Intramolecular Friedel–Crafts-Type Reactions Involving N-Acyliminium Ions Derived from Glycine Templates

Juan Domingo Sánchez, María Teresa Ramos, and Carmen Avendaño*

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

avendano@eucmax.sim.ucm.es

Received February 12, 2001

Enantiomerically pure 4-substituted 2-aralkyl-2,4-dihydro-1*H*-pyrazino[2,1-*b*]quinazoline-3,6-diones (**1b**-**m**) in which the alkyl chain is $(CH_2)_n$, n = 1-3, behave as glycine templates giving by treatment with [hydroxy(tosyloxy)iodo]benzene in ethyl acetate *cis*-1-tosyloxy derivatives. When these compounds contain electron-rich aryl substituents with n = 2, they spontaneously cyclize through intramolecular Friedel–Crafts-type diastereoselective reactions to give penta- or hexacyclic compounds. Otherwise, they give by solvolysis *cis*-1-alkoxy derivatives, which in a second step, may be cyclized in acid if n = 2, 3. All these reactions must occur through *N*-acyliminium species in S_N1-like mechanisms. 1-Alkoxy-2-arylmethyl derivatives are reluctant to cyclize, giving *trans*-1-hydroxy compounds as the only isolated reaction products.

Introduction

N-Acyliminium ion-mediated carbon-carbon bondforming reactions have found many applications, especially in cyclizations with π nucleophiles.^{1,2} The *N*acyliminium species are generated by acid treatment of *N*-(1-hydroxyalkyl)amides, which are frequently obtained by partial reduction³ or addition of organometallics⁴ to cyclic imides and, some times, by addition of amides or carbamates to aldehydes.⁵ Access to *N*-(1-hydroxyalkyl)amide precursors by oxidation is a less common methodology⁶ that we have investigated in the case of 2,4dimethyl-2,4-dihydro-1*H*-pyrazino[2,1-*b*]quinazoline-3,6dione (**1a**),⁷ a system that contains three rings of the hexacyclic fungal metabolite *N*-acetylardeemin.⁸ The pyrazino[2,1-*b*]quinazoline-3,6-dione structure is used by

(5) Zoller, U.; Ben-Ishai, D. Tetrahedron 1975, 31, 863-866.

nature as a scaffold for constrained peptidomimetics that incorporate anthranilic acid as demonstrated by the isolation of other fungal metabolites such as glyantrypine,⁹ fumiquinazolines,¹⁰ and fiscalins.¹¹ Among other interesting biological properties displayed by these natural products, *N*-acetylardeemin reverses the multidrug resistance (MDR) to antitumor agents mediated by glycoprotein P-170,¹² an activity that is much retained in the above-mentioned tricyclic fragment¹³ and moved us to study different synthetic approaches to this system.

In our previous work,⁷ compound **1a** was easily oxidized to tosylate **3a** after treatment with the hypervalent iodine reagent [hydroxy(tosyloxy)iodo]benzene **(2)**, which is commonly used for α -functionalization of ketones,¹⁴ and the 1-hydroxy **(4a)** or 1-methoxy **(5a)** derivatives obtained by acid-catalyzed hydrolysis or methanolysis of **3a** reacted in acid media with electron-rich arenes to give 1-aryl derivatives **6a** as single diastereoisomers (Scheme 1).

The cis stereochemistry of all these compounds was supposed to be the result of S_N 1-like mechanisms in which either the nucleophile attacks anti respect to the 4-methyl group of the *N*-acyliminium species **A** to give

^{(1) (}a) Speckamp, W. N.; Hiemstra, H. *Tetrahedron* **1985**, *41*, 4367–4416. (b) Hiemstra, H.; Speckamp, W. N. In *The Alkaloids*; Academic Press: New York, 1988; Vol. 32, p 271. (c) Hiemstra, H.; Speckamp, W. N. Additions to *N*-Acyliminum Ions. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, pp 1047–1082. (d) Maryanoff, B. E.; Rebarchak, M. C. *Synthesis* **1992**, 1245–1248 and references therein.

