${ }^{d}$ Reaction was performed on a 28 g scale.
$\mathbf{3 a}{ }^{9}, \mathbf{3} \mathbf{b}^{34}, \mathbf{3} \mathbf{c}^{35}, \mathbf{3} \mathbf{d}^{36}, \mathbf{3} \mathbf{e}^{37}$ and $\mathbf{3 f}^{38}$ were new compounds but could be prepared on the basis of the reference literature in yields of $80 \%, 95 \%, 96 \%, 99 \%, 95 \%$ and 95%, respectively. Methyl as an electron-donating protecting group was first employed to prepare 4aa (Table 1, entry 2). The reaction of methyl ether 3a with $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}$ in the presence of LiCl and a catalytic amount of $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ gave $\mathbf{4 a a}$ in a higher yield (56%) than that obtained by the direct preparation of CBD (Table 1, entry 1). We hypothesized that the unsatisfied yield of Negishi cross-coupling as displayed in 4aa is caused by the difficulty of oxidative addition in the presence of -OMe. Next, we explored the possibility of efficiently accessing $\mathbf{4}$ from $\mathbf{3}$ with electron-withdrawing protecting groups ($\mathbf{3 b} \mathbf{-} \mathbf{f}$).

Ac group (3b), $\mathrm{p}-\mathrm{NO}_{2}-\mathrm{Bz}$ group (3c), and Boc (3d) group as protecting groups were then utilized to prepare $\mathbf{4 b a}, \mathbf{4 c a}$, and $\mathbf{4 d a}$, respectively (Table 1, entries 3-5); however, no acceptable yield was obtained. Particularly, when treating $3 \mathbf{c}$ with $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}$ in the presence of LiCl and a catalytic amount of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ in anhydrous THF at $55-60{ }^{\circ} \mathrm{C}$, no trace of p-nitrobenzoic ester $\mathbf{4 c a}$ was detected (Table 1, entry 4). Intermediates $\mathbf{3 b}, \mathbf{3 c}$, or $\mathbf{3 d}$ were supposed to be preferentially hydrolyzed under the alkaline condition of the Negishi cross-coupling reaction, which resulted in low yields. Then we tried the "Piv" group (3e), which is a large sterically hindered protecting group and is relatively more stable than other protecting groups under basic conditions. To our delight, 4ea was successfully obtained in an excellent yield (90%) (Table 1, entry 6). Sulfonate ester 4fa (Table 1, entry 7) was prepared by reaction of Ts ester $\mathbf{3 f}$ with $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}$ in the presence of LiCl and a catalytic amount of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ at $60^{\circ} \mathrm{C}$ for 3 h in a little lower yield (81%) than that of $4 \mathbf{e a}$.

It seemed that a "stable" electron-withdrawing phenolic protecting group (Table 1, entry 6 $v s$ entry 2) could promote the formation of the organopalladium intermediate state through the
electronic effect in the Negishi cross-coupling reaction. Obviously, the pivalate group was a more superior protecting group; thus, (-)-CBD-2OPiv-OTf (3e) as a building block was chosen to be applied to the late-stage introduction of side chains to the core of CBD by the Negishi cross-coupling reaction (Table 2).

Table 2. Negishi-coupling of the key intermediate with various organic zinc reagents ${ }^{a, b}$.

${ }^{a}$ The reactions were conducted on a 0.5 mmol scale under the conditions (0.1 equiv of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, 1.5$ equiv of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}$ and 1.5 equiv of LiCl in anhydrous THF at $55-60^{\circ} \mathrm{C}$) unless otherwise noted. ${ }^{b}$ The isolated yields were calculated after purified by column chromatography unless otherwise mentioned. ${ }^{c}$ The reaction was performed on a 28 g scale to give the purified product in 90% isolated yield. ${ }^{d}$ The reaction was performed on a 2.8 g scale to give the purified product in 82% isolated yield.

With the optimal protecting group confirmed, we surveyed the substrate scope of organic zinc reagent (5), which was prepared in one step by the transmetallation of the corresponding Grignard reagents or organolithium with zinc halide (ZnX_{2}) in anhydrous THF. ${ }^{39,40}$ To our delight, different pharmacologically interesting side chains were successfully coupled in good -to-high yields to the para position, including linear, branched, or cyclic alkyl groups, alkenyl groups, aryl groups, heteroaryl groups, and alkynyl groups. Among them, phenolic hydroxyl -protected derivatives $\mathbf{4 e}$ with an alkyl group (Table 2, $\mathbf{4 e}(\mathbf{a}-\mathbf{k})$) produced good yields
($80-90 \%$). With an increase in steric hindrance, the reaction yield decreased ($\mathbf{4 e d}, \mathbf{8 0 \%}$). Compound $\mathbf{4 e}$ with a cycloalkyl group (Table 2, $\mathbf{4 e}(\mathbf{f}-\mathbf{h})$) could also be isolated in excellent yields, and the tension of the cycloalkyl ring does not affect the yield, as shown in the case of cyclopropyl ($\mathbf{4 e c}, \mathbf{8 8 \%}$ vs $\mathbf{4 e f}, \mathbf{8 9 \%}$) and cyclopentyl groups ($\mathbf{4 e a}, \mathbf{9 0 \%}$ vs $\mathbf{4 e g}, \mathbf{8 7 \%}$). Interestingly, similar high yields for $\mathrm{sp}^{2}-\mathrm{sp}^{2}(\mathbf{4 e i}$ and $\mathbf{4 e g})$ and $\mathrm{sp}^{2}-\mathrm{sp}$ (4ek) cross-couplings as that of $\mathrm{sp}^{2-} \mathrm{sp}^{3}$ cross-coupling were observed. In addition, $\mathbf{4 e l}$ and $\mathbf{4 e m}$ with heteroaryl groups were also obtained in satisfactory yields.

As CBD is unstable in the presence of acids, ${ }^{41,42}$ the removal of Piv groups was carried out under basic conditions. ${ }^{43-47}$ Unexpectedly, subsequent de-protection of 4ea to afford CBD in an acceptable yield turned out to be unsuccessful under normal basic conditions. To improve the yield of this step, we tried different bases. 4ea was initially treated with 5 equiv KOH in different solvents (Table 3, entries 1 and 2) at reflux for 12 h . Disappointingly, CBD was only obtained in low-to-moderate yields. The yield of CBD got slightly improved when utilizing NaOMe in MeOH (Table 3, entry 3). By contrast, the use of NH_{3} (5 equiv) as the base in MeOH afforded CBD in only 20% yield (Table 3, entry 4). Surprisingly, $\mathrm{CH}_{3} \mathrm{MgBr}$ was found to be optimal among four different bases examined and provided CBD in an excellent 99\% yield (Table 3, entry 5).

Table 3. Optimization of Reaction conditions for the Removal of Piv groups ${ }^{a}$

	 4ea	$\mathrm{CH}_{3}^{\text {solve }} \underset{\text { temper }}{\text { base }}$	 (-)-CBD	
entry	base	solvent	conditions	Yield(\%) ${ }^{b}$
1	KOH	$\begin{gathered} \text { Water } / \mathrm{MeOH} \\ 1: 1 \end{gathered}$	reflux, 12 h	63
2	KOH	DCM/MeOH 1:1	reflux, 12 h	30
3	NaOMe	MeOH	reflux, 12 h	75
4	NH_{3}	MeOH	$\mathrm{rt}, 12 \mathrm{~h}$	20
5	$\mathrm{CH}_{3} \mathrm{MgBr}$	toluene	$110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	99

${ }^{a}$ The reactions were conducted on a 0.2 mmol scale under the conditions (5 equiv of base, solvent (2 mL), at reflux or room temperature for 12 h) unless otherwise noted. ${ }^{b}$ The isolated yields were calculated after purified by column chromatography unless otherwise mentioned. ${ }^{c}$ The reaction was performed on a 20 g scale.

With the optimized reaction conditions for the removal of Piv groups established, treatment of various phenolic hydroxyl-protected derivatives $\mathbf{4 e}(\mathbf{a}-\mathbf{k})$ with $\mathrm{CH}_{3} \mathrm{MgBr}$ gave the corresponding free phenol products $(\mathbf{6 a - k})$ in almost quantitative yields. Notably, CBD was obtained with a total isolated yield of 52% on a 10 g scale. The structure of CBD was confirmed by NMR analysis and single-crystal X-ray analysis (See Supporting Info, Fig. S78).

In summary, we have developed a versatile (-)-CBD-2OPiv-OTf that can be used as a key intermediate for the late-stage introduction of C 4 '-side chains by cross-coupling chemistry. This intermediate was used to efficiently prepare a wide range of CBD analogs especially bearing biologically more relevant alkyl side chains under mild conditions by Negishi cross-coupling reaction. Following the presented approach, an efficient five-step synthesis of $(-)-\mathrm{CBD}$ from commercially available materials was achieved in 52% total yield on grams scale.

