DOI: 10.1002/ejoc.200600293

A Biogenetically Based Strategy Towards the Polycyclic Core Skeleton of Sarain A

Cheng Sheng Ge,^[a] Stéphane Hourcade,^[a] Antoine Ferdenzi,^[a] Angèle Chiaroni,^[a] Stéphane Mons,^{*[a]} Bernard Delpech,^[a] and Christian Marazano^{*[a]}

Keywords: Biomimetic synthesis / Alkaloids / Multicomponent synthesis / Reduction / Pyrrolidines / Sarain A

An approach to the polycyclic core of sarain A, based upon a proposed biogenetic route, is presented. Condensation of a protected amino acid with a bromoacrylamide and subsequent addition of malonaldehyde sodium salt and methyl iodide afforded, after stereoselective hydrogenation, a highly functionalized diazabicyclo[4.3.0]nonane system **16**. This in-

Introduction

Since its discovery,^[1] sarain A (1), a complex polycyclic alkaloid extracted from the sponge *Reniera sarai*, has become one of the most challenging targets in natural products synthesis (Scheme 1),^[2–5] as a result of which the first total synthesis has very recently been achieved.^[6] We have suggested^[7] that the biogenetic origin of sarain A (1) could

Scheme 1. Proposed biogenetic pathway.

- [a] Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France Fax: +33-169077247 E-mail: marazano@icsn.cnrs-gif.fr
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

termediate possesses the stereochemistry required for the synthesis of the core skeleton of sarain A, a model of which (**31**) was obtained by an allylsilane strategy previously described by Weinreb and co-workers.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

possibly be the result of the condensation, in a multistep reductive process, of four intermediates: a sphingolipid **2** and an amino aldehyde **3** with two malonaldehyde units. One advantage of such a hypothesis is that it closely links the origin of sarain A to that, also proposed by us^[8] of manzamine A, an alkaloid extracted from sponges of the same order (*Haplosclerida*). Such considerations are also consistent with recent observations suggesting that these alkaloids are in fact produced by sponge-associated bacteria.^[9]

While these proposals are still speculative, as no biosynthetic studies are yet available, they offer valuable bases for the design of new synthetic strategies for sarain A. From the point of view of the proposed biogenetic pathway depicted in Scheme 1, there are many different ways to assemble the hypothetical starting units. In addition, aldehydes and malonaldehyde are unstable compounds, so the question of whether to use more stable synthetic equivalents arises. We chose to study the route summarized in Scheme 2, as a result of which a first study of this model

Scheme 2. General strategy.

4106

based on Knoevenagel chemistry was recently published.^[7] We now report a new and efficient approach to highly functionalized diazabicyclo[4.3.0]nonane analogues of **6**, together with some observations concerning their regio- and stereoselective reduction, which is strongly influenced by proximity effects, and lastly the synthesis of an analogue of the core skeleton of sarain A.

Results and Discussion

As shown in Scheme 2, four molecules (4, 5, and two malonaldehyde units) need to be condensed to afford intermediates such as 6. Selective reduction and side-chain elongation with aldehyde 7 should then afford iminium salt 8, Mannich cyclization of which would be likely to produce sarain A core skeleton 9.

We first tried to mimic the first sequence of the projected synthesis leading to intermediates **6**, and accordingly to highly functionalized diazabicyclo[4.3.0]nonane systems (Scheme 3). L-Alanine imino derivative **10** was deprotonated and treated with bromoacrylamide derivative **11** to provide salt **12** in 70% yield after acidic imine hydrolysis.^[10] This crude hydrochloride was then treated with malonal-dehyde sodium salt, affording enaminal **13**. This intermediate was not isolated, but was directly treated with sodium hydride, followed by methyl iodide, ultimately to provide

Scheme 3. Short route to a diazabicyclo[4.3.0]nonane system.

the highly functionalized diazabicyclo[4.3.0]nonane **14** with complete *cis* ring junction stereoselectively in an overall yield of 44%. This sequence, which does not required purification of any intermediate, is of particular interest since it consists of the condensation of four different molecules with formation of two C–C and three C–N bonds in a very short process. The stereospecificity of the ring closure reaction can be explained by the nearly planar shape of the five sp² atoms in **13**. The enaminal anion can only add to the double bond from the same side as the nitrogen atom.

The direct functionalization of vinylogous amide 14 by organometallic species proved to be difficult, but possible. The best alternative was the reduction of enaminal 14 in order to introduce the third stereocenter (Scheme 4) by using sodium borohydride in acetic acid which fully reduced the enaminal function but stereospecifically delivered the undesired alcohol isomer 15. We had shown in our previous paper^[7] that such a configuration is the thermodynamic one, as was further confirmed when alcohol 16 was oxidized to the corresponding aldehyde. Under enolization conditions, this aldehyde was completely epimerized at C-3 (results not shown). Hydrogenation of 14 in the presence of platinum oxide resulted in the formation of the desired endo isomer 16, though with poor selectivity (1.6:1 mixture with 15), but isomer 16 could eventually be obtained as a 4.7:1 mixture with 15 through the use of a catalytic amount of tin dichloride as catalyst activator.^[11] The two diastereoisomers proved to be difficult to separate and were used as a mixture in the next steps.

Tosylate **17** could be crystallized and subjected to X-ray analysis (Figure 1),^[12] which established the stereochemistry at C-3 in tosylate **17** and, as a consequence, in its precursor alcohol **15**.

A brief investigation of borohydride reduction of the imide moiety revealed some interesting features. Imide **15** was reduced to give **18** as a single diastereoisomer, but NOESY experiments and molecular modeling did not allow conclusive determination of the relative configuration at the hemiaminal center. Selective reduction at the more hindered sites of imides by NaBH₄ is already known, and ring opening can be prevented by continuously lowering the pH of

Scheme 4. Reduction studies on intermediate 14.

Figure 1. ORTEP plot of tosylate 17.^[13] Ellipsoids are drawn at 30% probability level.

the reaction mixture.^[14] In contrast, imide **16** gave the diol **19** as the result of a double reduction process. It is very likely that the hydroxy moiety in **16** allowed intramolecular delivery of the reagent and enforced the double reduction. X-ray analysis of diol **19** unambiguously confirmed the structure found by NMR spectroscopy (Figure 2).

Reduction of the crude mixture of imides 15 and 16 (1:4.7 ratio, Scheme 5) with DIBAH gave two products 20 (from 16, 72% yield) and 21 (from 15, 12% yield). Since no other isomer could be detected, this reduction can be regarded as highly, if not totally, regioselective.

The sequence was followed by transformation into cyclic *N*-acylenamine **22**, allowing reduction of the double bond by hydrogenation in the presence of Raney nickel to give alcohol **23** (Scheme 5). Removal of the benzyl group with sodium in ammonia delivered alcohol **24** in 71% overall yield from aminal **20**. In order to elongate the side chain as in model **8** (see Scheme 2), alcohol **24** was activated as a tosylate. However, attempts to introduce aldehyde enolates (see 7) or their equivalents (imine or malonate anions) invariably failed at this point. This can be interpreted in terms of S_N^2 substitution of the tosylate group being disfavored because of the bulkiness and concave shape of the bicyclic core.