⁽²⁾ See, for instance: (a) Heaney, H.; Shuhaibar, K. F. Synlett 1995, 47–48. (b) Li, W. H.; Hanau, C. E.; Davignon, A.; Moeller, K. D. J. Org. Chem. 1995, 60, 8155–8170. (c) Lögers, M.; Overman, L. E.; Welmaker, G. S. J. Am. Chem. Soc. 1995, 17, 9139–9150. (d) Marson, C. M.; Pink, J. H.; Smith, C. Tetrahedron Lett. 1995, 36, 8107–8110. (e) Rigo, B.; El Ghammarti, S.; Couturier, D. Tetrahedron Lett. 1996, 37, 485–486. (f) Yamada, H.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 1996, 118, 1054–1059.

⁽³⁾ Lee Y. S.; Kang, D. W.; Lee, S. J.; Park, H. J. Org. Chem. 1995, 60, 7149-7152.

⁽⁴⁾ Collado, M. I.; Manteca, I.; Sotomayor, N.; Villa, M.-J.; Lete, E. J. Org. Chem. **1997**, 62, 2080–2092.

^{(6) (}a) Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobayashi, H.; Akutagawa, S. *Tetrahedron Lett.* **1991**, *32*, 5991–5994. (b) Shono, T. *Tetrahedron* **1984**, *40*, 811–850.

⁽⁷⁾ Martín-Santamaría, S.; Espada, M.; Avendaño, C. *Tetrahedron* **1999**, *55*, 1755–1762.

^{(8) (}a) Hochlowski, J. E.; Mullally, M. M.; Spanton, S. G.; Whittern,
D. N.; Hill, P.; McAlpine, J. B. J. Antibiot. 1993, 46, 380–386. (b)
Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc.
1994, 116, 11143–11144. (c) Depew, K. M.; Marsden, S. P.; Zatorska,
D.; Zatorski, A.; Bornmann, W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953–11963.

⁽⁹⁾ Penn, J.; Mantle, P. G.; Bilton, J. N.; Sheppard, R. N. J. Chem. Soc., Perkin Trans. 1 1992, 1495–1496.

^{(10) (}a) Numata, A.; Takahashi, C.; Matsushita, T.; Miyamoto, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Inoue, M.; Ohishi, H.; Shingu, T. *Tetrahedron Lett.* **1992**, *33*, 1621–1624. (b) Takahashi, C.; Matsushita, T.; Doi, M.; Minoura, K.; Shingu, T.; Kumeda, Y.; Numata, A. *J. Chem. Soc., Perkin Trans. 1* **1995**, 2345–2353.

^{(11) (}a) Wong, S.-M.; Musza, L. L.; Kydd, G. C.; Kullnig, R.; Gillum, A. M.; Cooper, R. *J. Antibiot.* **1993**, *46*, 545–553. (b) Fujimoto, H.; Negishi, E.; Yamaguchi, K.; Nishi, N.; Yamazaki, M. *Chem. Pharm. Bull.* **1996**, *44*, 1843–1848.

<sup>Duh. 1930, 44, 1645–1646.
(12) (a) Karwowski, J. P.; Jackson, M.; Rasmussen, R. R.; Humphrey,
P. E.; Poddig, J. B.; Kohl, W. L.; Scherr, M. H.; Kadam, S.; McAlpine,
J. B. J. Antibiot. 1993, 46, 374–379. (b) Chou. T.-C.; Depew, K. M.;
Zheng, Y.-H.; Safer, M. L.; Chan, D.; Helfrich, B.; Zatorska, D.;
Zatorski, A.; Bornmann, W.; Danishefsky, S. J. Proc. Natl., Acad. Sci.
U.S.A. 1998, 95, 8369–8374.</sup>

⁽¹³⁾ Menéndez Vidal, C.; Quesada, A. R. *Cancer Lett.* **1998**, *132*, 45–50.

⁽¹⁴⁾ Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. *J. Org. Chem.* **1982**, *47*, 2487–2489.

^a Reagents and conditions: (a) **2**, EtOAc, reflux, 8 h; (b) H₂O, NH₄Cl; (c) *p*-TsOH (cat.), ROH, rt, 20 h; (d) (from **4a**) concd H₂SO₄, ArH, rt, 48 h; (e) (from **5a**) BF₃·Et₂O (1 equiv), ArH (4 equiv), rt, 24 h.

^a Reagents and conditions: (a) **2**, EtOAc, reflux, **8** h.

the trans isomers, which equilibrate to the most stable cis isomers through enamine tautomers, or is the result of a kinetically preferred syn attack.