EXPERIMENTAL SECTION

General Information. All reactions were performed under a nitrogen atmosphere using anhydrous techniques unless otherwise noted. All commercially available reagents and solvents were used directly without further purification unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) visualized under ultraviolet light. TLC analyses were performed on silica gel 60 F254 plates. The ESI mass spectra were determined on a THERMOLTQ. All high-resolution mass spectra (HRMS) were measured on a mass spectrometer (Agilent Technologies 6520) by using electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF). ${ }^{1} \mathrm{H}$ NMR ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data were recorded on 400 or 500 MHz instruments using TMS as an internal standard and are reported relative to their residual solvent signals. ${ }^{1} \mathrm{H}$ NMR data are presented as the chemical shift in ppm (multiplicity, coupling constant, and integration). The multiplicities are denoted as follows: s , singlet; d , doublet; t, triplet; q, quartet; m, multiplet; br, broad. Infrared spectra (IR) were measured on a Thermo Scientific Nicolet iS5 FT-IR Excalibur Series spectrometer and the intensity of the signals is described with w (weak), m (medium) and s (strong). The position of the absorption bands is reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. Broad bands are labeled with br. Melting points (MP) were measured on a $W R R-Y$ and are not corrected. Optical rotation measurements were recorded on an Autopol VI polarimeter and the sample concentration is given in $\mathrm{g} / 100 \mathrm{~mL}$.
(1'R, 2'R)-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,4,6-triol (1). To a stirred mixture of phloroglucinol $(83.0 \mathrm{~g}, 658 \mathrm{mmol})$ and boron trifluoride etherate $(0.933 \mathrm{~g}, 6.58 \mathrm{mmol})$ in anhydrous tetrahydrofuran $(100 \mathrm{~mL})$ at $(-10 \text { to } 0)^{\circ} \mathrm{C}$ was added a solution of $(+)$ - p-mentha-2,8-dien-1-ol $(10 \mathrm{~g}, 65.8 \mathrm{mmol})$ in anhydrous tetrahydrofuran. The reaction mixture was stirred at (-10 to 0) ${ }^{\circ} \mathrm{C}$ for 2 h , and TLC indicated the complete consumption of starting material. The reaction mixture was then treated with saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$, and concentrated before the residue was dispersed in toluene $(200 \mathrm{~mL})$. The mixture was cooled to below $20^{\circ} \mathrm{C}$ and filtered to recycle the excess phloroglucinol. And then the organic phase was diluted with toluene (200 $\mathrm{mL})$ and washed with saturated NaHCO_{3} solution $(200 \mathrm{~mL})$, water $(200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography starting from PE to PE / EA (1:10, V/V) afforded the product $\mathbf{1}$ as a white solid ($13.8 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{br}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{td}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO- d_{6}): $\delta 157.2,156.1,149.8,130.1,128.1,110.0,108.4$, 94.4, 44.4, 35.7, 30.8, 30.2, 23.8, 19.7. ESI-MS: m/z $261.33[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.10(\mathrm{br}$, $1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{br}, 1 \mathrm{H}), 4.92(\mathrm{br}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{td}, J=$ 11.7, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28-2.18 (m, 1 H), 2.14-2.06 (m, 1 H), 1.85-1.72 (m, 5 H$), 1.66(\mathrm{~s}, 3 \mathrm{H})$. IR(neat): 3380 br , $2922 w, 1629 m, 1610 m, 1523 w, 1470 m, 1304 w, 1240 w, 1224 w, 1223 m, 1152 m, 1137 w, 1054 w, 1005 w, 886 w$, 819w. MP: $108.5-109.2^{\circ} \mathrm{C} .[\alpha]_{D}^{20}=-126.4^{\circ}(c \quad 1.014, \mathrm{MeOH})$. The ${ }^{1} \mathrm{H}$ NMR data are consistent with the

literature. ${ }^{20}$

(1'R,2'R)-2,6-dihydroxy-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-4-yl

trifluoromethanesulfonate (2). A solution of $\mathrm{Tf}_{2} \mathrm{O}(7.20 \mathrm{~g}, 25.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.00 \mathrm{~mL})$ was added dropwise to a solution of 2,6-lutidine $(5.46 \mathrm{~g}, 51 \mathrm{mmol})$ and $\mathbf{1}(9.95 \mathrm{~g}, 38.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $(-30$ to -20$){ }^{\circ} \mathrm{C}$. After the mixture was stirred at $(-30 \text { to }-20)^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(30.0 \mathrm{~mL})$, and brine $(30.0 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (PE / EA $=20: 1$) to afford the pure product $\mathbf{2}$ as a white solid $(7.81 \mathrm{~g}, 78.1 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO $\left.-d_{6}\right): \delta 9.75(\mathrm{br}$,
$2 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.11-2.08 (m, 1H), 1.92-1.91 (m, 1H), 1.72-1.62 (m, 2H), $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, DMSO- d_{6}): $\delta 157.9,149.1,147.5,131.4,125.8,118.8(\mathrm{q}, ~ J=321.3 \mathrm{~Hz}), 118.2,110.4,99.5,43.8,36.1,30.7$, 29.6, 23.6, 19.4. ESI-MS: $\mathrm{m} / z 783.13[2 \mathrm{M}-\mathrm{H}]-{ }^{-1} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=-73.1$. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$, 391.0833; found, 391.0823. IR(neat): $3381 \mathrm{br}, 2928 w, 1614 s, 1513 w, 1445 \mathrm{~m}, 1424 \mathrm{~s}$, $1378 w, 1327 \mathrm{~m}, 1291 w, 1244 w, 1211 m, 1143 m, 1103 w, 1052 \mathrm{w}, 1010 w, 981 m, 896 w, 854 m, 825 w, 613 m, 589 w$. MP: $100-100.8^{\circ} \mathrm{C} .[\alpha]_{D}^{20}=-46^{\circ}(c 1.005, \mathrm{DCM})$.

(1'R,2'R)-2,6-dimethoxy-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-4-yl

