Complex Catalysis 55^[+]

Oxidative Addition Reactions of Organorhodium(I) Complexes Containing the Tridentate Ligand 2,6-Bis(diphenylphosphanylmethyl)pyridine [Rh(PNP)R] $(R = CH_3, C_6H_5)$ with Iodine and Methyl Iodide and Investigation of the Reductive Elimination

Christine Hahn,^[a] Michael Spiegler,^[b] Eberhardt Herdtweck,^[b] and Rudolf Taube*^[b]

Dedicated to Professor Helmut Werner on the occasion of his 65th birthday

Keywords: Rhodium(III) complexes / Tridentate ligand / Oxidative addition / Reductive elimination / C-C coupling

As part of studies aimed at delineating the mechanism of the rhodium complex-catalyzed hydroamination of olefins, the model complexes [Rh(PNP)R] (R = CH₃ 1a, C₆H₅ 1b) have been investigated with regard to oxidative addition reactions. The reaction of I_2 with **1a** leads to both *trans*- and cis-[Rh(PNP)(CH₃)I₂] (trans: 2a, cis: 2a'), whereas with 1b only trans-[Rh(PNP)(C₆H₅)I₂] (**2b**) is obtained. The rhodium(III) complexes [Rh(PNP)(CH₃)RI] (**3a**,**b**) are formed by the reaction of 1a,b with CH₃I. The new organo-

Introduction

Detailed model studies have been initiated aimed at elucidating the reaction mechanism of the rhodium complexcatalyzed hydroamination of ethylene.^[1] For the first time, the process was shown to be catalyzed by a cationic ethylene rhodium(I) complex under normal conditions.^[2] For these studies, model complexes containing the 2,6-bis(diphenylphosphanylmethyl)pyridine-rhodium(I) fragment [Rh-(PNP)]⁺ as a stable structural unit were synthesized and characterized.^[3]

Since the formation and cleavage of an Rh–C σ -bond is expected to play an essential role in this catalytic cycle, organorhodium(I) complexes [Rh(PNP)R] (R = CH₃, C_6H_5) were synthesized and investigated with regard to the coordination of ethylene and protolysis. It was found that with protic acids such as HSO₃CF₃ and [HN(CH₃)₃]Cl, these organorhodium(I) complexes react by immediate release of the hydrocarbon HR, presumably via reductive elimination from an initially formed hydrido organorhodium(III) complex.^[4]

While a hydrido organorhodium(III) complex, which might have been expected to be formed by oxidative adrhodium(III) complexes 2a,b and 3a,b have been characterized by ³¹P-, ¹H-, and ¹³C-NMR spectrometry, as well as by EI mass spectrometry. The hydrocarbons RCH₃ are reductively eliminated in the reaction of [Rh(PNP)(CH₃)RI] (3a,b) with TlBF₄ in acetone, while the reaction of 3b and TlBF₄ in THF/CH₃CN leads to the stable rhodium(III) complex $[Rh(PNP)(CH_3)(C_6H_5)(CH_3CN)]BF_4$ (5). Complex 5 has been characterized by X-ray crystallography.

dition of the protic acid, could not be isolated or detected in these cases, a stable monohydrido chloro rhodium(III) complex [Rh(PNP)HCl(CH₃CN)]SO₃CF₃ is accessible by oxidative addition of HSO₃CF₃^[4] to the related chloro rhodium(I) complex [Rh(PNP)Cl].^[3b,5] Since the oxidative addition and the reductive elimination involved in numerous other rhodium-complex catalyzed processes are of general importance^[6] it seemed therefore interesting to study these reaction steps at the $[Rh(PNP)]^+$ fragment.

In this paper, we report on oxidative addition reactions of the organorhodium(I) complexes [Rh(PNP)R] (R = CH₃, C₆H₅) with I₂ and CH₃I, as well as on the conditions under which the obtained diorganorhodium(III) complexes [Rh(PNP)(CH₃)RI] undergo reductive elimination.

Results and Discussion

Oxidative Addition Reactions of [Rh(PNP)R] $(R = CH_3, C_6H_5)$ with I_2 and CH_3I

In order to show that stable PNP-organorhodium(III) complexes are accessible, the reactivity of organorhodium(I) complexes 1a,b with iodine and methyl iodide, which are known as suitable reagents for oxidative addition to rhodium(I) complexes,^[7] was investigated. Both organorhodium(I) complexes 1a,b were found to react smoothly with iodine to give the corresponding rhodium(III) complexes $[Rh(PNP)I_2R]$ 2 [Eqs. (1) and (2)], which were isolated as brown, air-stable solids.