When this strategy was applied to intramolecular cyclizations looking for new synthetic entries to *N*-acetylardeemin analogues, and **1c** was used as the starting material,¹⁵ compound **7** (Scheme 2) was directly obtained after treatment with **2**. However, **1b** gave in the same treatment compound **8b**.¹⁶ No traces of the alternative isomers were observed in the reaction crudes.

Here we investigate in more detail these reactions and study their scope and stereochemistry by using representative N-aralkyl derivatives.

Results and Discussion

Synthesis of compounds **1b**-**m** (Table 1) was accomplished following a straightforward methodology¹⁷ that starts with the condensation of ethyl *N*-aralkylgly-

Table 1. Structure of Compounds 1, 8, 15, and 16

compd	Ar	n	R
b	1-acetyl-3-indolyl	1	CH ₃ (S)
С	1-acetyl-3-indolyl	2	$CH_3(S)$
d	C ₆ H ₅	1	$CH_3(S)$
е	4-MeOC ₆ H ₄	1	$CH_3(S)$
f	3,4-(MeO) ₂ C ₆ H ₃	1	$CH_3(S)$
g	2-naphthyl	1	$CH_3(S)$
ň	C_6H_5	2	$CH_3(S)$
i	C_6H_5	2	$CH_3(R)$
j	3,4-(MeO) ₂ C ₆ H ₃	2	$CH_3(S)$
ĸ	C_6H_5	3	$CH_3(S)$
1	C_6H_5	2	CH(CH ₃) ₂ (S)
m	1-acetyl-3-indolyl	2	CH(CH ₃) ₂ (S)

 a Reagents and conditions: (a) Cbz(Boc)amino acid, EDC, CH₂Cl₂, rt, 24 h; (b) H₂/Pd-C, MeOH, 20 psi, rt, 3 h; (c) 200 °C, argon atmosphere; (d) Et₃O·BF₄, CH₂Cl₂, Na₂CO₃, rt, 24 h; (e) anthranilic acid, 140 °C, 2 h.

cinates **9** with L-Ala or L-Val to give the corresponding piperazine-2,5-diones **11** (Scheme 3). The required ethyl N-aralkylglycinates were prepared by reductive amination of the corresponding aldehyde with ethyl glycinate¹⁸ or, alternatively, by N-alkylation of the corresponding aralkylamine with ethyl bromoacetate.¹⁹ After activation of the unsubstituted amide function of compounds **11** to lactim ethers **12**, condensation with anthranilic acid afforded compounds **1b**-**m**.

Compounds **1j** and **1m** that, as well as **1c** have an electron-rich arene tethered by a ethylene chain, gave the cyclic compounds **13** (62%) and **14** (71%) as single diastereomers (NMR of the crude reaction product) after treatment with **2**.

All the remaining compounds **1**, which have less nucleophilic arenes and/or $n \neq 2$, gave the corresponding *cis*-1-ethoxy derivatives **8** in moderate to good yields when the crude products of the reaction with **2** were purified by column chromatography. Since compounds **8** were obtained in the same yields after exclusion of the

⁽¹⁵⁾ Sánchez, J. D.; Ramos M. T.; Avendaño, C. *Tetrahedron Lett.* **2000**, *41*, 2745–2748.

 $[\]left(16\right)$ This compound was erroneously reported in ref 15 as the 1-hydroxy derivative.

⁽¹⁷⁾ Sánchez, J. D.; Ramos, M. T.; Avendaño, C. *Tetrahedron* **1998**, *54*, 969–980.

⁽¹⁸⁾ Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. **1971**, *93*, 2897–2904.

⁽¹⁹⁾ Kruijtzer, J. A. W.; Liskamp, R. M. J. *Tetrahedron Lett.* **1995**, *36*, 6969–6972.

 a Reagents and conditions: (a) (1) ${\bf 2},$ MeCN, 100 °C, 18 h; (2) NH4Cl, H2O/Cl2CH2, rt, 6 h.

possible traces of ethanol present in the solvent,²⁰ the ethoxy group of **8** must come from ethyl acetate itself (Scheme 4).

Thus, when some compounds (**1h**,**k**,**l**) were treated with **2** using acetonitrile as solvent, 1-oxo (compounds **15**) and *trans*-1-hydroxy (**16**) derivatives were the only reaction products after the reaction workup (Scheme 5). Similar oxidation compounds have been formed in other reactions with this system.²¹ It is possible that compounds **15** are formed by dehydrogenation of the 1-oxo-11,11a-dihydro tautomers of compounds **16**.