trifluoromethanesulfonate (3a). ${ }^{9} \mathrm{Me}_{2} \mathrm{SO}_{4}(946 \mathrm{mg}, 7.5 \mathrm{mmol})$ was added dropwise at $0-10{ }^{\circ} \mathrm{C}$ to a mixture of $\mathbf{1}$ $(1.18 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.24 \mathrm{~g}, 9.00 \mathrm{mmol})$ in 10 mL of acetone. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EA $(80 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ to afford compound $\mathbf{3 a}$ as a colorless oil $(1.01 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO $\left.-d_{6}\right): \delta 6.69(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.83(\mathrm{td}, J=$ $11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO- d_{6}): $\delta 148.8,148.6,131.9,124.9,121.3,118.7(\mathrm{q}, J=322.6 \mathrm{~Hz}), 110.7,56.8,44.7,36.1$, 30.6, 29.3, 23.6, 19.1. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=-72.9$. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, 421.1292; found, 421.1298. IR(neat): $3071 w, 3004 w 2962 m, 2924 s, 2856 m, 1642 w, 1607 s, 1463 m, 1422 s, 1376 w$, $1350 w, 1247 s, 1218 s, 1142 s, 1119 s, 1082 w, 972 s, 888 w, 859 w, 844 m, 798 w, 762 w, 613 m, 509 w$.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(((trifluoromethyl)sulfonyl)oxy)-1',2',3',4'-tetrahydro-[1,1'-biphen yl]-2,6-diyl diacetate ${ }^{34}(\mathbf{3 b})$. A solution of acetic anhydride ($766 \mathrm{mg}, 7.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of dimethylaminopyridine (DMAP) ($367 \mathrm{mg}, 3.00 \mathrm{mmol}$) and $1(1.18 \mathrm{~g}, 3.00 \mathrm{mmol})$ in pyridine (10 $\mathrm{mL})$ at $(-10$ to 0$){ }^{\circ} \mathrm{C}$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EA (80 $\mathrm{mL})$ and washed with water $(50 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (PE $/ \mathrm{EA}=20: 1)$ to afford compound $\mathbf{3 b}$ as a yellow oil $(1.36 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 7.31(\mathrm{~s}, 2 \mathrm{H})$, $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 7 \mathrm{H}), 2.00-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 169.1,150.6,147.5$, $146.6,133.9,131.0,123.3,118.6(\mathrm{q}, J=321.3 \mathrm{~Hz}), 111.7,45.7,37.9,30.2,28.2,23.6,21.0,19.2$. ESI-MS: m / z $494.41\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=-72.7$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}, 494.1455$; found, 494.1460 . IR(neat): $3075 \mathrm{~m}, 2928 \mathrm{br}, 2833 \mathrm{~s}, 1770 \mathrm{~s}, 1644 \mathrm{w}, 1607 \mathrm{~m}, 1470 \mathrm{w}, 1427 \mathrm{~m}$, $1287 w, 1211 b r, 1141 w, 1103 w, 1038 w, 980 w, 900 w, 829 w, 799 w, 755 w, 702 w, 608 w, 523 w, 506 w$.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(((trifluoromethyl)sulfonyl)oxy)-1',2',3',4'-tetrahydro-[1,1'-biphen yl]-2,6-diyl bis(4-nitrobenzoate) ${ }^{\mathbf{3 5}} \mathbf{(3 c)}$. A solution of p-Nitrobenzoyl chloride ($1.39 \mathrm{~g}, 7.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of DMAP $(367 \mathrm{mg}, 3.00 \mathrm{mmol})$ and $1(1.18 \mathrm{~g}, 3.00 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $(0$ to -10$)^{\circ} \mathrm{C}$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EA (80 mL) and washed with water $(50 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ to afford compound $\mathbf{3 c}$ as a brown solid ($1.98 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$, $8.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{td}$, $J=12.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 151.2$, $150.5,147.2,146.9,134.5,134.1,131.9,131.8,131.2,124.5,123.0,118.7(\mathrm{q}, J=321.3 \mathrm{~Hz}), 112.2,46.0,38.6$,
29.8, 28.0, 23.3, 19.9. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=-72.5 . \mathrm{MP}: 118-119.8^{\circ} \mathrm{C}$.
(1'R,2'R)-2,6-bis((tert-butoxycarbonyl)oxy)-5'-methyl-2'-(prop-1-en-2-yl)-1', 2', 3',4'-tetrahydro-[1,1'-biphen $\mathbf{y l}]-4-\mathrm{yl}$ trifluoromethanesulfonate ${ }^{\mathbf{3 6}} \mathbf{(3 d)}$. A solution of Di-tert-butyl pyrocarbonate ($1.64 \mathrm{~g}, 7.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of DMAP $(367 \mathrm{mg}, 3.00 \mathrm{mmol})$ and $\mathbf{1}(1.18 \mathrm{~g}, 3.00 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $(-10 \text { to } 0)^{\circ} \mathrm{C}$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EA $(80 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography ($\mathrm{PE} /$ $\mathrm{EA}=20: 1)$ to afford compound $\mathbf{3 d}$ as a white solid $(1.76 \mathrm{~g}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 7.42(\mathrm{~s}, 2 \mathrm{H})$, $5.04(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 150.5,150.5,147.3,146.6,134.5 ., 130.8,121.7,118.6(\mathrm{q}, J=321.3 \mathrm{~Hz}), 111.7,84.4,45.5,37.9$, 30.2, 28.6, 27.6, 24.0, 19.2. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ (470 MHz , DMSO- d_{6}): $\delta=-72.7$. ESI-MS: $\mathrm{m} / z 610.43\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 610.2292$; found, 610.2300 . IR(neat): $2979 w, 2938 w, 1774 s, 1763 s$, $1602 w, 1472 w, 1426 m, 1398 w, 1373 m, 1328 w, 1277 s, 1242 s, 1219 s, 1149 s, 1097 s, 1023 w, 971 s, 867 m, 850 m$, $831 m, 777 \mathrm{w}, 765 w, 757 w, 641 w, 588 w$. MP: $85.5-87.5^{\circ} \mathrm{C} .[\alpha]_{D}^{20}=-96.3^{\circ}(c 1.019, \mathrm{DCM})$
(1^{\prime} R, 2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(((trifluoromethyl)sulfonyl)oxy)-1',2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$ 'tetrahydro-[1, $\mathbf{1}^{\prime}$-biphen $\mathbf{y l} \mathbf{- 2 , 6}$-diyl bis(2,2-dimethylpropanoate) ${ }^{37}$ (3e). A solution of pivaloyl chloride ($904 \mathrm{mg}, 7.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of DMAP $(367 \mathrm{mg}, 3.00 \mathrm{mmol})$ and $1(1.18 \mathrm{~g}, 3.00 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $(-10$ to 0$){ }^{\circ} \mathrm{C}$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EA $(80 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=$ 20:1) to afford compound 3 e as a white solid $(1.60 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 7.27(\mathrm{~s}, 2 \mathrm{H}), 5.03$ $(\mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{td}, J=11.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 2 \mathrm{H})$, $1.79-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 176.3,147.4,146.8,133.6 ., 130.8,123.4,118.6(\mathrm{q}, J=321.3 \mathrm{~Hz}), 111.7,45.1,39.2,38.3,30.5,29.1$, 27.1, 23.5, 19.6. ${ }^{19}$ F-NMR (470 MHz , DMSO- d_{6}): $\delta=-72.8$. ESI-MS: $\mathrm{m} / z 578.56\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 578.2394$; found, 578.2396 . IR(neat): $2980 w, 2932 w, 1760 \mathrm{~s}, 1600 w, 1481 w$, $1468 w, 1421 s, 1396 w, 1270 w, 1241 s, 1211 s, 1144 m, 1094 s, 1035 w, 983 m, 893 w, 875 m, 839 w$. MP: $59.0-61.1^{\circ} \mathrm{C}$. $[\alpha]_{D}^{20}=-77.4^{\circ}(c \quad 1.007, \mathrm{DCM})$.
(1^{\prime} R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(((trifluoromethyl)sulfonyl)oxy)-1',2',3',4'-tetrahydro-[1, $\mathbf{1}^{\prime}$ 'biphen $\mathbf{y l}]-2,6$-diyl bis(4-methylbenzenesulfonate) ${ }^{\mathbf{3 8}} \mathbf{(3 f)}$. A solution of p-toluenesulfonyl chloride ($1.43 \mathrm{~g}, 7.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of DMAP ($367 \mathrm{mg}, 3.00 \mathrm{mmol}$) and $\mathbf{1}(1.18 \mathrm{~g}, 3.00 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $(-10 \text { to } 0)^{\circ} \mathrm{C}$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EA $(80 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$.The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography (PE / $\mathrm{EA}=20: 1$) to afford compound $\mathbf{3 f}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 7.76(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{td}, J$ $=11.8,2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125 \mathrm{MHz}$, DMSO- d_{6}): $\delta 149.2,147.1,146.9,146.6,133.4,131.8,130.9,128.6,121.3,118.6(\mathrm{q}, ~ J=322.6 \mathrm{~Hz}), 112.1,45.7$, 38.0, 29.6, 28.2, 23.6, 21.6, 18.5. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=-72.4$. ESI-MS: $\mathrm{m} / z 718.44\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 718.1421$; found, 718.1433. IR(neat): $3108 w, 2930 w, 2895 w$, $1646 w, 1596 m, 1472 w, 1428 s, 1369 s, 1243 m, 1222 s, 1211 m, 1190 s, 1140 m, 1104 w, 1015 m, 980 m, 884 m, 765 m$, $758 m, 738 m, 705 w, 657 w, 589 w, 553 m, 533 w$. MP: $113.5-115.8^{\circ} \mathrm{C} .[\alpha]_{D}^{20}=-86.8^{\circ}(c 1.008, \mathrm{DCM})$.

General Procedure for the preparation of $\mathbf{4}$ by Negishi cross-coupling reaction ${ }^{39,40}$

Anhydrous zinc chloride (1.5 eq) and anhydrous lithium chloride (1.5 eq) was dissolved in anhydrous THF (5 mL) and cooled to $-10^{\circ} \mathrm{C} .{ }^{n} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{MgCl}(1.0 \mathrm{M}, 1.5 \mathrm{eq})$ was added dropwise via a syringe, and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 15 min and then warmed to room temperature and stirred for 1.5 h . In another flask, protected 3 ($0.5-1 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in anhydrous THF and transferred to the ${ }^{\mathrm{n}} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}$ solution via a cannula, and then $\operatorname{Pd}(d p p f) \mathrm{Cl}_{2}(0.1 \mathrm{eq})$ was added into the flask. The resulting mixture was purged by nitrogen for 15 min , the mixture was stirred at $55-60^{\circ} \mathrm{C}$ under oil bath. The reaction end point was monitored generally by TLC with the developing solvent of $40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in PE , visualized at UV254 nm. The reaction mixture was then cooled to room temperature and poured into ice $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Water and EA were added and the layers were separated. The aqueous phase was extracted with EA. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with PE / EA (50:1) as eluents to afford compound 4.

(1'R,2'R)-5'-methyl-4-pentyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl diacetate