In contrast, introduction of a small nucleophile such as cyanide anion could be performed at 100 °C, affording nitrile **26** in good yield (Scheme 6), DIBAH reduction and hydrolysis then affording aldehyde **27**. This aldehyde allowed us to validate our strategy towards the sarain A core skeleton quickly with the aid of an allylsilane methodology previously developed by Weinreb and co-workers.^[2] Allylsilane **28** [mixture of (*E*) and (*Z*) isomers] was obtained from

Figure 2. ORTEP plot of alcohol 19. Ellipsoids are drawn at 30% probability level.

Scheme 5. Selective imide 16 reduction.

aldehyde **27** in 70% yield, tosylation gave a mixture of isomers **29**, which was reduced with DIBAH to afford the targeted iminium ion precursors **30**, and cyclization with ferric chloride finally delivered the sarain A core skeleton analogue **31**.

Scheme 6. Synthesis of sarain A model $\mathbf{31}$ by an allylsilane strategy. $^{[2]}$

Conclusions

We have shown that it is possible to obtain the sarain A core skeleton analogue **31** by a route based on the proposed biogenetic pathway depicted in Scheme 2. The reported strategy has some advantages over our previous approach. Of particular interest is the short, stereoselective route to highly functionalized diazabicyclo[4.3.0]nonane systems such as **14**, achieved by successive condensations of four different molecules. Reduction studies of these intermedi-

ates also gave encouraging results. Firstly, a hydrogenation procedure allowed the desired *endo* isomer to be obtained, while the regioselectivity can be also controlled for imide reduction. These results open the way to further developments of this strategy, which are underway in our laboratory.

Experimental Section

General Remarks: NMR spectra were recorded with the following Bruker spectrometers: AC 250 (250 MHz), AC 300 (300 MHz), Avance 300 (300 MHz), DPX 400 (400 MHz), Avance 500 (500 MHz). FT-IR spectra were recorded as films on NaCl or in a diamond (SensIR DurasampIR II) cell with a Perkin–Elmer Spectrum BX FT-IR spectrophotometer. Mass spectra were recorded by electrospray ionization with a Micromass LCT instrument (ESI-TOF). Melting points were measured with a Büchi Melting Point B-540 apparatus.

N-Benzylidene-L-alanine Ethyl Ester (10): TEA (7.8 mL, 56.3 mmol) and benzaldehyde (5.7 mL, 56.07 mmol) were added to a stirred solution of L-alanine ethyl ester hydrochloride (8.6 g, 56 mmol) in MeCN (100 mL). The reaction mixture was stirred overnight and filtered through Celite, and the solvents were evaporated. The residue was diluted with Et₂O and filtered through Celite again, and the organic layer was concentrated to give imine 10 (11.5 g, 100% yield). ¹H NMR (300 MHz, CDCl₃): δ = 1.27 (t, *J* = 7.1 Hz, 3 H,), 1.52 (d, *J* = 6.9 Hz, 3 H), 4.09–4.23 (m, 3 H), 7.35 (m, 5 H), 8.30 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 19.2, 60.8, 67.8, 128.3, 128.4, 130.8, 135.6, 162.6, 172.3 ppm. IR (neat): \tilde{v} = 2981, 1730, 1641, 1449, 1369, 1184, 1124, 1046, 1021, 752 cm⁻¹. HRMS (ESI⁺, MeOH): *m*/*z* = 206.1186 [M+H]⁺ (calcd. for C₁₂H₁₆NO₂ 206.1181).

(*Z*)-*N*-Benzyl-3-bromoacrylamide (11): Propiolic acid (9.0 g, 128.5 mmol) was added to a solution of LiBr (11.16 g, 128.5 mmol) in MeCN (125 mL).^[15] The mixture was heated at reflux overnight, filtered through Celite, and washed with Et_2O (3×50 mL) to give lithium (*Z*)-3-bromoacrylate (17.73 g, 88% yield). Isobutyl chloroformate (6.8 mL, 51.7 mmol) was added at 0 °C to a stirred suspension of this acrylate salt (8.08 g, 51.5 mmol) in THF (250 mL). The reaction mixture was allowed to warm to room temp. and stirred until it turned clear and the solution was cooled to 0 °C, after which benzylamine (5.9 mL, 54.0 mmol) was added and the mix-

FULL PAPER

ture was stirred overnight. AcOEt (500 mL) was added, the organic phase was washed with H₂O (2×500 mL) and dried with MgSO₄, and the solvents were evaporated. The resulting oil was dissolved in a mixture of AcOEt and Et₂O (1:1) and crystallized at -20 °C to give (*Z*)-*N*-benzyl-3-bromoacrylamide (6.18 g, 50% yield): m.p. 75-76 °C. ¹H NMR (300 MHz, CDCl₃): δ = 4.44 (d, *J* = 6.0 Hz, 2 H), 6.54 (d, *J* = 8.1 Hz, 1 H), 6.62 (d, *J* = 8.1 Hz, 1 H), 7.26 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 43.5, 114.1, 127.5, 127.8, 128.7, 128.3, 137.6, 163.7 ppm. IR (neat): \tilde{v} = 3276, 1606, 1537, 1494, 1450, 1351, 1247, 1184, 1028 cm⁻¹. MS (ESI⁺, MeOH): *m/z* = 262.264 [M+Na]⁺. C₁₀H₁₀BrNO (240.10): calcd. C 50.02, H 4.20, N 5.83; found C 50.09, H 4.32, N 5.54.

5-Amino-1-benzyl-5-methyl-3,4-dehydroglutarimide Hydrochloride (12·HCl): Ethyl N-benzylidene-L-alanate 10 (6.5 g, 31.6 mmol) in THF (80 mL) was added at -78 °C under argon to a stirred solution of LDA (63 mmol) in dry THF (160 mL). The reaction mixture was maintained at -78 °C for an additional 20 min, after which a solution of (Z)-N-benzyl-3-bromoacrylamide (11) (7.6 g, 31.6 mmol) in THF (80 mL) was added. The mixture was allowed to warm to room temp. and stirred for 14 h, after which H₂O (200 mL) was added. The reaction mixture was then diluted with Et₂O (200 mL) and the organic layer was separated, washed with H_2O (5 × 200 mL), and dried with MgSO₄. The organic layer was concentrated to dryness to give the imine, which was dissolved in Et₂O (220 mL). An aqueous HCl solution (0.2 N, 162 mL) was added and the resulting mixture was vigorously stirred for 3 h. The organic phase was decanted and the aqueous phase was washed with Et₂O (5×100 mL) and concentrated to give 12·HCl (5.79 g, 69% yield). ¹H NMR (300 MHz, CDCl₃): δ = 1.72 (s, 3 H), 5.01 (d, J = 14.7 Hz, 1 H), 5.07 (d, J = 14.7 Hz, 1 H), 6.47 (d, J =10.2 Hz, 1 H), 6.94 (d, J = 10.2 Hz, 1 H), 7.31 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 26.1, 44.2, 56.7, 124.7, 128.6, 129.3, 129.5, 137.6, 142.3, 163.9, 172.3 ppm. IR (neat): $\tilde{v} = 3385$, 2848, 1728, 1687, 1643, 1196, 1145 cm⁻¹. HRMS (ESI⁺, MeOH): m/z =231.1128 [M-Cl⁻]⁺ (calcd. for C₁₃H₁₅N₂O₂ 231.1134).