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999

^[*] Part 54: See ref.^[4]

Dipartimento di Chimica, Università di Napoli "Federico II" [a] via Mezzocannone 4, I-80134 Napoli, Italy E-mail: chahn@chemna.dichi.unina.it

[[]b] Anorganisch-Chemisches Institut, Technische Universität München Lichtenbergstraße 4, D-85747 Garching, Germany Fax: (internat.) +49 (0)89/28913473

FULL PAPER

In the case of the methyl complex, the formation of the trans as well as of the cis addition product (2a and 2a', respectively) was established by NMR spectrometry. The two isomers constantly crystallize as a mixture, however, no further attempts were made to separate 2a and 2a' by other methods. In the ³¹P-NMR spectrum, two doublets are observed at $\delta = 14.3$ ($J_{P-Rh} = 99$ Hz) for **2a** and at $\delta = 23.3$ $(J_{\rm P-Rh} = 106 \text{ Hz})$ for 2a', in an intensity ratio of 3:2. The phosphorus-rhodium coupling constants are markedly lower in comparison to those in the organorhodium(I) complexes 1a,b, indicating the Rh^{III} oxidation state.^[8] Accordingly, in the ¹H-NMR spectrum, two discrete methyl group signals are observed at $\delta = 1.99$ for **2a** and at $\delta = 0.43$ for 2a', with the same relative intensities of 3:2. The corresponding characteristic signal patterns of the methylene protons of the PNP ligand, a pseudo triplet at $\delta = 4.84$ for **2a** and two doublets of pseudo triplets at $\delta = 4.49$ and 4.80 for 2a', are consistent with the symmetry of these trans and cis isomers. In the ¹³C-NMR spectrum, two discrete signals at $\delta = -18.4$ and $\delta = 8.7$ are observed for the methyl groups, while for the methylene groups of the PNP ligand, two signals appear at $\delta = 44.7$ and $\delta = 46.7$, showing slightly different intensities.

The phenyl complex **1b** forms exclusively the *trans* addition product **2b** on reaction with iodine [Eq. (2)]. The ³¹P-NMR spectrum exhibits only one doublet at $\delta = 18.8$ ($J_{P-Rh} = 105$ Hz). The pseudo triplet for the methylene group is seen at $\delta = 4.90$ in the ¹H-NMR spectrum, consistent with the C_2 symmetry of the *trans*-diiodo complex **2b**. The ¹H-NMR signals of the phenyl moiety in **2b** are slightly downfield shifted compared to those found for **1b**, appearing at $\delta = 6.88$ and 7.96.

In the mass spectra of 2a,a' (analyzed as an isomeric mixture) and of 2b, peaks are observed corresponding to the fragments $[M - I]^+$, $[M - R]^+$, $[M - I - R]^+$, $[M - I - I]^+$, and $[M - I - I - R]^+$. Additionally in the mass spectrum of 2a,a', a peak at m/z = 142 is found, which can be assigned to $[CH_3I]^+$ as the product of reductive elimination.

The reactions of **1a**,**b** with methyl iodide [Eq. (3)] led to the diorganorhodium(III) complexes [Rh(PNP)(CH₃)RI] **3a**,**b**, which were isolated as pale-yellow air-stable solids and characterized by ³¹P-, ¹H-, and ¹³C-NMR spectrometry, as well as by mass spectrometry.

The ³¹P-NMR signals observed at $\delta = 26.5 (J_{P-Rh} = 120)$ Hz) for **3a** and at $\delta = 30.5$ ($J_{P-Rh} = 119$ Hz) for **3b** are downfield shifted in comparison to the signals of the corresponding diiodo complexes 2a and 2b. The increased phosphorus-rhodium coupling constants in 3a,b in comparison to those in **2a**,**b** may be arised by coordination of the more basic methyl ligand instead of one iodo ligand, respectively. In the ¹H-NMR spectrum of the dimethyl complex 3a, two discrete methyl signals are observed at $\delta = -0.35$ and $\delta =$ 1.02, suggesting the coordination of two distinct methyl groups in a mutual *cis*-arrangement. This is confirmed by the resonances of the methylene protons of the PNP ligand, which appear as two doublets of pseudo triplets at $\delta = 4.31$ and 4.66, consistent with the inequivalence of the methylene protons arising from the *cis* orientation of the methyl groups. Accordingly, in the ¹³C-NMR spectrum, two discrete signals for the methyl groups are observed at δ = -14.5 and 6.9.

The ¹H-NMR signal of the methyl group in the methyl phenyl complex **3b** appears at $\delta = 0.35$, while the phenyl group gives rise to multiplets at $\delta = 6.90$ and 7.68. The typical signal pattern for the non-equivalent methylene protons, as observed for **3a**, is seen in the spectrum of **3b** at $\delta = 4.34$ and 4.80. The ¹³C-NMR signal for the methyl group in **3b** appears at $\delta = 8.8$, while the phenyl group signals are seen at $\delta = 121.5$, 125.9, and 142.3.