(4ba). Following the general procedure described above and starting from 3b ($476 \mathrm{mg}, 1 \mathrm{mmol}$), the title compound 4ba was prepared as a colorless oil ($79.5 \mathrm{mg}, 20 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 6.76$ (s, $2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}$, $7 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.86$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 169.5,149.9,147.9,141.9,132.9,126.4,124.5,111.5$, 45.7, 37.9, 34.7, 31.3, 30.4, 30.3, 28.6, 23.7, 22.4, 21.1, 19.4, 14.4. ESI-MS: $\mathrm{m} / z 416.51\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 416.2795$; found, 416.2797. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{~s}, 2 \mathrm{H}), 5.56$ (br, 1 H), 4.67 (br. s, 1 H$), 4.61$ (br, 1 H), $3.92(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H})$, $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. IR(neat): 2958w, 2926br, 2857m, 1771s, 1429m, 1366m, 1200s, 1184s, 1149w, 153m, 1051w, 1032m, 888w. The ${ }^{1} \mathrm{H}$ NMR data are consistent with the literature. ${ }^{48}$
Di-tert-butyl ((1^{\prime} 'R,2'R)-5'-methyl-4-pentyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl) dicarbonate (4da). Following the general procedure described above and starting from 3d ($296 \mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound $\mathbf{4 d a}$ was prepared as a colorless oil ($129 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $6.83(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{td}, J=12,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.51$ $(\mathrm{m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$, $1.47(\mathrm{br}, 18 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}\right.$, DMSO $\left.-d_{6}\right): \delta 151.4,149.9$, 147.7, 142.1, 133.3, 126.4, 123.1, 111.4, 83.3, 45.5, 37.8, 34.7, 31.2, 30.6, 30.3, 29.0, 27.7, 24.0, 22.4, 19.3, 14.4. ESI-MS: $\mathrm{m} / z 532.52\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 532.3633; found, 532.3628. IR(neat): $3073 w, 2930 b r, 2858 s, 1760 s, 1643 w, 1624 m, 1574 w, 1456 m, 1394 w, 1370 s, 1243 s, 1146 s, 1102 m$, $1051 w, 1037 w, 971 w, 944 w, 884 m, 861 m, 777 m, 460 w$.
(1'R,2'R)-5'-methyl-4-pentyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl
$\mathbf{b i s}(\mathbf{2}, 2$-dimethylpropanoate) (4ea). Following the general procedure described above and starting from $\mathbf{3 e}(28 \mathrm{~g}$, 50.0 mmol), the title compound 4 ea was prepared as a colorless oil ($21.7 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz,DMSO- d_{6}): $\delta 6.66(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.48(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{td}, J=11.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, $1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{br}, 22 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO- d_{6}): $\delta 176.6,147.9$, $142.2,132.4,126.4,124.8,111.3,45.2,39.1,38.2,34.7,31.4,30.7,30.6,29.4,27.3,23.5,22.4,19.8,14.4$ HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 500.3734$; found, 500.3742 . IR(neat): $2962 s, 2930 s, 2872 m, 1755 s$, $1643 w, 1623 m, 1573 w, 1479 m, 1456 w, 1395 m, 1368 w, 1271 m, 1216 w, 1193 w, 1105 s, 1051 w, 1033 m, 982 w, 890 m$, $765 m, 757 m$.

(1'R,2'R)-5'-methyl-4-pentyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

bis(4-methylbenzenesulfonate) (4fa). Following the general procedure described above and starting from $\mathbf{3 f}$ (350 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound $\mathbf{4 f a}$ was prepared as an off-white solid ($252 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz,DMSO- d_{6}): $\delta 7.74(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{br}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H})$, $3.48-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 6 \mathrm{H}), 1.74-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125 \mathrm{MHz}$, DMSO- d_{6}): $\delta 149.1,147.3,146.4,142.9,132.5,130.7,128.5,127.4,122.8,119.4,111.7,45.7,37.8,34.5,30.9$, 30.1, 29.7, 28.6, 23.6, 22.3, 21.6, 18.7, 14.3. ESI-MS: $\mathrm{m} / \mathrm{z} 640.52\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{NO}_{6} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 640.2761$; found, 640.2755 . IR(neat): $2959 s, 2927 s, 1617 m, 1598 m, 1436 w, 1419 w$, 1377s, 1351s, 1191s, 1179s, 1104s, 1093m, 1016w, 983m, 958m, 815m, 765m, 741m, $675 m, 564 m, 527 w . ~ M P: ~$ $80.1-81.3^{\circ} \mathrm{C}$.

(1R,2R)-2',6'-dimethoxy-5-methyl-4'-pentyl-2-(prop-1-en-2-yl)-1,2,3,4-tetrahydro-1,1'-biphenyl (4aa).

Anhydrous zinc chloride ($408 \mathrm{mg}, 3 \mathrm{eq}$) and anhydrous lithium chloride ($128 \mathrm{mg}, 3 \mathrm{eq}$) was dissolved in anhydrous THF (5 mL) and cooled to $-10^{\circ} \mathrm{C} .{ }^{\mathrm{n}} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{MgCl}(3 \mathrm{~mL}, 1.0 \mathrm{M}, 3 \mathrm{eq})$ was added dropwise via a syringe, and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 15 min and then warmed to room temperature and stirred for 1.5 h. In another flask, protected $\mathbf{3 a}(420 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved in anhydrous THF and transferred to the ${ }^{n} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ZnCl}$ solution via a cannula, and then $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(73 \mathrm{mg}, 0.1 \mathrm{eq})$ was added into the flask. The resulting mixture was purged by nitrogen for 15 min , the mixture was stirred at $55-60^{\circ} \mathrm{C}$ under oil bath. The reaction end point was monitored generally by TLC with the developing solvent of $40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in PE, visualized at UV254 nm. The reaction mixture was then cooled to room temperature and poured into ice $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Water and EA were added and the layers were separated. The aqueous phase was extracted with EA. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with PE / EA (50:1) as eluents to afford compound 4aa was prepared as a colorless oil ($192 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 6.38(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{td}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 158.7,149.1,141.9,130.7,126.5,118.1,110.3,105.2,56.2,44.9,36.2$, $36.0,31.6,31.0,30.7,29.7,23.7,22.5,19.4,14.4$. ESI-MS: $\mathrm{m} / z 343.49[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.32(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{td}, J=$ $10.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3$ H), 1.63-1.56 (m, 5 H$), 1.38-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. IR(neat): 2956s, 2927s, 2855m, 2833w, $1642 w, 1608 m, 1581 s, 1453 s, 1418 m, 1375 w, 1346 w, 1233 m, 1196 w, 1158 w, 1119 s, 883 w, 823 w$. The ${ }^{1} \mathrm{H}$ NMR data are consistent with the literature. ${ }^{9}$

General Procedure for the preparation of 4 e by Negishi cross-coupling reaction

Anhydrous zinc chloride (1.5 eq) and anhydrous lithium chloride (1.5 eq) was dissolved in anhydrous THF (5 mL) and cooled to $-10{ }^{\circ} \mathrm{C} . \mathrm{RMgX}$ or $\mathrm{RLi}(1.5 \mathrm{eq})$ was added dropwise via a syringe, and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 15 min and then warmed to room temperature and stirred for 1.5 h . In another flask, $3 \mathrm{e}(0.7$ mmol, 1 eq) was dissolved in anhydrous THF and transferred to the RZnCl solution via a cannula, and then $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.1 \mathrm{eq})$ was added into the flask. The resulting mixture was purged by nitrogen for 15 min , and then the mixture was stirred at $55-60^{\circ} \mathrm{C}$ under oil bath. The reaction end point was monitored generally by TLC with the developing solvent of $40 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in PE, visualized at UV254 nm. The reaction mixture was then cooled to room temperature and poured into satd. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. Water and EA were added and the layers were separated.

The aqueous phase was extracted with EA. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with PE / EA (50:1) as eluents to afford compound $\mathbf{4 e}$.

(1'R,2'R)-4,5'-dimethyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

$\mathbf{b i s}(\mathbf{2}, \mathbf{2}$-dimethylpropanoate) (4eb). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol})$, the title compound 4 eb was prepared as a colorless oil ($177 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.58(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.8,148.1,136.9,132.2,126.2,125.0,110.8,45.2,39.2,38.5,30.8,29.6,27.2,23.3,20.9$, 20.0. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 444.3108$; found, 444.3110 . IR(neat): $3072 w, 2970 \mathrm{~s}$, 2928 s , $2872 m, 2833 w, 1755 s, 1643 w, 1625 m, 1575 m, 1479 m, 1455 m, 1395 m, 1368 m, 1273 m, 1217 w, 1173 w, 1104 s$, $1051 w, 1035 m, 980 w, 890 m, 844 w, 757 w$.

(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-propyl-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

bis(2,2-dimethylpropanoate) (4ec). Following the general procedure described above and starting from 3e (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 ec was prepared as a colorless oil ($200 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.58(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=12.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}), 0.91$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.7,148.2,141.7,132.1,126.3,125.1,110.8,45.2,39.2$, $38.6,37.3,30.8,29.6,27.3,24.0,23.3,20.1,13.8$. HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{4} \quad\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 472.3421$; found, 472.3428 . IR(neat): $3079 w, 2964 s, 2930 s, 2872 m, 2833 w, 1755 s, 1643 w, 1622 m, 1574 m, 1479 m, 1426 m$, $1395 w, 1368 w, 1273 m, 1225 w, 1104 s, 1033 m, 887 m, 757 w$.

(1'R,2'R)-4-isopropyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

bis(2,2-dimethylpropanoate) (4ed). Following the general procedure described above and starting from 3e (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 ed was prepared as a colorless oil ($182 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.61(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{td}, J=11.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{br}, 18 \mathrm{H}), 1.21$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.7,148.2,147.8,132.1,126.3,125.1,110.8,45.1$, 39.2, 38.6, 33.5, 30.8, 29.6, 27.3, 23.6, 23.3,20.2. HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 472.3421$; found, 472.3435. IR(neat): $3078 w, 2963 b r, 2833 m, 1755 s, 1643 m, 1622 s, 1574 m, 1479 s, 1461 s, 1461 s, 1427 m, 1396 m$, 1366m, 1271m, 1216w, 1168w, 1003s, 1050w, 1032m, 962w, 891m, 757w, 659w, 556w.