Enaminal 14: Amine 12·HCl (1.85 g, 6.93 mmol) was added under argon to a stirred solution of malonaldehyde sodium salt^[16] (1 g, 8.93 mmol) in dry CH₂Cl₂ (30 mL). The reaction mixture was stirred for 3 h and filtered through Celite, and the solvents were evaporated. The resulting orange solid (intermediate vinylogous amide 13, 2.03 g, 90% purity by ¹H NMR) was dissolved in dry THF (15 mL), and sodium hydride (60% in mineral oil, 332 mg, 8.32 mmol) was added. After 3 h, the mixture was cooled to 0 °C, after which methyl iodide (1.3 mL, 20 mmol) was added. The reaction mixture was stirred at 0 °C for 2 h and then at room temp. for 1 h, the solvent was evaporated, and the residue was diluted with CH₂Cl₂ (50 mL), the mixture filtered through Celite, and the filtrate concentrated to afford an orange solid (1.49 g). Column chromatography of the residue on silica gel (AcOEt/CH₂Cl₂, 40:60) gave enaminal 14 (1.31 g, 63% yield) as a colorless oil. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.55 \text{ (s, 3 H)}, 2.72 \text{ (dd, } J = 16.0, 6.1 \text{ Hz}, 1$ H), 2.79 (s, 3 H), 3.34 (dd, J = 16.0, 4.6 Hz, 1 H), 3.47 (t, J =5.3 Hz, 1 H), 4.80 (d, J = 14.0 Hz, 1 H), 5.04 (d, J = 14.0 Hz, 1 H), 6.82 (s, 1 H), 7.30 (m, 5 H), 9.24 (s, 1 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 20.6, 32.3, 32.7, 41.5, 43.7, 70.4, 115.0,$ 127.6, 128.4, 128.6, 136.7, 157.0, 168.8, 170.3, 181.8 ppm. IR (neat): $\tilde{v} = 2923, 2777, 1729, 1678, 1626, 1578, 1438, 1408, 1356,$ 1266, 1162 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 299.1429 [M + H]^+$ (calcd. for C₁₇H₁₉N₂O₃ 299.1395).

Alcohol 15: NaBH₄ (480 mg, 12.7 mmol) was slowly added at 0 °C to enaminal **14** (175 mg, 0.59 mmol) in glacial acetic acid (12 mL). The reaction mixture was stirred at room temp. for 15 min, and

was then cooled to 0 °C. H₂O (10 mL) was added to the reaction mixture, which was neutralized with a 50% aqueous NaOH solution. The mixture was extracted with CH_2Cl_2 (3×200 mL), the combined organic extracts were dried with MgSO₄, and the solvents were evaporated. Column chromatography of the residue on silica gel (CH₂Cl₂/MeOH, 97:3) gave alcohol 15 as a colorless oil (148 mg, 84% yield): ¹H NMR (300 MHz, CDCl₃): δ = 1.36 (s, 3 H), 1.90 (m, 1 H), 1.95 (s, 1 H), 2.09 (ddd, J = 7.6, 5.0, 2.9 Hz, 1 H), 2.32 (dd, J = 9.9, 8.7 Hz, 1 H), 2.42 (s, 3 H), 2.65 (dd, J = 9.9, 3.3 Hz, 1 H), 2.72 (dd, J = 16.7, 5.0 Hz, 1 H), 2.86 (dd, J = 16.7, 5.0 Hz) 2.9 Hz, 1 H), 3.60 (dd, J = 14.9, 0.7 Hz, 1 H), 3.64 (dd, J = 14.9, 0.7 Hz, 1 H, 4.88 (d, J = 13.8 Hz, 1 H), 4.93 (d, J = 13.8 Hz, 1 H) H), 7.20–7.40 (m, 5 H) ppm. ¹³C NMR (75 MHz,CDCl₃): δ = 19.9, 34.2, 35.3, 42.5, 43.0, 43.5, 55.5, 65.7, 66.2, 127.4, 128.4, 128.8, 137.5, 171.4, 173.9 ppm. IR (neat): $\tilde{v} = 3439$, 2968, 2927, 2801, 1722, 1672, 1447, 1378, 1353, 1335, 1162 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 303.1696 [M+H]^+$ (calcd. for $C_{17}H_{23}N_2O_3$ 303.1709).

Alcohol 16: A pressure reaction vessel was charged with enaminal 14 (200 mg, 0.67 mmol), THF (25 mL), PtO₂ (33 mg), and SnCl₂ (2.3 mg). The reaction mixture was then hydrogenated in a Parr apparatus under pressure (4 bar) overnight. After filtration through Celite, the solvent was evaporated. Column chromatography of the residue on deactivated silica gel (eluent AcOEt/acetone, 4:1; silica gel was shaken in a mixture of AcOEt/acetone/TEA, 20:5:1.25 before use) afforded a mixture of alcohols 15 and 16 (168 mg, 83% yield, 4.7:1 diastereoselectivity). An analytically pure sample of alcohol 16 was obtained, but the mixture was usually used as it was. ¹H NMR (300 MHz, CDCl₃): δ = 1.20 (s, 3 H), 2.33 (s, 3 H), 2.33–2.82 (m, 6 H), 3.46 (d, J = 6.6 Hz, 2 H), 4.83 (s, 2 H), 7.13– 7.26 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 17.0, 31.1, 35.1, 40.5, 41.6, 43.1, 55.2, 61.6, 65.4, 127.3, 128.3, 128.5, 137.1, 171.9, 173.6 ppm. IR (neat): $\tilde{v} = 3368$, 1671, 1603, 1383, 1094 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 325.1514 [M + Na]^+$ (calcd. for C₁₇H₂₂N₂NaO₃ 325.1528).

Tosylate 17: TsCl (156 mg, 0.82 mmol), DMAP (10 mg, 0.08 mmol), and freshly distilled TEA (0.114 mL, 0.82 mmol) were added at 0 °C to a solution of alcohol 15 (124 mg, 0.41 mmol) in dry CH₂Cl₂ (4 mL). The reaction mixture was stirred at room temp. overnight, a saturated solution of aqueous NaHCO3 was added, the system was extracted three times with CH₂Cl₂, the combined organic extracts were dried with MgSO₄, and the solvents were evaporated. Column chromatography of the residue on silica gel (heptanes/AcOEt, 1:1) afforded tosylate 13 as a white solid (128 mg, 68% yield); m.p. 104-105 °C. 1H NMR (300 MHz, CDCl₃): δ = 1.30 (s, 3 H), 1.89–2.04 (m, 2 H), 2.25 (dd, J = 10.2, 8.2 Hz, 1 H), 2.37 (s, 3 H), 2.45 (s, 3 H), 2.50 (dd, J = 10.2, 3.2 Hz, 1 H), 2.67 (dd, J = 16.7, 4.8 Hz, 1 H), 2.78 (dd, J = 16.7, 2.7 Hz, 1 H), 3.93 (dd, J = 9.6, 7.2 Hz, 1 H), 3.99 (dd, J = 9.4, 6.6 Hz, 1 H), 4.84 (d, J = 13.8 Hz, 1 H), 4.91 (d, J = 13.8 Hz, 1 H), 7.25– 7.40 (m, 5 H), 7.41 (d, J = 8.2 Hz, 2 H), 7.75 (d, J = 8.2 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 19.9, 27.1, 33.8, 35.1, 39.7, 43.0, 43.8, 54.5, 65.9, 72.2, 127.5, 127.9, 128.4, 128.8, 130.0, 132.7, 137.4, 145.1, 170.7, 173.6 ppm. IR (neat): $\tilde{v} = 2928$, 2803, 1724, 1673, 1356, 1176, 963, 814, 701 cm⁻¹. HRMS (ESI⁺, MeOH): m/z = $457.1755 [M + H]^+$ (calcd. for $C_{24}H_{29}N_2O_5S 457.1752$).