The above results prompted us to use 1-ethoxy compounds 8 as equivalents of glycine cations instead of the nonisolated tosyloxy intermediates. The reactivity of representative compounds in S_N 1-type reactions was confirmed with 8d,g-i,l; by using methanol as solvent in the presence of catalytic amounts of *p*-toluenesulfonic acid, the corresponding *cis*-1-methoxy derivatives 5 were obtained as single isomers in nearly quantitative yields (see Scheme 4). In the treatment of homologous series of compounds **8d**, **8h**, and **8k** (where Ar = Ph and n = 1, 2, and 3, respectively) with concentrate sulfuric acid at room temperature, compounds 16d (a single isomer from 8d) and 19 (a single isomer from 8k) were obtained after workup with a large excess of water, while 8h gave 17 and 18 as a 4:1 unseparable mixture. Lower amounts of water in the case of 8h afforded the bisulfate of the isomer 17 as the only isolable compound (Scheme 6).

 a Reagents and conditions: (a) (1) concd $H_2SO_4,\,rt,\,2$ h; (2) ice–water.

In solution, the mixture of isomers 17 and 18 must be in equilibrium through an easily oxidizable enamine form. In fact, when the evolution of a CDCl₃ solution of this mixture was followed by ¹H NMR, the 16b-hydroxy derivative 20 (Scheme 7) was isolated as the major product after 1 week. The same mixture generated an anion with lithium hexamethyldisilazide that was alkylated to give compounds 21 and 22 as single diastereomers. Their stereochemistry was unequivocally assigned by NOE experiments. Thus, a significant enhancement of the H-2'(6') doublet ($\delta = 7.12$ ppm) was observed in compound 22 after irradiation of the methyl protons ($\delta = 1.90$ ppm). The syn attack of the anion derived from 17 and 18 contrasts to the kinetically favored anti attack previously observed in the anions derived from 1a, 1d, and other related tricyclic compounds, which is controlled by the 1,4-asymmetric induction of the pseudoaxial 4-methyl substituent.²² These results are ascribable to a different conformation of the piperazine ring in the pentacyclic intermediate that must

⁽²⁰⁾ Ethyl acetate was refluxed for 4 h with acetic anhydride and some drops of concd H_2SO_4 , distilled, dried with anhydrous K_2CO_3 , filtered, and redistilled from CaH₂.

⁽²¹⁾ Compounds **15** have been also formed in the attempted reductive (95% formic acid-C/Pd) or oxidative (DDQ) *N*(2)-debenzylation of the corresponding compounds **1**: Buenadicha, F. L.; Bartolomé, M. T.; Aguirre, M. J.; Avendaño, C.; Söllhuber, M. M. *Tetrahedron: Asymmetry* **1998**, *9*, 483–501.

place the methyl group pseudoequatorial being the α -face (anti attack) here prevented by the ethylene chain.

Several other attempts to cyclize compounds **8** in which n=1 also failed. For instance, treatment of **8e** and **8f** with catalytic amounts of *p*-toluenesulfonic acid in refluxing benzene gave the 1-hydroxy derivatives **16e** (54%) and **16f** (61%) as the only reaction products.

The cis or trans stereochemistry of all compounds, when indicated, was determined by conclusive NOE experiments, while their enantiomeric purity was confirmed by the absence of splitting of any signal in the ¹H NMR spectra after addition of $Eu(hfc)_3$ and by chiral HPLC for the starting materials.

In conclusion, acyliminium species directly formed from nonisolated 1-tosyloxy derivatives of compounds **1b**-**m** or by acid treatment of the corresponding 1-ethoxy derivatives **8** give intramolecular Friedel-Crafts-type reactions if the arene and the pyrazinoquinazoline portions are linked through di- or trimethylene chains. Otherwise, alkoxy or hydroxy derivatives are formed by nucleophilic attack of the solvents.

The frontal overlap of the orbitals involved in the S_N 1type reactions described here takes place preferentially by the upper (β) face of the cation, syn with respect to the C-4 substituent (see all compounds **8** and **5** as well as the cyclic compounds **13**, **17**, and **19**). Only in the case of important steric interactions, such as those imposed by the *N*-acetyl substituent in compounds **7** and **14**, does the aromatic ring interact with the lower (α) face of the cation, anti with respect to the C-4 substituent. The trans stereochemistry found in the 1-hydroxy derivatives **16** points to S_N 2-type mechanisms.