(1'R,2'R)-4-butyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

bis(2,2-dimethylpropanoate) (4ee). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 ee was prepared as a colorless oil ($202 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.59(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{br}, 18 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.7,148.2$, 141.9, 132.1, 126.2, 125.1, 110.8, 45.2, 39.2, 38.6, 35.1, 33.0, 30.8, 29.6, 27.2, 23.3, 22.5, 20.1, 14.0. HRMS (ESI): calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 486.3578 ; found, 486.3588 . IR(neat): 2959s, 2927s, 2857s, 1752s, $1727 s$, $1622 m, 1583 w, 1479 w, 1456 w, 1429 m, 1396 w, 1376 w, 1278 m, 1240 w, 1120 s, 1051 w, 1034 w, 1014 w, 891 m, 811 w$, 575w.
(1'R,2'R)-4-cyclopropyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl
bis(2,2-dimethylpropanoate) (4ef). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 ef was prepared as a colorless oil ($201 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.47(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{br}, 2 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=12,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{br}, 18 \mathrm{H}), 0.93-0.84(\mathrm{~m}, 2 \mathrm{H})$, $0.68-0.64(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.7,148.1,143.2,132.1,126.1,125.0,110.8,45.2$, $39.2,38.5,30.8,29.6,27.2,23.3,20.1,15.1,9.2,9.1$. HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 470.3265$; found, 470.3273 . IR(neat): $3079 m, 2918 b r, 2726 w, 1749 s, 1650 m, 1644 m, 1621 m, 1557 m, 1470 m, 1394 m, 1271 m$, $1102 m, 1033 w, 968 m, 889 m, 814 w, 757 w, 738 w, 648 w, 557 w$.

(1'R,2'R)-4-cyclopentyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

bis(2,2-dimethylpropanoate) (4eg). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 eg was prepared as a colorless oil ($214 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.62(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{td}, J=11.8,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{br}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.7,148.2,145.6,132.1,126.3,125.1,110.8,45.2,45.1,39.2,38.6,34.2$, 34.2, 30.8, 29.6, 27.3, 25.4, 23.3, 20.1. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 498.3578$; found, 498.3590 . IR(neat): $3073 w, 2960 b r, 2871 s, 2833 m, 1755 s, 1644 m, 1622 m, 1574 m, 1479 m, 1455 m, 1396 m, 1367 w, 1272 m$, 1149s, 1103m, 1051w, 1033m, 890m, 757w.
(1'R,2'R)-4-cyclohexyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl
bis(2,2-dimethylpropanoate) (4eh). Following the general procedure described above and starting from 3e (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 eh was prepared as a colorless oil ($213 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.60(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=12,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.29(\mathrm{br}, 23 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 176.7, 148.2, 147.0, 132.1, 126.3, 125.1, 110.7, 45.1, 43.8, 39.2, 38.7, 34.0, 34.0, 30.8, 29.6, 27.3, 26.7, 26.0, 23.3, 20.2. HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 512.3734$; found, 512.3741. IR(neat): $2963 m, 2928 s, 2853 m, 1756 s, 1623 m, 1574 w, 1480 m, 1450 w, 1496 w, 1364 w, 1274 w, 1105 s$, 1033w, 963w, 887w, 757 m .

(1R,2R)-5-methyl-2-(prop-1-en-2-yl)-1,2,3,4-tetrahydro-[1,1':4',1"-terphenyl]-2',6'-diyl

bis(2,2-dimethylpropanoate) (4ei). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound $4 \mathbf{e i}$ was prepared as a colorless oil ($232 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.58(\mathrm{~m}$, $2 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{td}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{br}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.7$, 148.0, 140.1, 139.4, 132.5, 128.7 128.2, 127.7, 127.1, 124.7, 111.0, 45.2, 39.3, 38.7, 30.8, 29.6, 27.3, 23.3, 20.1. HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 506.3265; found, 506.3270. IR(neat): 2971m, 2930w, 1754s, $1643 w, 1621 w, 1562 w, 1479 m, 1396 m, 1367 w, 1275 m, 1203 w, 1164 w, 1102 s, 1033 m, 887 w, 803 w, 761 m, 698 m$.

(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-vinyl-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl

bis(2,2-dimethylpropanoate) (4ej). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol})$, the title compound $\mathbf{4 e j}$ was prepared as a colorless oil ($200 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.80(\mathrm{br}, 2 \mathrm{H}), 6.61-6.54(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.52$
$(\mathrm{m}, 1 \mathrm{H}), 2.70(\mathrm{td}, J=12,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{br}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.6,147.9,136.7,135.3,132.4,128.8,124.7$, 115.0, 111.0, 45.20, 39.2, 38.7, 30.8, 29.6, 27.2, 23.3, 20.0. HRMS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 456.3108; found, 456.3118. IR(neat): $3073 m, 2971 s, 2914 s, 2834 m, 1755 s, 1643 m, 1618 m, 1563 m, 1479 m$, $1455 m, 1396 m, 1370 m, 1270 m, 1193 w, 1173 w, 1149 m, 985 w, 941 w, 893 m, 859 w, 757 m, 549 w$.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(prop-1-yn-1-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl $\mathbf{b i s}(\mathbf{2}, \mathbf{2}$-dimethylpropanoate) (4ek). Following the general procedure described above and starting from $\mathbf{3 e}$ (280 $\mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 ek was prepared as an off-white solid ($207 \mathrm{mg}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.80(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.54-4.53(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{td}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{br}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.5,147.7,132.5,129.6,124.4$ 122.7, 111.1, 87.0, 78.3, 45.2, 39.2, 38.7, 30.7, 29.4, 27.2, 23.3, 19.9, 4.2. HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 468.3108$; found, 468.3114 . IR(neat): $2972 s, 2930 s, 1758 s, 1644 w, 1615 w, 1557 m, 1480 m, 1460 w, 1405 w, 1396 m, 1368 w, 1274 w, 1158 w$, 1099s, 1033w, 892w, 756w, 738w. MP: 68.2-69.3 ${ }^{\circ} \mathrm{C}$.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(pyridin-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diyl
bis(2,2-dimethylpropanoate) (4el). Following the general procedure described above and starting from $\mathbf{3 e}(2.8 \mathrm{~g}$, 5 mmol), the title compound 4 el was prepared an off-white solid ($2.0 \mathrm{~g}, 82 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.65(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{td}, J=13.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.07-2.02 (m, 1H), 1.89-1.80(m, 1H), 1.76-1.67(m, 1H), $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.2,155.0,148.9,147.3,137.7,136.5,132.1,129.8,124.0,122.0,120.3,110.6,44.8,38.8$, 38.3, 30.3, 29.1, 26.8, 22.8, 19.4. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 490.2952$; found, 490.2963 . IR(neat): $3066 w, 2970 s, 2917 m, 2836 w, 2361 w, 1755 s, 1641 w, 1617 w, 1587 w, 1561 w, 1479 m, 1460 w, 1436 w$, $1396 w, 1375 w, 1273 w, 1169 w, 1100 s, 1034 w, 992 w, 886 w, 786 w, 757 w, 745 w$. MP: $188-189.4^{\circ} \mathrm{C}$.
(1'R,2'R)-4-(5-chlorothiophen-2-yl)-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-d iyl bis(2,2-dimethylpropanoate) (4em). Following the general procedure described above and starting from $\mathbf{3 e}$ ($280 \mathrm{mg}, 0.5 \mathrm{mmol}$), the title compound 4 em was prepared a vitreous solid ($188 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.01(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 2 \mathrm{H})$, $3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{td}, J=13.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.5,147.8$, $141.0,132.6,129.6,129.1,127.0,124.4,123.1,111.1,45.2,39.3,38.7,30.8,29.5,27.2,23.3,19.9$. HRMS (ESI): calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{ClO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, 529.5174; found, 529.5165. IR(neat): $3065 w, 2973 s, 2932 m, 2835 w, 2360 w$, $1759 s, 1640 w, 1618 m, 1568 w, 1477 m, 1440 w, 1415 w, 1396 m, 1369 w, 1271 m, 1159 w, 1096 s, 1034 w, 995 w, 886 w$, $836 w, 797 w, 756 w, 737 w$. MP: $138-139.5^{\circ} \mathrm{C}$.