Derivative 18: NaBH₄ (200 mg, 5.23 mmol) was added at 0 °C to a solution of alcohol **15** (150 mg, 0.49 mmol) in absolute EtOH (15 mL). The resulting mixture was stirred at 0 °C for 5 h with addition of 3 drops of a solution of HCl gas in EtOH (2 N) every 15 min. The mixture was then acidified until pH = 3, stirred for an additional 20 h, and made alkaline with 10% KOH in EtOH solu-

tion until pH = 9, the organic solvent was evaporated, and the reaction mixture was diluted with saturated aqueous NaHCO₃ (10 mL). After three extractions with CH₂Cl₂, the combined organic layers were dried with MgSO₄ and the solvents were evaporated. Column chromatography of the residue on alumina (eluent CH₂Cl₂/TEA, 98:2) gave amide 18 as a colorless oil (107 mg, 71%) yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.70$ (s, 3 H), 1.83 (q, J = 8.9 Hz, 1 H), 2.00 (m, 1 H), 2.15 (s, 3 H), 2.47 (dd, J = 10.5, 9.4 Hz, 1 H), 2.60 (d, J = 9.5 Hz, 2 H), 3.16 (dd, J = 9.4, 7.0 Hz, 1 H), 3.58 (d, J = 5.9 Hz, 2 H), 3.87 (d, J = 14.5 Hz, 1 H), 4.49 (s, 1 H), 5.00 (d, J = 14.5 Hz, 1 H), 7.31 (m, 5 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 17.7, 34.4, 37.4, 45.8, 47.8, 50.2, 57.1, 63.5,$ 65.3, 84.1, 127.4, 128.4, 128.6, 137.5, 171.8 ppm. IR (neat): $\tilde{v} =$ 3385, 2923, 1651, 1482, 1454, 1385, 1176, 1044, 705 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 305.1863 [M + H]^+$ (calcd. for C₁₇H₂₅N₂O₃ 305.1865).

Diol 19: NaBH₄ (93 mg, 2.4 mmol) was added at 0 °C to a solution of alcohol 16 (74 mg, 0.24 mmol) in absolute EtOH (7 mL). After 1 h, H₂O (4.5 mL) was added and the reaction mixture was stirred at 55 °C for 1 h. Acetic acid was added dropwise to adjust the pH to ca. 4, and then the aqueous layer was made alkaline with a saturated aqueous NaHCO3 solution. After three extractions with CH₂Cl₂, the combined organic layers were dried with MgSO₄ and the solvents were evaporated. Column chromatography of the residue on alumina (AcOEt/acetone, 1:1) gave diol 19 as a white solid (38 mg, 50% yield); m.p. 155–156 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.20 (s, 3 H), 1.41–1.52 (m, 1 H), 1.70–1.81 (m, 1 H), 2.03-2.25 (m, 2 H), 2.17 (s, 3 H), 2.58 (dd, J = 5.7, 9.6 Hz, 1 H), 2.95 (d, J = 9.0 Hz, 1 H), 3.41 (dd, J = 8.4, 11.4 Hz, 1 H), 3.55– 3.69 (m, 3 H), 4.33 (qd, J = 12.3, 5.7 Hz, 2 H), 7.18–7.30 (m, 5 H), 8.13 (m, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 19.0, 29.7, 35.7, 42.9, 43.4, 52.2, 56.5, 61.9, 62.6, 69.0, 127.5, 127.9, 128.8, 138.5, 175.1 ppm. IR (neat): $\tilde{v} = 3327$, 2934, 1651, 1512, 1030 cm⁻¹. MS (ESI⁺, MeOH): $m/z = 457 [M + H]^+$. $C_{17}H_{26}N_2O_3$ (306.40): calcd. C 66.64, H 8.55, N 9.40; found C 66.48, H 8.54, N 9.10.

Tricyclic Derivative 20: DIBAH (1 M in CH_2Cl_2 , 10 mL, 10 mmol) was added dropwise at -78 °C to a solution of alcohol **16** (crude mixture with isomeric **15** in a 4.7:1 ratio, 1.54 g, 5 mmol) in dry CH_2Cl_2 (15 mL). The mixture was stirred for 1.5 h and trifluoro-acetic acid (2 mL) was then added. The reaction mixture was allowed to warm to room temp. and stirred for an additional 0.5 h. An aqueous NaOH solution (5 N) was added to the reaction mixture was diluted with H_2O and extracted three times with CH_2Cl_2 , the combined organic extracts were dried with MgSO₄ and the solvents evaporated. Column chromatography of the residue on silica gel (eluent AcOEt/acetone, 4:1) gave the tricyclic derivative **20** as a white solid (1.02 g, 72% yield) and the unsaturated alcohol **21** (from **15**) as a colorless liquid (0.18 g, 12% yield).

Tricyclic Derivative 20: M.p. 82–84 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.39 (s, 3 H), 1.75 (dt, *J* = 13.8, 2.4 Hz, 1 H), 2.15 (dt, *J* = 13.8, 3.0 Hz, 1 H), 2.34 (m, 1 H), 2.49 (m, 1 H), 2.57 (s, 3 H), 2.95 (dd, *J* = 9.0, 6.3 Hz, 1 H), 3.63 (dd, *J* = 7, 12.0, 6.3 Hz, 1 H), 3.85 (dd, *J* = 12.0, 6.0 Hz, 1 H), 3.90 (d, *J* = 15 Hz, 1 H), 4.89 (m, 1 H), 5.15 (d, *J* = 15 Hz, 1 H), 7.25–7.34 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 20.1, 25.0, 34.5, 35.6, 40.6, 47.9, 57.2, 61.4, 64.8, 79.7, 127.2, 128.2, 128.4, 137.5, 172.6 ppm. IR (neat): \tilde{v} = 2790, 2360, 1647, 1493, 1448, 1411, 1362, 1328, 1211, 1175, 1041, 725 cm⁻¹. HRMS (ESI⁺, MeOH): *m*/*z* = 287.1777 [M + H]⁺ (calcd. for C₁₇H₂₃N₂O₂ 287.1760). C₁₇H₂₂N₂O₂ (286.37): calcd. C 71.30, H 7.74, N, 9.78; found C 70.88, H 7.79, N 9.52.

Derivative 21: ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (s, 3 H), 2.02–2.07 (m, 1 H), 2.21 (dd, J = 8.1, 5.7 Hz, 1 H), 2.61 (dd, J = 5.7, 9.9 Hz, 1 H), 2.65 (s, 3 H), 2.86 (t, J = 9.3 Hz, 2 H), 3.60 (d, J = 5.7 Hz, 2 H), 4.53 (d, J = 15 Hz, 1 H), 4.61 (d, J = 15 Hz, 1 H), 5.09 (dd, J = 7.8, 6 Hz, 1 H), 5.84 (d, J = 8.1 Hz, 1 H), 7.12–7.27 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.7$, 35.8, 46.2, 48.3, 49.1, 55.0, 65.0, 65.6, 108.0, 126.8, 127.4, 127.4, 128.6, 137.2, 173.0 ppm. IR (neat): $\tilde{v} = 3361, 2923, 1650, 1495, 1453, 1384, 1253, 1218, 1172, 1028, 725, 697$ cm⁻¹. HRMS (ESI⁺, MeOH): m/z = 287.1767 [M + H]⁺ (calcd. for C₁₇H₂₃N₂O₂ 287.1760).