Some representative compounds were studied as MDR reversal agents and as $\rm Ca^{2+}$ channel blockers and showed a moderate activity. 23

Experimental Section

All reagents were of commercial quality and were used as received. Solvents were dried and purified using standard techniques. Reactions were monitored by TLC, on aluminum plates coated with silica gel with fluorescent indicator (Merck 60 F₂₅₄). Separations by flash chromatography were performed on silica gel (Merck 60, 230-400 mesh). Melting points were measured in open capillary tubes using a Reichert 723 hotstage microscope and are uncorrected. IR spectra were obtained from films deposited on NaCl plates or from compressed KBr pellets for solid compounds. Unless otherwise noted, NMR spectra were recorded in CDCl₃ at 250 or 300 MHz for ¹H and at 63 or 75 MHz for ¹³C (Servicio de Espectroscopía, Universidad Complutense). When necessary, assignments were aided by DEPT, COSY, and ¹³C-¹H correlation experiments. Elemental analyses were determined by the Servicio de Microanálisis, Universidad Complutense. Optical rotations were measured at 25 °C on a 1 mL cell in CHCl3 or MeOH at 589 nm, concentrations expressed in g/100 mL. Mass spectra (m/ e) were obtained in the EI (70 eV) mode in Servicio de Espectroscopía U.C.M. HPLC analyses were performed using a Constametric 4100 system equipped with a chiral column (Chiracel OD) and UV-vis detector. Mobile phase: hexane/ 2-propanol (90:10).

Reactions of Compounds 1 with 2. General Procedure in EtOAc. A suspension of equimolar amounts of compounds

(23) Unpublished results.

1 and **2** in EtOAc (25 mL) was refluxed for 18 h and then was allowed to reach rt. Solvent was removed under vacuum to leave a residue that was chromatographed on silica gel using EtOAc as eluent.

(7*S*,16b*R*)-16-Acetyl-7-methyl-10,11,16,16b-tetrahydro-7*H*-quinazolino[2',3':3,4]pyrazino[2,1-*a*]β-carboline-5,8dione (7): 65% yield from 1c (0.48 mmol); viscous oil; $[\alpha]^{25}_{\rm D}$ = +84.0 (*c* = 0.10, CH₂Cl₂); ¹H NMR δ 8.24 (d, 1H, *J* = 8.0 Hz), 7.74 (d, 1H, *J* = 8.4 Hz), 7.65–7.33 (m, 6H), 6.83 (s, 1H), 5.64 (q, 1H, *J* = 7.4 Hz), 4.87 (m, 1H), 3.10 (m, 1H), 2.90 (m, 1H), 2.85 (s, 3H), 2.70 (m, 1H), 1.77 (d, 3H, *J* = 7.4 Hz) ppm; ¹³C NMR δ 169.1, 160.3, 149.1, 147.0, 137.6, 134.5, 130.3, 128.7, 128.2, 127.6, 127.4, 126.9, 125.2, 123.1, 119.6, 119.3, 113.9, 54.5, 52.9, 39.0, 27.0, 20.4, 16.0 ppm; IR 2934, 1680, 744 cm⁻¹; MS 412 (M⁺), 369 (100), 355, 311, 185, 143, 130. Anal. Calcd for C₂₄H₂₀N₄O₃: C, 69.89; H, 4.89; N, 13.58. Found: C, 66.69; H, 4.56; N, 13.25.

(1*S*,4*S*)-1-Ethoxy-4-methyl-2-phenethyl-2,4-dihydro-1*H*-pyrazino[2,1-*b*]quinazoline-3,6-dione (8h): 80% yield from 1h (0,60 mmol); viscous oil; $[\alpha]^{25}_{D} = +70$ (c = 0.12, CH₂Cl₂); ¹H NMR δ 8.28 (d, 1H, J = 8.0 Hz) 7.80 (t, 1H, J = 8.0 Hz), 7.61 (d, 1H, J = 8.0 Hz), 7.51 (t, 1H, J = 8.0 Hz), 7.55–7.05 (m, 5H), 5.33 (q, 1H, J = 7.1 Hz), 5.13 (s, 1H), 4.15–4.05 (m, 1H), 3.68 (q, 2H, J = 7.0 Hz), 3.52–3.42 (m, 1H), 2.95 (t, 2H, J = 7.5 Hz), 1.77 (d, 3H, J = 7.1 Hz), 1.18 (t, 3H, J = 7.0 Hz) ppm; ¹³C NMR δ 169.4, 160.2, 147.2, 147.0, 138.2, 134.8, 128.8, 128.7, 127.8, 127.6, 126.9, 126.8, 121.0, 87.9, 64.9, 53.1, 48.6, 34.7, 19.2, 15.1 ppm; IR 1684, 1609 cm⁻¹. Anal. Calcd for C₂₂H₂₃N₃O₃: C, 70.01; H, 6.14; N, 11.13. Found: C, 69.87; H, 6.30; N, 10.83.