General Procedure for de-protection of $4 \mathbf{e}(\mathbf{a}-\mathrm{k})$

In a round-bottomed flask equipped with a stir bar was added $\mathbf{4 e}(0.20 \mathrm{mmol})$ in anhydrous toluene $(5 \mathrm{~mL})$ under argon at rt . $\mathrm{MeMgI}\left(1 \mathrm{mmol}, 3 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added dropwise and the solution was heated to $110{ }^{\circ} \mathrm{C}$ under oil bath for 12 h under argon. The reaction mixture was then cooled to room temperature and poured into satd. $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$. Water and EA were added and the layers were separated. The aqueous phase was extracted with EA. The
combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with PE / EA (50:1) to afford free phenol product 6 .
(1'R,2'R)-5'-methyl-4-pentyl-2'-(prop-1-en-2-yl)-1',2', 3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol (6a, CBD). Following the general procedure described above and starting from $\mathbf{4 e a}(20 \mathrm{~g}, 41.4 \mathrm{mmol})$, the title compound $\mathbf{6 a}$ (CBD) was prepared as an white solid ($12.9 \mathrm{~g}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.64$ (br, 2H), 6.01 $(\mathrm{s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{td}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, $1.50-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 156.7$, 149.6, 140.6, 130.5, 127.3, 114.6, 110.1, 107.1, 44.1, 36.0, 35.4, 31.5, 30.8, 30.0, 23.8, 22.5, 19.7, 14.4. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}, 313.2173$; found, 313.2169. The ${ }^{1} \mathrm{H}$ NMR data are consistent with the literature. ${ }^{49}$
(1^{\prime} R, $\mathbf{2}^{\prime}$ R)-4, $\mathbf{5}^{\prime}$-dimethyl-2'-(prop-1-en-2-yl)-1', $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, 4^{\prime}$-tetrahydro-[1,1'-biphenyl]-2,6-diol (6b). Following the general procedure described above and starting from $4 \mathbf{e b}(85.3 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 b}$ was prepared as an a colorless oil ($50.1 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $-d_{6}$): $\delta 8.68(\mathrm{br}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H})$, $5.01(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{br}, 1 \mathrm{H}), 4.41(\mathrm{br}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 156.80,149.6,135.6,130.5,127.4,114.4,110.2,107.7,44.2,35.9,30.8,30.0,23.8,21.3,19.6$. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 257.1547; found, 257.1543. IR(neat): 3439br, 3071w, 2964s, 2922s, $2856 \mathrm{~m}, 2831 \mathrm{~m}, 1631 \mathrm{~s}, 1586 \mathrm{~s}, 1515 \mathrm{w}, 1493 \mathrm{~m}, 1445 \mathrm{~m}, 1330 \mathrm{w}, 1312 w, 1280 w, 1218 w, 1175 \mathrm{w}, 1079 w, 1053 m$, $1035 m, 987 m, 889 m, 823 m, 584 w, 523 w$.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-propyl-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol
Following the general procedure described above and starting from $4 \mathbf{e c}(90.9 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 c}$ was prepared as an off-white solid ($56.6 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.66$ (br, 2H), 6.01 $(\mathrm{s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{td}, J=12.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO- d_{6}): $\delta 156.7$, 149.6, 140.4, 130.5, 127.4, 114.7, 110.1, 107.1, 44.1, 37.6, 36.0, 30.8, 30.0, 24.2, 23.8, 19.7, 14.3. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}, 285.1860$; found, 285.1856. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.70-4.50$ $(\mathrm{m}, 3 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$). IR(neat): 3387 br , 2930s, $2866 \mathrm{~m}, 1628 w, 1586 m, 1512 w, 1443 m, 1356 w, 1323 m, 1241 m, 1217 w$, $1025 m, 892 m, 869 w, 824 w$. MP: $118.1-119.1^{\circ} \mathrm{C}$ The ${ }^{1} \mathrm{H}$ NMR data are consistent with the literature. ${ }^{50,51}$

(1'R,2'R)-4-isopropyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol

(6d).
Following the general procedure described above and starting from $4 \mathbf{e d}(90.9 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 d}$ was prepared as an off-white solid ($56.2 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.67(\mathrm{br}, 2 \mathrm{H}), 6.07$ $(\mathrm{s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.56(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 156.7,149.7,146.7,130.5,127.3,114.7,110.2,105.1,44.1,36.0,33.4,30.8,30.1$, 24.3, 24.2, 23.7, 19.7. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 285.1860; found, 285.1857. IR(neat): 3373 br, $3076 w, 2957 s, 2932 m, 2869 m, 2824 w, 1643 w, 1626 m, 1585 m, 1521 w, 1433 m, 1378 w, 1306 m, 1236 w, 1242 m$, $1147 w, 1071 w, 1050 w, 1023 m, 963 w, 892 m, 869 w, 841 w, 747 w, 669 w, 586 w, 562 w$. MP: $115.9-117.1^{\circ} \mathrm{C}$.
(1'R,2'R)-4-butyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol (6e). Following the general procedure described above and starting from $\mathbf{4 e e}(93.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 e}$ was prepared as a colorless oil ($59.4 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.65(\mathrm{br}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H})$, $5.08(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H})$, $1.34-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO- d_{6}): $\delta 156.7,149.6,140.6,130.5$, $127.3,114.6,110.1,107.1,44.1,36.0,35.1,33.3,30.8,30.0,23.8,22.3,19.7,14.3$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 299.2017; found, 299.2015. IR(neat): 3430br, 3072w, 2927s, 2857s, 1629s, 1584s, $1515 w$, $1444 s, 1376 w, 1339 w, 1311 w, 1236 w, 1214 m, 1174 w, 1150 w, 1131 w, 1091 w, 1051 w, 1026 m, 962 w, 888 m, 834 w$, 595w, 526w.
(1^{\prime} R,2'R)-4-cyclopropyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-tetrahydro-[1,1'-biphenyl]-2,6-diol (6f). Following the general procedure described above and starting from $\mathbf{4 e f}(90.5 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 f}$ was prepared as an off-white solid ($55.7 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.67$ (br, 2H), $5.90(\mathrm{~s}$, $2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 0.84-0.79(\mathrm{~m}, 2 \mathrm{H}), 0.48-0.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 156.8,149.6,142.0,130.5,127.3,114.5,110.2,104.2,44.2,36.0,30.8,30.0,23.8,19.6$, 15.2, 9.1. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}$ [M - H]-, 283.1704; found, 283.1700. IR(neat): 3484br, 2930s, $1627 m, 1580 m, 1436 m, 1314 m, 1240 m, 1227 w, 1193 w, 1046 w, 1063 m, 1025 m, 970 m, 899 m, 817 w, 610 w, 547 w$. MP: $92.8-94.5^{\circ} \mathrm{C}$.

(1'R,2'R)-4-cyclopentyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol

(6 g).
Following the general procedure described above and starting from $\mathbf{4 e g}(96.2 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 g}$ was prepared as an off-white solid ($61.8 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.65$ (br, 2H), 6.08 $(\mathrm{s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 156.8,149.6,144.3,130.5,127.4,114.7,110.2,105.7,45.4,44.1$, 36.0, 34.3, 34.3, 30.8, 30.1, 25.4, 23.7, 19.7. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 311.2017; found, 311.2014. IR(neat): $3448 b r, 2933 s, 2909 s, 2867 m, 1628 m, 1585 m, 1522 w, 1435 m, 1377 w, 1307 m, 1290 w, 1227 w$, $1195 w, 1050 w, 1052 m, 1006 w, 890 w, 863 w, 821 w, 669 w, 597 w, 652 w, 524 w, 487 w$. MP: $127.8-130.4^{\circ} \mathrm{C}$.