Enaminone 22: BF₃·Et₂O (0.28 mL, 2.24 mmol) was added to a solution of tricyclic derivative 20 (128 mg, 0.44 mmol) in dry CH₂Cl₂ (5 mL). The reaction mixture was heated at reflux overnight and was then diluted with 1 N aqueous NaOH solution and extracted three times with CHCl₃. The combined organic extracts were dried with MgSO4 and the solvents evaporated. Column chromatography of the residue on silica gel (eluent AcOEt/acetone, 2:1) gave unsaturated enaminone 22 as a colorless oil (105 mg, 82% yield). ¹H NMR (300 MHz, CDCl₃): δ = 1.33 (s, 3 H), 2.41–2.45 (m, 1 H), 2.68 (s, 3 H), 2.74–2.77 (m, 1 H), 2.78–2.92 (m, 3 H), 3.55 (dd, J = 5.1, 10.2 Hz, 1 H), 3.64 (dd, J = 5.1, 10.2 Hz, 1 H),4.55 (d, J = 15.3 Hz, 1 H), 4.78 (d, J = 15.3 Hz, 1 H), 5.00 (dd, J= 8.7, 5.1 Hz, 1 H), 6.03 (dd, J = 8.7, 1.5 Hz, 1 H), 7.24–7.36 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 19.7, 36.3, 41.8, 48.1, 49.3, 56.4, 63.3, 64.3, 103.6, 127.5, 127.6, 128.2, 128.6, 137.0, 172.5 ppm. IR (neat): \tilde{v} = 3383, 2928, 1658, 1650, 1644, 1453, 1392, 1028, 728, 697 cm⁻¹. HRMS (ESI⁺, MeOH): m/z = 287.1743 $[M + H]^+$ (calcd. for $C_{17}H_{23}N_2O_2$ 287.1760). $C_{17}H_{22}N_2O_2$ (286.37): calcd. C 71.30, H 7.74, N 9.78; found C 70.83, H 7.95, N 9.54.

Amide 23: A solution of unsaturated alcohol 22 (100 mg, 0.34 mmol) in MeOH (20 mL) was hydrogenated at atmospheric pressure in the presence of Raney nickel in H₂O (4 mL). After stirring overnight, the reaction mixture was filtered through Celite and the solvent evaporated. The residue was diluted with CHCl₃, dried with MgSO₄, and concentrated to give amide 2 as a colorless oil (95 mg, 95% yield). ¹H NMR (300 MHz, CDCl₃): δ = 1.28 (s, 3 H), 1.72-1.79 (m, 1 H), 1.89-1.98 (m, 1 H), 2.25-2.40 (m, 2 H), 2.62 (s, 3 H), 2.79 (dd, J = 7.5, 9.9 Hz, 1 H), 2.97 (dd, J = 3.6, 9.9 Hz, 1 H), 3.23 (dd, J = 3.3, 8.1 Hz, 2 H), 3.64 (dd, J = 4.2, 10.5 Hz, 1 H), 3.74 (dd, J = 4.8, 10.5 Hz, 1 H), 4.59 (s, 2 H), 7.23– 7.35 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 18.4, 23.0, 36.5, 39.5, 46.1, 47.1, 50.3, 57.1, 62.9, 65.0, 127.3, 127.8, 128.6, 137.2, 172.9 ppm. IR (neat): $\tilde{v} = 3385$, 2925, 2847, 1620, 1491, 1451, 1354, 1169, 1029, 909, 726, 698 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 289.1918 [M + H]^+$ (calcd. for C₁₇H₂₅N₂O₂ 289.1916).

Amide 24: A flask containing tert-butyl alcohol (0.58 mL) and THF (7 mL) was cooled to -78 °C and NH₃ gas was condensed into the mixture (approximately 12 mL). Sodium metal (101 mg, 4.4 mmol) was added in small portions, producing a deep blue solution, and benzylamide 23 (87 mg, 0.3 mmol), dissolved in THF (2 mL), was added. The mixture was stirred for 6 min, the dry ice bath was removed, and the reaction was quenched with saturated aqueous NH₄Cl solution (5 mL). After the NH₃ had been allowed to evaporate, the mixture was extracted with CHCl₃, and the organic phase was dried with MgSO4 and concentrated. Column chromatography of the residue on silica gel with CH2Cl2/MeOH (2:1) as the eluent gave amide 24 as a white solid (54 mg, 91% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (s, 3 H), 1.81–1.85 (m, 1 H), 1.92 (dq, J = 4.5, 12.0 Hz, 1 H), 2.24-2.29 (m, 1 H), 2.37–2.40 (m, 1 H), 2.53 (s, 3 H), 2.74 (t, J = 9.0 Hz, 1 H), 2.89 (dd, J = 2.5, 9.5 Hz, 1 H), 3.22-3.28 (m, 1 H), 3.33-3.37 (m, 1 H),3.68 (dd, J = 4.0, 10.0 Hz, 1 H), 3.75 (dd, J = 4.0, 10.0 Hz, 1 H),

FULL PAPER

6.02 (br.s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 17.8, 23.5, 36.3, 39.7, 40.9, 47.0, 56.8, 63.1, 64.1, 175.5 ppm. IR (neat): \tilde{v} = 3299, 1643, 1493, 1461, 1346, 1178, 1098, 1057, 1029 cm⁻¹. HRMS (ESI⁺, MeOH): *m*/*z* = 199.1440 [M+H]⁺ (calcd. for C₁₀H₁₉N₂O₂ 199.1447).

Tosylate 25: TsCl (136 mg, 0.70 mmol), DMAP (8.7 mg, 0.07 mmol), and TEA (0.075 mL, 0.54 mmol) were added at 0 °C to a solution of alcohol 19 (70 mg, 0.35 mmol) in dry CH₂Cl₂ (4 mL). The reaction mixture was allowed to warm to room temperature and stirred for 2 h and was then diluted with a saturated aqueous NaHCO₃ solution and extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄ and the solvents evaporated. Column chromatography of the residue on silica gel, with acetone as eluent, gave tosylate 25 as a white solid (111 mg, 90% yield); m.p. 149-150 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (s, 3 H), 1.58–1.61 (m, 1 H), 1.79 (dq, J = 5.0, 12.5 Hz, 1 H), 2.16–2.21 (m, 1 H), 2.43 (s, 3 H), 2.47 (s, 3 H), 2.61 (t, J = 10 Hz, 1 H), 2.73-2.81 (m, 2 H), 3.18-3.29 (m, 2 H), 4.01(dd, J = 7.0, 9.5 Hz, 1 H), 4.10 (t, J = 9 Hz, 1 H), 6.09 (br. s, 1 H),7.37 (d, J = 8.5 Hz, 2 H), 7.80 (d, J = 8.5 Hz, 2 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 15.4, 21.4, 21.5, 21.6, 35.9, 37.4, 40.9, 41.1,$ 45.4, 54.2, 65.4, 69.6, 127.9, 129.9, 132.7, 145.0, 173.0 ppm. IR (neat): $\tilde{v} = 3369, 2929, 1737, 1659, 1353, 1216, 1188, 1174,$ 961 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 353.1520 \text{ [M + H]}^+$ (calcd. for C₁₇H₂₄N₂O₄S 353.1535).