(1*S*,4*S*)-1-Ethoxy-4-methyl-2-(3-phenylpropyl)-2,4-dihydro-1*H*-pyrazino[2,1-*b*]quinazoline-3,6-dione (8k): 48% yield from 1k (0,17 mmol); viscous oil; $[\alpha]^{25}_{D} = +47.5$ (c = 0.18, CH₂Cl₂); ¹H NMR δ 8.27 (d, 1H, J = 8.0 Hz), 7.80 (m, 2H), 7.53 (t, 1H, J = 7.0 Hz), 7.23–7.00 (m, 5H), 5.20 (q, 1H, J =7.2 Hz), 5.19 (s, 1H), 3.95–3.85 (m, 1H), 3.69 (q, 2H, J = 7.0Hz), 3.40–3.30 (m, 1H), 2.66–2.56 (m, 2H), 2.05–1.96 (m, 2H), 1.76 (d, 3H, J = 7.2 Hz), 1.18 (t, 3H, J = 7.0 Hz) ppm; ¹³C NMR δ 167.4, 167.1, 147.2, 147.0, 140.9, 134.9, 128.5, 128.3, 127.4, 127.0, 126.2, 120.7, 87.0, 64.8, 52.9, 45.7, 33.1, 29.3, 19.0, 14.9 ppm; IR 1685, 1608 cm⁻¹. Anal. Calcd for C₂₃H₂₅N₃O₃: C, 70.57; H, 6.44; N, 10.73. Found: C, 70.77; H, 5.94; N, 11.19.

(9*S*,16*b.S*)-2,3-Dimethoxy-9-methyl-5,6,9,16b-tetrahydroisoquino[1',2':3,4]pyrazino[2,1-*b*]quinazoline-8,11-dione (13): 62% yield from 1j (0.16 mmol); viscous oil; $[\alpha]^{25}_{\rm D} = -11.6 (c = 0.40, CH_2Cl_2)$; ¹H NMR δ 8.31 (d, 1H, J = 7.7 Hz), 7.85–7.74 (m, 2H), 7.53 (t, 1H, J = 7.6 Hz), 6.96 (s, 1H), 6.64 (s, 1H), 5.81 (s, 1H), 5.33 (q, 1H, J = 7.1 Hz), 4.74 (m, 1H), 3.83 (s, 3H), 3.66 (s, 3H), 3.37–3.14 (m, 2H), 2.74 (m, 1H), 1.16 (d, 3H, J = 7.1 Hz) ppm; ¹³C NMR δ 168.8, 160.3, 149.1, 148.4, 147.5, 147.0, 1135.1, 127.6, 127.2, 127.1, 125.9, 125.1, 120.6, 112.5, 107.6, 60.9, 56.0, 51.7, 42.6, 26.3, 19.0 ppm; IR 2931, 1678 cm⁻¹. MS *m/e* 391 (M⁺, 100), 376, 348, 304, 262, 234, 190, 176, 130, 84, 77. Anal. Calcd for C₂₂H₂₁N₃O₄: C, 67.51; H, 5.41; N, 10.74. Found: C, 67.22; H, 5.43; N, 11.25.