(1'R,2'R)-4-cyclohexyl-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol

Following the general procedure described above and starting from $4 \mathbf{e h}(98.9 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound 6h was prepared as a colorless oil ($64.5 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.65$ (br, 2H), 6.04 (s, $2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.21(\mathrm{~m}$, $1 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 156.6,149.7,146.0,130.5,127.3,114.8,110.2,105.5,44.1,43.9,36.0,34.5,34.4,30.8$, 30.1, 26.9, 26.3, 23.7, 19.7. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 325.2173 ; found, 325.2171. IR(neat): $3439 b r, 2918 m, 2849 m, 2358 s, 2340 s, 1643 m, 1632 w, 1614 m, 1581 m, 1574 m, 1444 m, 1434 m, 1371 w, 668 m$.
(1R,2R)-5-methyl-2-(prop-1-en-2-yl)-1,2,3,4-tetrahydro-[1, $1^{\prime}: 4^{\prime}, 1^{\prime \prime}$-terphenyl]-2',6'-diol (6i). Following the general procedure described above and starting from $4 \mathbf{e i}(97.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 i}$ was prepared as a colorless oil ($60.8 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 9.05(\mathrm{br}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{td}, J=12,3.2$
$\mathrm{Hz}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125$ MHz , DMSO- d_{6}): $\delta 157.4,149.5,141.0,138.8,130.9,129.3,127.5,126.9,126.6,116.9,110.3,105.5,44.1,36.1$, 30.8, 29.9, 23.8, 19.7. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 319.1704; found, 319.1700. IR(neat): 3435br, $3069 m, 3034 w, 2922 s, 2855 m, 2832 w, 2358 s, 2340 m, 1643 m, 1621 m, 1641 w, 1587 m, 1572 m, 1567 w, 1461 m$, $1453 m, 1426 w, 1415 w, 1346 w, 1305 w, 1274 w, 1240 w, 1189 w, 1052 w, 1027 m, 890 w, 846 w, 761 m, 696 m, 668 w$, 652w, 546w, 424w.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-vinyl-1',2', 3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol (6j). Following the general procedure described above and starting from $\mathbf{4} \mathbf{e j}(87.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 j}$ was prepared as an off-white solid ($48.6 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.92(\mathrm{br}, 2 \mathrm{H}), 6.49-6.42$ $(\mathrm{m}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}), 5.51-5.47(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 3.05(\mathrm{td}, \mathrm{td}, J=12.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 157.2,149.5,137.6,135.6,130.8,126.8,117.7,112.8,110.2$, 105.0, 44.1, 36.2, 30.8, 29.8, 23.8, 19.6. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}, 269.1547$; found, 269.1545. IR(neat): $3423 s, 2964 s, 2924 s, 1624 m, 1577 m, 1511 w, 1493 m, 1439 m, 1376 w, 1312 w, 1274 w, 1238 w, 1217 w$, $1150 w, 1054 w, 1026 m, 985 w, 891 w, 847 w, 550 w$. MP: $62.5-65.5^{\circ} \mathrm{C}$.
(1^{\prime} R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(prop-1-yn-1-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol (6k). Following the general procedure described above and starting from $4 \mathbf{e k}(90.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 k}$ was prepared as an off-white solid ($54.1 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 9.03(\mathrm{br}, 2 \mathrm{H}), 6.20$ $(\mathrm{s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}$, $1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 157.0,149.4,130.9,126.5,121.2,118.3,110.3,109.9,84.8,80.5,44.0,36.2,30.8,29.8,23.7,19.6$, 4.3. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$, 281.1547; found, 281.1544. IR(neat):3407s, 3328s, 2931s, 1622 m , $1571 s, 1519 w, 1434 m, 1426 m, 1377 w, 1345 w, 1310 w, 1294 w, 1243 m, 1169 m, 1049 w, 1031 w, 1023 w, 966 w, 903 w$, $874 w, 847 m, 828 m, 634 w, 607 w, 542 w, 516 w$. MP: $131.2-133.7^{\circ} \mathrm{C}$.
(1'R,2'R)-5'-methyl-2'-(prop-1-en-2-yl)-4-(pyridin-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-diol
Following the general procedure described above and starting from $\mathbf{4 e l}(979 \mathrm{mg}, 2 \mathrm{mmol})$, the title compound $\mathbf{6}$ was prepared as a brown solid ($585 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 9.08(\mathrm{~s}, 2 \mathrm{H}), 8.65-8.53(\mathrm{~m}$, $1 \mathrm{H}), 7.82(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H})$, 1.97-1.92 (m 1H), 1.73-1.64 (m, 2H), 1.62 (s, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO): $\delta 157.4,156.7,149.8$, 149.4, 137.5, 137.3, 130.9, 126.7, 122.6, 119.9, 118.7, 110.3, 105.4, 44.1, 36.2, 30.8, 30.1, 29.8, 23.8, 19.6. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 322.1802 ; found, 322.1809. IR(neat): $3418 b r$, $3069 w, 2964 s, 2923 m$, $1643 w, 1622 w, 1585 m, 1563 m, 1472 m, 1443 m, 1376 w, 1346 w, 1283 w, 1252 w, 1193 w, 1154 w, 1054 w, 1031 w$, $1002 w, 899 w, 858 w, 783 m, 752 w, 678 w$. MP: $85.1-86.9^{\circ} \mathrm{C}$.
(1'R,2'R)-4-(5-chlorothiophen-2-yl)-5'-methyl-2'-(prop-1-en-2-yl)-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2,6-d iol ($6 \mathbf{m}$). Following the general procedure described above and starting from $4 \mathrm{em}(106 \mathrm{mg}, 0.2 \mathrm{mmol})$, the title compound $\mathbf{6 m}$ was prepared as a vitreous solid ($70.8 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 9.18$ (s, $2 \mathrm{H}), 7.08(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H})$, $3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{td}, J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60$ (d, $J=2.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, DMSO): $\delta 157.6,149.4,143.5,131.2,131.0,128.5,126.7,126.5$, 122.5, 118.1, 110.3, 104.1, 44.1, 36.2, 31.2, 30.8, 29.8, 23.7, 19.5. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, 361.1024; found, 361.1023. IR(neat):3414br, 3070w, 2964w, 2923s, 2830w, 2360m, 2341m, 1623m, 1577m,
$1541 w, 1447 s, 1376 w, 1347 w, 1300 w, 1237 w, 1222 w, 1175 w, 1027 m, 993 m, 891 w, 866 w, 792 m, 668 w, 542 w$, 498w. MP: $52.9-54.8^{\circ} \mathrm{C}$.

ASSOCIATED CONTENT

Supporting Information
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the products and X-Ray crystallographic report for CBD. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*E-mail: shenjingshan@simm.ac.cn.
*E-mail: haji@ms.xjb.ac.cn.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the support from National Science Foundation for Young Scientists of China (Grant No. 81703338), the National Natural Science Foundation of China (U1703235) and National Science \& Technology Major Project "Key New Drug Creation and Manufacturing Program", China (No: 2018ZX09711002). We thank the Central Asian Drug Discovery and Development Center of the Chinese Academy of Sciences for support of our research.