Cyanide 26: NaCN (512 mg, 10.4 mmol) was added to a solution of tosylate 25 (368 mg, 1.04 mmol) in DMF (10 mL). The reaction mixture was stirred at 100 °C for 3 h, diluted with a saturated aqueous NaHCO₃ solution, and extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO4 and the solvents evaporated. Column chromatography of the residue on silica gel with CH₂Cl₂/MeOH (20:1) as eluent gave cyanide 21 as a white solid (196 mg, 91% yield); m.p. 129-130 °C. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.23$ (s, 3 H), 1.58–1.61 (m, 1 H), 1.70–1.88 (m, 1 H), 2.22-2.30 (m, 1 H), 2.39-2.46 (m, 2 H), 2.50 (s, 3 H), 2.78-2.90 (m, 3 H), 3.23–3.39 (m, 2 H), 6.47 (s, 1 H) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 16.1, 18.0, 21.9, 35.2, 35.9, 40.7, 46.6, 57.2, 64.8, 118.9,$ 174.0 ppm. IR (neat): $\tilde{v} = 3197, 2936, 2879, 2827, 2244$ (CN), 1659, 1494, 1448, 1212, 1363, 1348, 1184, 1094, 979 cm⁻¹. HRMS (ESI⁺, MeOH): $m/z = 230.1275 [M + Na]^+$ (calcd. for $C_{11}H_{17}N_3ONa$ 230.1269).

Aldehyde 27: DIBAH (1 M in CH₂Cl₂, 0.57 mL, 0.57 mmol) was added dropwise at -78 °C to a solution of nitrile 26 (57 mg, 0.27 mmol) in dry THF (0.5 mL), and the mixture was kept at -78 °C for 1 h. DIBAH (1 м in CH₂Cl₂, 0.57 mL, 0.57 mmol) was added again, and the mixture was then stirred at -78 °C for an additional 1 h. MeOH and saturated aqueous NH4Cl solution were added to the mixture, which was allowed to warm to room temp., diluted with H₂O, and extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO4 and the solvents evaporated. Crude aldehyde 27 (42 mg, 74% yield) was obtained as a colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (s, 3 H), 1.44-1.49 (m, 1 H), 1.64-1.78 (m, 2 H), 2.07-2.15 (m, 1 H), 2.39 (s, 3 H), 2.50–2.55 (m, 2 H), 2.66–2.88 (m, 3 H), 3.13–3.26 (m, 2 H), 6.20 (br.s, 1 H), 9.74 (t, J = 1.2 Hz, 1 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 15.0, 21.3, 31.1, 35.0, 40.1, 43.8, 45.5, 56.9,$ 64.1, 172.8, 200.1 ppm. IR (neat): $\tilde{v} = 3295$, 2930, 2852, 1716, 1650, 1492, 1454, 1345, 1161, 1096 cm⁻¹. HRMS (ESI⁺, MeOH): m/z =211.1424 $[M + H]^+$ (calcd. for $C_{11}H_{19}N_2O_2$ 211.1447).

Derivatives 28 (Mixture of Isomers): *n*-Butyllithium (1.6 M in hexane, 0.37 mL, 0.59 mmol) was added at 0 °C to a suspension of methyltriphenylphosphonium bromide (206 mg, 0.57 mmol) in dry

THF (2.5 mL). The mixture was allowed to warm to room temp., stirred for 1 h, and cooled to 0 °C. (Iodomethyl)trimethylsilane (0.085 mL, 0.57 mmol) was added, and the solution was allowed to warm to room temp. After 2 h, the reaction mixture was treated at -78 °C with methyllithium (0.37 mL, 1.6 м in Et₂O). The mixture immediately turned red. After the mixture had been stirred at room temp. for 1 h, a homogeneous red solution had formed, and aldehyde 27 (38 mg, 0.18 mmol) in THF (1.8 mL) was added to this at -78 °C. The mixture was allowed to warm to room temp. and stirred overnight, and was then diluted with a saturated aqueous ammonium chloride solution and extracted three times with CH₂Cl₂. The combined organic extracts were dried with MgSO₄ and the solvents evaporated. Column chromatography of the residue on silica gel with CH₂Cl₂/MeOH (50:1) as eluent gave a mixture of isomers 28 as a colorless oil (37 mg, 70% yield). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.08$ (s, 9 H), 1.21 (s, 3 H), 1.48 (d, J =7.8 Hz, 2 H), 1.62–1.97 (m, 3 H), 2.01–2.09 (m, 3 H), 2.45 (s, 3 H), 2.68 (t, J = 9.6 Hz, 1 H), 2.82 (dd, J = 9.3, 7.8 Hz, 1 H), 3.24–3.33 (m, 2 H), 5.18–5.26 (m, 1 H), 5.40–5.46 (m, 1 H), 5.89 (br.s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = -1.7$, 18.7, 21.5, 27.4, 36.1, 38.5, 41.4, 46.8, 53.4, 58.3, 65.3, 125.3, 126.7, 174.0 ppm. IR (neat): $\tilde{v} = 3326, 2950, 1655, 1624, 1492, 1341, 1245, 1153, 1099 \text{ cm}^{-1}.$ HRMS (ESI⁺, MeOH): $m/z = 295.220 [M+H]^+$ (calcd. for C₁₆H₃₁N₂OSi 295.2206).

Tosylamides 29: Amides 28 (37 mg, 0.12 mmol) were dissolved in dry THF (1.2 mL) and the mixture was cooled to 0 °C. LiHMDS (0.25 mL, 1 M in hexane, 0.25 mmol) was added to the resulting solution, and the mixture was stirred for 15 min. p-Toluenesulfonyl chloride (60 mg, 0.31 mmol) and DMAP (4.6 mg, 0.04 mmol) were added in one portion, and the solution was allowed to warm slowly to room temp. over 2 h. The reaction mixture was diluted with saturated aqueous NaHCO3 solution and extracted three times with CH₂Cl₂, the combined organic extracts were dried with MgSO₄ and the solvents evaporated. Column chromatography of the residue on silica gel (heptanes/ethyl acetate, 5:1) gave tosylamides 29 as a colorless oil (40 mg, 71 % yield). ¹H NMR (300 MHz, CDCl₃): δ = 0.01 (s, 9 H), 1.12 (s, 3 H), 1.47 (d, J = 8.7 Hz, 2 H), 1.72–1.80 (m, 1 H), 1.88-1.98 (m, 1 H), 2.03-2.23 (m, 3 H), 2.15 (s, 3 H), 2.36-2.50 (m, 1 H), 2.42 (s, 3 H), 2.64-2.78 (m, 2 H), 3.74-3.82 (m, 1 H), 4.10-4.16 (m, 1 H), 5.03-5.24 (m, 1 H), 5.39-5.53 (m, 1 H), 7.31 (d, J = 8.4 Hz, 2 H), 7.90 (d, J = 8.4 Hz, 2 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = -1.8$, 16.2, 18.8, 21.6, 23.4, 27.5, 35.0, 38.8, 45.6, 47.1, 58.6, 68.7, 125.0, 127.1, 128.3, 129.2, 136.4, 144.3, 172.8 ppm. IR (neat): $\tilde{v} = 2950, 1693, 1595, 1352, 1246, 1165,$ 1089 cm^{-1} . HRMS (ESI⁺, MeOH): $m/z = 449.2287 \text{ [M + H]}^+$ (calcd. for C₂₃H₃₇N₂O₃SSi 449.2294).