(7*S*,16b*R*)- 16-Acetyl-7-isopropyl-10,11,16,16b-tetrahydro-7*H*-quinazolino[2',3':3,4]pyrazino[2,1-*a*] β -carboline-5,8-dione (14): 71% yield from 1m (0.22 mmol); viscous oil; ¹H NMR δ 8.24 (d, 1H, J = 8.0 Hz), 7.75 (d, 1H, J = 8.3 Hz), 7.65–7.33 (m, 6H), 6.90 (s, 1H), 5.41 (d, 1H, J = 9.9 Hz), 4.87 (m, 1H), 3.15–3.02 (m, 1H), 2.93 (m, 1H), 2.86 (s, 3H), 2.70 (m, 1H), 2.45 (m, 1H), 1.30 (d, 3H, J = 6.6 Hz) p110 (d, 3H, J= 6.6 Hz) ppm; ¹³C NMR δ 167.5, 160.3, 149.6, 146.7, 135.4, 134.0, 128.5, 128.2, 127.4, 127.0, 126.9, 124.8, 122.8, 120.3, 119.3, 118.8, 113.6, 61.6, 54.5, 38.4, 30.3, 29.5, 26.7, 20.1, 19.8 ppm; IR 1682 cm⁻¹. Anal. Calcd for C₂₆H₂₄N₄O₃: C, 70.89; H, 5.49; N, 12.72. Found: C, 70.56; H, 5.38; N, 13.03.

Reactions of 8 with Concentrated H₂SO₄. General Procedure. A solution of compounds **8** in concd H₂SO₄ (3 mL) was stirred at room temperature for 2 h. A mixture of ice–water was added, and then it was extracted with EtOAc. The combined organic layers were dried and concentrated, and the residue was chromatographed in silica gel with EtOAc/CH₂Cl₂ (1:1) as eluent.

^{(22) (}a) Martín-Santamaría, S.; Buenadicha, F. L.; Espada, M.; Söllhuber, M. M.; Avendaño, C. J. Org. Chem. **1997**, 62, 6424–6428. (b) Martín-Santamaría, S.; Espada, M.; Avendaño, C. Tetrahedron **1997**, 53, 16795–16802. (c) Buenadicha, F. L.; Avendaño, C.; Söllhuber, M. M.; Tetrahedron: Asymmetry **1998**, 9, 4275–4284.

(9.5,16b.5)-9-Methyl-5,6,9,16b-tetrahydroisoquino[1,2: 3,4]pyrazino[2,1-*b*]quinazoline-8,11-dione bisulfate (17· H₂SO₄): 65% yield from 8h (0.53 mmol); yellow solid; mp 194– 196 °C; ¹H NMR (DMSO-*d*₆) δ 8.20 (d, 1H, *J* = 7.9 Hz), 7.92 (m, 1H), 7.80 (d, 1H, *J* = 8.0 Hz), 7.61 (m, 1H), 7.25–7.12 (m, 4H), 6.11 (s, 1H), 5.04 (q, 1H, *J* = 7.0 Hz), 4.42 (m, 1H), 3.50 (m, 1H), 3.14 (m, 1H), 2.93 (m, 1H), 0.94 (d, 3H, *J* = 7.0 Hz) ppm; ¹³C NMR (DMSO-*d*₆) δ 167.6, 160.0, 147.9, 148.2, 135.0, 134.9, 134.0, 129.9, 128.1, 126.2, 123.5, 120.0, 59.4, 51.1, 40.7, 25.8, 18.1 ppm; IR 1670, 1608, 1600, 1589 cm⁻¹; MS 331 (100, M⁺), 316, 288, 275, 201, 173, 130, 77. Anal. Calcd for C₂₀H₁₇N₃O₂. H₂SO₄: C, 55.94; H, 4.46; N, 9.78. Found: C, 55.51; H, 4.66; N, 9.64.

(10*S*,17*bS*)-10-Methyl-6,7,10,17b-tetrahydro-5*H*-benzo-[3',4']azepino[2',1':3,4]pyrazino[2,1-*b*]quinazoline-9,12-dione (19): 53% yield from 8k (0.15 mmol); oil; $[\alpha]^{25}_{D} = +53.6$ (c = 0.27, CH₂Cl₂); ¹H NMR δ 8.34 (d, 1H, J = 7.8 Hz), 7.80 (m, 1H), 7.67 (d, 1H, J = 7.4 Hz), 7.54 (m, 1H), 7.25–6.60 (m, 4H), 5.91 (s, 1H), 5.35 (q, 1H, J = 7.1 Hz), 4.85 (m, 1H), 3.15–3.05 (m, 3H), 2.05–1.95 (m, 2H), 1.35 (d, 3H, J = 7.1 Hz) ppm; ¹³C NMR δ 167.3, 160.0, 149.6, 147.1, 141.7, 138.1, 135.0, 131.2, 129.0, 137.6, 127.4, 127.1, 126.5, 126.4, 120.0, 64.4, 52.9, 49.0, 35.6, 27.0, 17.1 ppm; IR 1668, 1607, 1600, 1589 cm⁻¹. MS: 345 (100, M⁺), 330, 316, 302, 288, 247, 201, 173, 144, 117, 91, 77. Anal. Calcd for C₂₁H₁₉N₃O₂: C, 73.03; H, 5.54; N, 12.17. Found: C, 73.20; H, 5.56; N, 12.58.