REFERENCES

(1) Whiting, P. F.; Wolff, R. F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A. V.; Keurentjes, J. C.; Lang, S.; Misso, K.; Ryder, S.; Schmidlkofer, S.; Westwood, M.; Kleijnen, J., Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. JAMA 2015, 313 (24), 2456-2473.
(2) Morales, P.; Reggio, P. H.; Jagerovic, N., An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol. Front. Pharmacol. 2017, 8, 422.
(3) Morales, P.; Reggio, P. H., CBD: A New Hope? ACS Med. Chem. Lett. 2019, 10 (5), 694-695.
(4) Greco, M.; Varriale, G.; Coppola, G.; Operto, F.; Verrotti, A.; Iezzi, M. L., Investigational small molecules in phase II clinical trials for the treatment of epilepsy. Expert Opin. Investig. Drugs 2018, 27 (12), 971-979.
(5) Vree, T. B.; Breimer, D. D.; van Ginneken, C. A.; van Rossum, J. M., Identification in hashish of tetrahydrocannabinol, cannabidiol and cannabinol analogues with a methyl side-chain. J. Pharm. Pharmacol. 1972, 24 (1), 7-12.
(6) Kinney, W. A.; McDonnell, M. E.; Zhong, H. M.; Liu, C.; Yang, L.; Ling, W.; Qian, T.; Chen, Y.; Cai, Z.; Petkanas, D.; Brenneman, D. E. Discovery of KLS-13019, a Cannabidiol-Derived Neuroprotective Agent, with Improved Potency, Safety, and Permeability. ACS Med. Chem. Lett. 2016, 7 (4), 424-428.
(7) Harvey, D. J. Characterization of the butyl homologues of delta1-tetrahydrocannabinol, cannabinol and cannabidiol in samples of cannabis by combined gas chromatography and mass spectrometry. J Pharm Pharmacol 1976, 28 (4), 280-285.
(8) https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210365Orig1s000ChemR.pdf.
(9) Shultz, Z. P.; Lawrence, G. A.; Jacobson, J. M.; Cruz, E. J.; Leahy, J. W. Enantioselective Total Synthesis of Cannabinoids-A Route for Analogue Development. Org. Lett. 2018, 20 (2), 381-384.
(10) Baek, S.-H.; Srebnik, M.; Mechoulam, R. Boron triflouride etherate on alimina - a modified Lewis acid reagent. Tetrahedron Lett. 1985, 26 (8), 1083-1086.
(11) Mechoulam, R.; Hanus, L. Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chem. Phys. Lipids 2002, 121, 35-43.
(12) Luo, X.; Reiter, M. A.; d'Espaux, L.; Wong, J.; Denby, C. M.; Lechner, A.; Zhang, Y.; Grzybowski, A. T.; Harth, S.; Lin, W.; Lee, H.; Yu, C.; Shin, J.; Deng, K.; Benites, V. T.; Wang, G.; Baidoo, E. E. K.; Chen, Y.; Dev, I.; Petzold, C. J.; Keasling, J. D. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019, 567 (7746), 123-126.
(13) Steup, C.; Herkenroth, T. Method for producing synthetic cannabinoids. EP2314580B1 2015.
(14) Adams, R.; Hunt, M.; Clark, J. H. Structure of Cannabidiol, a Product Isolated from the Marihuana Extract of Minnesota Wild Hemp. I. J. Am. Chem. Soc. 1940, 62 (1), 196-200.
(15) Lago-Fernandez, A.; Redondo, V.; Hernandez-Folgado, L.; Figuerola-Asencio, L.; Jagerovic, N. New Methods for the Synthesis of Cannabidiol Derivatives. Methods Enzymol 2017, 593, 237-257.
(16) Hoffmann, G.; Daniliuc, C. G.; Studer, A. Synthesis of Para (-)-Delta(8)-THC Triflate as a Building Block for the Preparation of THC Derivatives Bearing Different Side Chains. Org. Lett. 2019, 21 (2), 563-566.
(17) Bloemendal, V.; Sondag, D.; Elferink, H.; Boltje, T. J.; van Hest, J. C. M.; Rutjes, F. A Revised Modular Approach to (-)-trans-Delta(8)-THC and Derivatives Through Late-Stage Suzuki-Miyaura Cross-Coupling Reactions. Eur. J. Org. Chem. 2019, 2019 (12), 2289-2296.
(18) Dixon, D. D.; Tius, M. A.; Thakur, G. A.; Zhou, H.; Bowman, A. L.; Shukla, V. G.; Peng, Y.; Makriyannis, A. C3-heteroaroyl cannabinoids as photolabeling ligands for the CB2 cannabinoid receptor. Bioorg. Med. Chem. Lett. 2012, 22 (16), 5322-5325.
(19) Le Goanvic, D.; Tius, M. A. Oxaza adamantyl cannabinoids. A new class of cannabinoid receptor probes. J. Org. Chem. 2006, 71 (20), 7800-7804.
(20) Alexandros. M.; Watertown M.; Spyridon P.; Nikas W.; Angiogenic resorcinol derivatives. US 20120172339A1 2012.
(21) Gupte, A.; Buolamwini, J. K. Synthesis and biological evaluation of phloridzin analogs as human concentrative nucleoside transporter 3 (hCNT3) inhibitors. Bioorg. Med. Chem. Lett. 2009, 19 (3), 917-921.
(22) Dixon, D. D.; Sethumadhavan, D.; Benneche, T.; Banaag, A. R.; Tius, M. A.; Thakur, G. A.; Bowman, A.; Wood, J. T.; Makriyannis, A. Heteroadamantyl cannabinoids. J. Med. Chem. 2010, 53 (15), 5656-5666.
(23) Bender, C. F.; Yoshimoto, F. K.; Paradise, C. L.; De Brabander, J. K. A concise synthesis of berkelic acid inspired by combining the natural products spicifernin and pulvilloric acid. J. Am. Chem. Soc. 2009, 131 (32), 11350-11352.
(24) Spence, J. T.; George, J. H. Structural reassignment of cytosporolides A-C via biomimetic synthetic studies and reinterpretation of NMR data. Org. Lett. 2011, 13 (19), 5318-5321.
(25) Brittain, W. D. G.; Cobb, S. L. Negishi cross-couplings in the synthesis of amino acids. Org. Biomol. Chem. 2018, 16 (1), 10-20.
(26) Hansen, A. L.; Ebran, J. P.; Gogsig, T. M.; Skrydstrup, T. Investigations on the Suzuki-Miyaura and Negishi couplings with alkenyl phosphates: Application to the synthesis of 1,1-disubstituted
alkenes. J. Org. Chem. 2007, 72 (17), 6464-6472.
(27) Heravi, M. M.; Hashemi, E.; Nazari, N. Negishi coupling: an easy progress for C-C bond construction in total synthesis. Mol. Divers. 2014, 18 (2), 441-472.
(28) Huo, S. Q.; Mroz, R.; Carroll, J. Negishi coupling in the synthesis of advanced electronic, optical, electrochemical, and magnetic materials. Org. Chem. Front. 2015, 2 (4), 416-445.
(29) Skhiri, A.; Ben Salem, R.; Soule, J. F.; Doucet, H. Access to (Hetero) arylated Selenophenes via Palladium-catalysed Stille, Negishi or Suzuki Couplings or C-H Bond Functionalization Reaction. Chemcatchem 2017, 9 (15), 2895-2913.
(30) Valente, C.; Belowich, M. E.; Hadei, N.; Organ, M. G. Pd-PEPPSI Complexes and the Negishi Reaction. Eur. J. Org. Chem. 2010, (23), 4343-4354.
(31) Negishi, E.-i.; Hu, Q.; Huang, Z.; Qian, M.; Wang, G. Palladium-Catalyzed Alkenylation by the Negishi Coupling. ChemInform 2006, 37 (38), 71-87.
(32) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Practical Aspects of Carbon-Carbon Cross-Coupling Reactions Using Heteroarenes. Org. Process Res. Dev. 2010, 14 (1), 30-47.
(33) Espino, G.; Kurbangalieva, A.; Brown, J. M. Aryl bromide/triflate selectivities reveal mechanistic divergence in palladium-catalysed couplings; the Suzuki-Miyaura anomaly. Chem. Commun. (Camb) 2007, (17), 1742-1744.
(34) Timmerman, J. C.; Sims, N. J.; Wood, J. L. Total Synthesis of Caesalpinnone A and Caesalpinflavan B: Evolution of a Concise Strategy. J. Am. Chem. Soc. 2019, 141 (25), 10082-10090.
(35) Yokoyama, A.; Iwashita, K.; Hirabayashi, K.; Aiyama, K.; Yokozawa, T. Investigation of aromatic polyester synthesis by the chain-growth polycondensation method. Macromolecules 2003, 36 (12), 4328-4336.
(36) Bruder, M.; Haseler, P. L.; Muscarella, M.; Lewis, W.; Moody, C. J. Synthesis of the oxepinochromone natural products ptaeroxylin (desoxykarenin), ptaeroxylinol, and eranthin. J. Org. Chem. 2010, 75 (2), 353-358.
(37) Stauffer, C. S.; Bhaket, P.; Fothergill, A. W.; Rinaldi, M. G.; Datta, A. Total synthesis and antifungal activity of a carbohydrate ring-expanded pyranosyl nucleoside analogue of nikkomycin B. J Org Chem 2007, 72 (26), 9991-9997.
(38) Xu, H.; He, J.; Shi, J.; Tan, L.; Qiu, D.; Luo, X.; Li, Y. Domino Aryne Annulation via a Nucleophilic-Ene Process. J. Am. Chem. Soc. 2018, 140 (10), 3555-3559.
(39) Tuyet, T. M.; Harada, T.; Hashimoto, K.; Hatsuda, M.; Oku, A. Asymmetric synthesis of axially chiral biaryls via desymmetrization of 2,2',6,6'-tetrahydroxybiphenyl using 1,4-Di-O-benzyl-L-threitol as a chiral template. J. Org. Chem. 2000, 65 (5), 1335-1343.
(40) Keaveney, S. T.; Kundu, G.; Schoenebeck, F. Modular Functionalization of Arenes in a Triply Selective Sequence: Rapid $\mathrm{C}(\mathrm{sp}(2))$ and $\mathrm{C}(\mathrm{sp}(3))$ Coupling of $\mathrm{C}-\mathrm{Br}, \mathrm{C}-\mathrm{OTf}$, and $\mathrm{C}-\mathrm{Cl}$ Bonds Enabled by a Single Palladium(I) Dimer. Angew. Chem. Int. Ed. Engl. 2018, 57 (38), 12573-12577.
(41) Papahatjis, D. P.; Nahmias, V. R.; Nikas, S. P.; Andreou, T.; Alapafuja, S. O.; Tsotinis, A.; Guo, J.; Fan, P.; Makriyannis, A. C1'-cycloalkyl side chain pharmacophore in tetrahydrocannabinols. J. Med. Chem. 2007, 50 (17), 4048-4060.
(42) Papahatjis, D. P.; Nahmias, V. R.; Andreou, T.; Fan, P.; Makriyannis, A. Structural modifications of the cannabinoid side chain towards C3-aryl and 1',1'-cycloalkyl-1'-cyano cannabinoids. Bioorg. Med. Chem. Lett. 2006, 16 (6), 1616-1620.
(43) Kaanumalle, L. S.; Nithyanandhan, J.; Pattabiraman, M.; Jayaraman, N.; Ramamurthy, V.

Water-soluble dendrimers as photochemical reaction media: chemical behavior of singlet and triplet radical pairs inside dendritic reaction cavities. J. Am. Chem. Soc. 2004, 126 (29), 8999-9006.
(44) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. PyDipSi: a general and easily modifiable/traceless Si-tethered directing group for C-H acyloxylation of arenes. J. Am. Chem. Soc. 2010, 132 (24), 8270-8272.
(45) Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. Asymmetric phase-transfer catalyzed glycolate alkylation, investigation of the scope, and application to the synthesis of (-)-ragaglitazar. J. Org. Chem. 2005, 70 (23), 9470-9.
(46) Harris, C. S.; Hennequin, L. F.; Willerval, O. Three-point variation of a gefinitib quinazoline core. Tetrahedron Lett. 2009, 50 (14), 1600-1602.
(47) Gauthier, S.; Mailhot, J.; Labrie, F. New Highly Stereoselective Synthesis of (Z)-4-Hydroxytamoxifen and (Z)-4-Hydroxytoremifene via McMurry Reaction. J. Org. Chem. 1996, 61 (11), 3890-3893.
(48) Taglialatela-Scafati, O.; Pagani, A.; Scala, F.; De Petrocellis, L.; Di Marzo, V.; Grassi, G.; Appendino, G. Cannabimovone, a Cannabinoid with a Rearranged Terpenoid Skeleton from Hemp. Eur. J. Org. Chem. 2010, 2010 (11), 2067-2072.
(49) Lv, P.; Zhang, D.; Guo, M.; Liu, J.; Chen, X.; Guo, R.; Xu, Y.; Zhang, Q.; Liu, Y.; Guo, H.; Yang, M. Structural analysis and cytotoxicity of host-guest inclusion complexes of cannabidiol with three native cyclodextrins. J. Drug Deliv. Sci. Tec. 2019, 51, 337-344.
(50) Pavlovic, R.; Nenna, G.; Calvi, L.; Panseri, S.; Borgonovo, G.; Giupponi, L.; Cannazza, G.; Giorgi, A. Quality Traits of "Cannabidiol Oils": Cannabinoids Content, Terpene Fingerprint and Oxidation Stability of European Commercially Available Preparations. Molecules 2018, 23 (5), 1230.
(51) Dialer. L.; Petrovic. D.; Weigl. U.; Process for the production of cannabidiol and delta-9-tetrahydrocannabinol. US2017008868A1 2017.

[^0]: is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036
 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