Iminium Precursor 30: DIBAH (1 M in CH₂Cl₂, 0.36 mL, 0.36 mmol) was added at -78 °C to a solution of lactam 29 (40 mg, 0.09 mmol) in dry CH2Cl2 (1 mL). The solution was allowed to warm slowly to room temp. over 3 h, and H₂O (0.5 mL) was added. The solution was filtered through Celite, which was washed with CH₂Cl₂, the filtrate was concentrated, and the crude product (35 mg, 87% yield) was obtained, ¹H NMR (300 MHz, CDCl₃; major isomer): δ = 0.00 (s, 9 H), 1.14 (s, 3 H), 1.42 (d, J = 9 Hz, 2 H), 1.59-1.63 (m, 3 H), 1.83-1.98 (m, 3 H), 2.24 (s, 3 H), 2.43 (s, 3 H), 2.72-2.76 (m, 1 H), 2.87-2.90 (m, 1 H), 3.13-3.16 (m, 1 H), 3.29-3.35 (1 H), 5.07-5.25 (m, 3 H), 5.37-5.47 (m, 1 H), 7.31 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.5 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃; characteristic signals): $\delta = -1.8$, 80.3, 125.6, 126.9, 127.9, 129.4, 136.0, 143.2 ppm. IR (neat): $\tilde{v} = 3350, 2954, 1736, 1336,$ 1259, 1162, 1092, 1015, 853, 799 cm⁻¹. HRMS (ESI⁺, MeOH): m/z = 451.2461 $[M + H]^+$ (calcd. for $C_{23}H_{39}N_2O_3SSi$ 451.2451).

Sarain A Core Skeleton Analogue 31: The above crude aminal was dissolved in dry CH₂Cl₂ (15 mL) and the mixture was cooled to -78 °C. Anhydrous ferric chloride (126 mg, 0.3 mmol) was added in one portion, and the resulting solution was warmed to room temp. After 30 min, the solution was diluted with 1 N aqueous NaOH (2 mL) and stirred for 1 h, the mixture was extracted three times with CH₂Cl₂, the combined organic extracts were dried with MgSO₄ and the solvents evaporated. Column chromatography of the residue on silica gel (acetone/ethyl acetate, 1:4) gave tricyclic product 31 as a colorless oil (17 mg, 61% yield). ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 1.14$ (s, 3 H), 1.44–1.52 (m, 1 H), 1.76– 1.88 (m, 4 H), 2.00–2.14 (m, 2 H), 2.22–2.45 (m, 1 H), 2.41 (s, 3 H), 2.47 (s, 3 H), 3.16 (ddd, J = 5.4, 12.9, 13.2 Hz, 1 H), 3.31–3.36 (m, 1 H), 3.62 (dd, J = 8.7, 13.5 Hz, 1 H), 3.93 (d, J = 4.5 Hz, 1 H), 4.74 (dt, J = 10.5, 1.5 Hz, 1 H), 4.97 (dt, J = 16.8, 1.5 Hz, 1 H), 5.54–5.65 (m, 1 H), 7.26 (d, J = 8.7 Hz, 2 H), 7.66 (d, J =8.7 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 20.8, 21.4, 22.5, 32.5, 33.6, 38.1, 38.9, 40.3, 41.6, 58.4, 59.5, 60.7, 114.5, 127.2, 129.2, 138.5, 139.7, 142.5 ppm. IR (neat): $\tilde{v} = 2924$, 1681, 1453, 1327, 1155, 1093, 997 cm⁻¹. HRMS (ESI⁺, MeOH): m/z = 361.1968 $[M+H]^+$ (calcd. for C₂₀H₂₉N₂O₂S 361.1950).

X-ray Crystallography of Tosylate 17: Small prismatic colorless crystal ($0.55 \times 0.35 \times 0.35$ mm). Empirical formula C₂₄H₂₈N₂O₅S, M = 456.54, T = 293 K. Monoclinic system, space group C2, chiral. The unit cell [parameters: a = 22.973(9), b = 7.806(3), c =12.919(4) Å, $\beta = 91.33(2)^\circ$, $V = 2316 \text{ Å}^3$ contains four molecules $(Z = 4), d_{\rm C} = 1.309 \text{ g cm}^{-3}, F(000) = 968, \mu = 0.177 \text{ mm}^{-1}, \lambda(\text{Mo})$ K_{α} = 0.71073 Å. Intensity data were measured with a Nonius Kappa-CCD area detector diffractometer with use of graphite-monochromated Mo- K_{α} radiation, in φ - and ω -scans, up to $\theta = 28.71^{\circ}$. 11528 data were collected, giving 5793 unique monoclinic (hkl and -h-k-l reflections. The structure was solved by direct methods with the SHELXS86^[17] program and refined by full-matrix least squares based upon unique F^2 with the SHELXL97 program.^[18] All the hydrogen atoms, located on difference Fourier maps, were fitted at theoretical positions and treated as riding. They were assigned an isotropic displacement parameter equivalent to $1.12 \times$ that of the bonded atom (1.15 for those of the methyl groups). Refinement of 292 parameters on F^2 gave $R_1(F) = 0.0405$ calculated with the 4899 observed reflections with $I \ge 2\sigma(I)$ and $wR_2(F^2) = 0.1032$ considering all the 5793 data. Goodness of fit = 1.014. The residual density was found between -0.19 and 0.16 e·Å⁻³. In the enantiomer drawn in Figure 1, the *cis* ring junction along C4-C5 appears clearly. Torsion angle values show that the pyrrolidine ring exhibits an envelope conformation, with atom C5 deviating by -0.627(2) Å from the mean plane of the other four atoms, whilst the six-membered ring also adopts an envelope conformation with atom C4 situated at -0.586(2) Å from the mean plane of the other five atoms. The dihedral angle of these two rings is 100.3°, whilst that of the two phenyl planes is 137.4°. It is noteworthy that the crystal from a racemic solution belongs to the chiral monoclinic space group C2. Analysis of Bijvoet pair differences through the sulfur anomalous contribution (also measured with $Cu-K_a$ radiation on the same crystal) revealed random dispersion between positive and negative differences corroborating the high value of the Flack parameter (0.56), pointing to a case of racemic lamellar twinning, so the two enantiomers are present in the crystals. Such behavior prompted us to check whether tosylate 17 was actually a racemic mixture. The rotatory power proved to be zero $([a]_{D} = 0 \pm 0.06)$ and chiral HPLC (column OJ, hexane/*i*PrOH, 65:35, 1 mL/min) on individual crystals showed that the compositions of each crystal were between 52:48 to 48:52 in ratio. As a conclusion, tosylate 17 is definitely a racemic mixture but it crystallizes in achiral space group C2 as described above. However, individual crystals can exhibit a very slight enrichment of one enantiomer over the other.