Alkylation Reactions of the Mixture 17 and 18. General Procedure. To a stirred solution of the mixture of 17 and 18 in anhyd THF (10 mL) at -78 °C under argon atmosphere was added LHMDS (1 equiv), and after 20 min, a solution of the corresponding benzyl halide in anhyd THF (5 mL) was also added. These conditions were kept for an additional 30 min, after which time the mixture was allowed to reach rt. After 4 h, the colorless solution was treated with saturated NH₄Cl solution and extracted with EtOAc. The organic layers were washed with water, dried, and concen-

trated to leave a residue that was chromatographed in silica gel using petroleum ether/EtOAc (1:1) as eluent.

(9*S*,16*bR*)-16b-Benzyl-9-methyl-5,6,9,16b-tetrahydroisoquino[1',2':3,4]pyrazino[2,1-*b*]quinazoline-8,11-dione (21): 44% yield; oil; ¹H NMR δ 8.24 (d, 1H, J = 8.3 Hz), 8,00 (t, 1H, J = 7.9 Hz), 7.66 (m, 2H), 7.50–7.00 (m, 9H), 5.20 (q, 1H, J = 7.0 Hz), 4.96 (dd, 1H, J = 13.5 Hz, 6.5 Hz), 4.32 (d, 1H, J = 15.2 Hz), 4.21 (d,1H, J = 15.2 Hz), 3.75 (td, 1H, J = 13.5 Hz, 5.2 Hz), 3.30 (m, 1H), 2.90 (m, 1H), 1.12 (d, 3H, J = 7.0 Hz) ppm; ¹³C NMR δ 169.1, 160.4, 151.4, 149.5, 146.4, 138.3, 135.8, 134.9, 133.2, 130.5, 129.8, 128.8, 128.4, 127.8, 127.6, 127.1, 126.9, 126.7, 125.8, 120.3, 67.3, 50.8, 47.5, 37.9, 27.2, 1.8 ppm; IR 1680, 1600, 1514 cm⁻¹. Anal. Calcd for C₂₇H₂₃N₃O₂: C, 76.94; H, 5.50; N, 9.97. Found: C, 77.22; H, 5.83; N, 9.59.

(9*S*,16b*R*)-16b-(4-Methoxybenzyl)-9-methyl-5,6,9,16btetrahydroisoquino[1',2':3,4]pyrazino[2,1-*b*]quinazoline-8,11-dione (22): 57% yield; oil; ¹H NMR δ 8,22 (d, 1H, J =7.5 Hz), 8.00 (m, 1H), 7.66 (m, 1H), 7.50–7.15 (m, 5H), 7.12 (d, 2H, J = 8,6 Hz), 6.85 (d, 2H, J = 8.6 Hz), 5.51 (q, 1H, J =7.1 Hz), 4.96 (m, 1H), 4.32 (d, 1H, J = 9.5 Hz), 4.21 (d, 1H, J =9.5 Hz), 3.77 (s, 3H), 3.20–3.80 (m, 2H), 2.89 (m, 1H), 1.90 (d, 3H, J = 7.1 Hz) ppm; ¹³C NMR δ 171.3, 161.0, 158.0, 151.0, 146.4, 137.2, 134.3, 132.8, 130.2, 129.5, 129.3, 128.8, 128.3, 128.0, 127.7, 114.1, 66.0, 55.3, 54.2, 52.4, 40.3, 29.3, 17.9 ppm; IR 1680, 1513 cm⁻¹. Anal. Calcd for C₂₈H₂₅N₃O₃: C, 74.48; H, 5.58; N, 9.31. Found: C, 73.95; H, 5.43; N, 9.25.

Acknowledgment. Financial support from CICYT (SAF 97-0143) is gratefully acknowledged.

Supporting Information Available: Complete spectroscopic and analytical data of compounds **8b**,**d**–**g**,**i**,**l**, **15**, **16**, and **20**. A description of compounds **1** and their precursors is available upon request. This material is available free of charge via the Internet at http://pubs.acs.org.

JO010166Y