X-ray Crystallography of Diol 19: Colorless prismatic crystal $(0.60 \times 0.35 \times 0.30 \text{ mm})$. Empirical formula $C_{17}H_{26}N_2O_3$, M =306.40, T = 293 K. Monoclinic system, space group $P2_1/n$, racemic. The unit cell [parameters: a = 8.033(4), b = 12.395(5), c =16.817(7) Å, $\beta = 94.98(2)^\circ$, $V = 1668 Å^3$] contains four molecules $(Z = 4), d_C = 1.220 \text{ g cm}^{-3}, F(000) = 664, \mu = 0.084 \text{ mm}^{-1}, \lambda(\text{Mo})$ K_{α} = 0.71073 Å. Intensity data were measured with a Nonius Kappa-CCD area detector diffractometer with use of graphite-monochromated Mo- K_{α} radiation, in φ - and ω -scans, up to $\theta = 29.1^{\circ}$. 17243 data were collected giving 7835 monoclinic (hkl and -h-k-l) reflections, of which 4444 were unique. The structure was solved with the SHELXS86 program and refined by full-matrix least squares based upon unique F^2 with the SHELXL97 program. The hydrogen atoms, located on difference Fourier maps, were fitted at theoretical positions and treated as riding, except for the H-N15 atom (refined). They were assigned an isotropic displacement parameter equivalent to $1.15 \times$ that of the bonded atom $(1.20 \times$ for those of the methyl and hydroxy groups). Refinement of 206 parameters on F^2 gave $R_1(F) = 0.0497$ calculated with the 3022 observed reflections with $I \ge 2\sigma(I)$ and $wR_2(F^2) = 0.1352$ considering all the 4444 data. Goodness of fit = 1.006. The residual density was found between -0.20 and 0.19 eÅ-3. One of the two enantiomers appears in Figure 2, showing all the pyrrolidine ring substituents fixed in an axial position. The pyrrolidine ring exhibits an envelope conformation in C2, this atom deviating by 0.549(2) Å from the mean plane of the other four atoms. An intramolecular hydrogen bond is observed between the N15-H atoms and the nitrogen atom N1 [distances N15…N1 2.612(2) Å, H_{N15}…N1 2.01 Å, angle N-H···N 117.3°]. The crystal packing study shows that all the hydroxy groups are engaged in intermolecular hydrogen bonds, so the molecules are assembled in dimers through centosymmetric centers, by hydrogen bonds formed between the O11-H hydroxy groups towards the O8 oxygen atoms according to the following scheme: distances O11–H(x, y, z)···O8(2–x, -y, 1–z) 2.801(3) Å, H₀₁₁···O8 1.99 Å, angle O-H···O 168.5° and reciprocally; same enantiomeric molecules of these dimers are linked together through hydrogen bonds formed between the O8-H hydroxy groups and the nearest O14 oxygen atoms; according to a second scheme: distances O8–H(x, y, z)···O14(1.5–x, 0.5+y, 1.5–z) 2.716 (3) Å, H_{O8}···O14 1.91 Å, angle O–H···O 169.3° and reciprocally, between O14(x, y, z) and O8–H(1.5-x, -0.5+y, 1.5-z).

CCDC-601385 (17) and -601386 (19) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supporting Information (see footnote on the first page of this article): Copies of NMR spectra for compounds 14–20, 22–23, 25–27, 31.

[2] a) S. Hong, J. Yang, S. M. Weinreb, J. Org. Chem. 2006, 71, 2078–2089; b) O. Irie, K. Samizu, J. R. Henry, S. M. Weinreb, J. Org. Chem. 1999, 64, 587–595; c) J. Sisko, J. R. Henry, S. M.

a) Y. Guo, A. Madaio, E. Trivellone, G. Scognamiglio, G. Cimino, *Tetrahedron* 1996, 52, 8341–8348; b) V. Caprioli, G. Cimino, A. De Giulio, A. Madaio, G. Scognamiglio, E. Trivellone, *Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol.* 1992, 103, 293–296; c) G. Cimino, G. Scognamiglio, A. Spinella, E. Trivellone, *J. Nat. Prod.* 1990, 53, 1519–1525; d) G. Cimino, C. A. Mattia, L. Mazarella, R. Puliti, G. Scognamiglio, A. Spinella, E. Trivellone, *Tetrahedron* 1989, 45, 3863–3872.

FULL PAPER

Weinreb, J. Org. Chem. 1993, 58, 4945–4951; d) J. Sisko, S. M. Weinreb, J. Org. Chem. 1991, 56, 3210–3211.

- [3] a) C. J. Douglas, S. Hiebert, L. E. Overman, Org. Lett. 2005, 7, 933–936; b) S. Jaroch, R. T. Matsuoka, L. E. Overman, Tetrahedron Lett. 1999, 40, 1273–1276; c) R. Downham, F. W. Ng, L. E. Overman, J. Org. Chem. 1998, 63, 8096–8097.
- [4] a) H. I. Lee, M. J. Sung, H. B. Lee, J. K. Cha, *Heterocycles* 2004, 62, 407–422; b) M. J. Sung, H. I. Lee, H. B. Lee, J. K. Cha, *J. Org. Chem.* 2003, 68, 2205–2208; c) M. J. Sung, H. I. Lee, Y. Chong, J. K. Cha, *Org. Lett.* 1999, *1*, 2017–2019.
- [5] a) D. J. Denhart, D. A. Griffith, C. H. Heathcock, J. Org. Chem. 1998, 63, 9616–9617; b) D. A. Griffith, C. H. Heathcock, Tetrahedron Lett. 1995, 36, 2381–2384; c) C. H. Heathcock, M. Clasby, D. A. Griffith, B. R. Henke, M. J. Sharp, Synlett 1995, 467–474; d) B. R. Henke, A. J. Kouklis, C. H. Heathcock, J. Org. Chem. 1992, 57, 7056–7066.
- [6] N. K. Garg, S. Hiebert, L. E. Overman, Angew. Chem. Int. Ed. 2006, 45, 2912–2915.
- [7] S. Hourcade, A. Ferdenzi, P. Retailleau, S. Mons, C. Marazano, *Eur. J. Org. Chem.* 2005, 1302–1310.
- [8] a) M. d. R. Sanchez-Salvatori, C. Marazano, J. Org. Chem.
 2003, 68, 8883–8889; b) M. Herdemann, A. Al-Mourabit, M.-T. Martin, C. Marazano, J. Org. Chem. 2002, 67, 1890–1897;
 c) K. Jakubowicz, K. Ben Abdeljelil, M. Herdemann, M.-T. Martin, A. Gateau-Olesker, A. Almourabit, C. Marazano, B. C. Das, J. Org. Chem. 1999, 64, 7381–7387; d) A. Kaiser, X. Billot, A. Gateau-Olesker, C. Marazano, B. C. Das, J. Am. Chem. Soc. 1998, 120, 8026–8034.

- [9] A sponge-associated bacteria responsible for the biosynthesis of manzamine A has been identified as a previously undescribed species of *Micromonospora* (actinomycetes): R. T. Hill, M. T. Hamann, O. Peraud, N. Kasanah, Worldwide patent WO 2004/013297 (US 2003/024238), 12 February **2004**, pp. 49.
- [10] P. Bey, J. P. Vevert, J. Org. Chem. 1980, 45, 3249-3253.
- [11] E. B. Maxted, S. Akhtar, J. Chem. Soc. 1959, 3130-3133.
- [12] Relative configurations of diazabicyclo[4.3.0]nonane systems could be guesstimated from NOESY experiments, but the weakness of the NOE cross-peaks prevented any definitive conclusion before X-ray analysis.
- [13] Though tosylate 17 is racemic, as corroborated by its $[a]_D$ value and by chiral HPLC, its crystals unexpectedly exhibit a chiral symmetry group. See Experimental Section for more details.
- [14] W. N. Speckamp, H. Hiemstra, *Tetrahedron* **1985**, *41*, 4367–4416.
- [15] Modification of the procedure described by: S. Ma, X. Lu, Org. Synth. 1995, 72, 112–115.
- [16] A. Gomez-Sanchez, I. Hermosin, J. M. Lassaletta, I. Maya, *Tetrahedron* 1993, 49, 1237–1250.
- [17] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467-473.
- [18] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997. Received: April 4, 2006

Published Online: July 19, 2006