In the mass spectra of **3a** and **3b**, peaks are observed corresponding to the fragments $[M - CH_3]^+$, $[M - CH_3 - R]^+$, and $[M - CH_3 - R - I]^+$. Additionally, in the mass spectrum of **3b**, a peak at m/z = 91 can be observed, attributable to $[C_7H_7]^+$. This suggests that toluene is reductively eliminated from the methyl phenyl complex **3b** following C-C bond formation.

Investigation of the Reductive Elimination of Hydrocarbons by C-C Bond Formation from $[Rh(PNP)(CH_3)RI]BF_4$ 3a,b

In a manner analogous to the reductive elimination of the hydrocarbon from the proposed hydrido organorhodium(III) intermediates by formation of a C–H bond,^[4,9] the reactivity of the diorganorhodium(III) complexes **3a**, **b** was investigated. The aforementioned mass spectral observation of toluene generation from **3b** gave a prior indication of C–C bond formation between the two organo moieties. After addition of TlBF₄ to a solution of **3a** or **3b** in acetone, TII precipitated while the solution changed colour from pale yellow to dark-red during 1–2 days indicating the change of the oxidation state from Rh^{III} to Rh^I. Indeed, the hydrocarbon which is formed by reductive elimination from 3a and 3b, respectively [Eq. (4)], has been proved. Carrying out the reaction of 3a and TlBF₄ in [D₆]acetone in a sealed NMR tube the singlet of the liberated ethane could be observed in the ¹H-NMR spectrum while the signals of complex 3a disappeared. Whereas the toluene reductively eliminated from 3b was detected in the filtrate of the reaction solution by gas chromatography. The dark colour of the solutions indicated a decomposition reaction, most likely as a consequence of the weak coordination of the acetone, which does not have sufficient donor strength to stabilize the remaining [Rh^I(PNP)]⁺ fragment. In order to prove that the rhodium was present in the +I oxidation state, some DMSO was added to the solution. The corresponding stable rhodium(I) complex [Rh(PNP)(DMSO)]BF₄ 4 was obtained, which was identified by comparison of its ³¹P-NMR spectrum with that of an authentic sample (cf. ref.^[3b]).

Clearly, the cleavage of the iodo ligand from the octahedral diorganorhodium(III) complex **3a,b** leads to a kinetically unstable five-coordinate complex, which cannot be stabilized by the weakly coordinating acetone used as solvent. This confirms the dissociative mechanism of the reductive elimination.^[9]

However, when the reaction of **3b** with TlBF₄ was carried out in the presence of the more strongly coordinating acetonitrile, a stable six-coordinate methyl phenyl acetonitrile rhodium(III) complex [Rh(PNP)(CH₃)(C₆H₅)(CH₃CN)]-BF₄ **5** was obtained [Eq. (5)], which was isolated as an airstable, white, crystalline solid and characterized by ³¹P-, ¹H-, and ¹³C-NMR spectrometry, as well as by X-ray crystal structure analysis.

In the ³¹P-NMR spectrum of **5**, the doublet at $\delta = 32.7$ ($J_{P-Rh} = 117$ Hz) is somewhat downfield shifted compared to the corresponding signal in the iodo complex **3b**. While the ¹H- and ¹³C-NMR signals of the phenyl moiety appear at approximately the same chemical shifts as found for **3b**, the signals for the methyl moiety of **5** are somewhat upfield shifted in both the ¹H- ($\delta = 0.09$) and the ¹³C-NMR spectra ($\delta = 2.0$), compared to those in **3b**. This may be interpreted in terms of the differential *trans* influence of the respective *trans*-coordinated ligands (I⁻ **3b**; CH₃CN **5**). For the coordinated acetonitrile in **5**, a singlet is observed at $\delta = 1.45$ in the ¹H-NMR spectrum, while in the ¹³C-NMR spectrum, two signals are observed at $\delta = 2.0$ and 128.5. In the IR spectrum, the two bands characteristic of end-on coordinated acetonitrile^[9] are seen at $\tilde{v} = 2281$ and 2376 cm⁻¹. The coordination of the pyridine of the PNP ligand is indicated by two bands at $\tilde{v} = 1574$ and 1606 cm⁻¹,^[11] while a strong band at $\tilde{v} = 1062$ cm⁻¹ is characteristic of the non-coordinated BF₄⁻ anion.^[12]

Single crystals of **5** of X-ray quality were obtained from a solution of the complex in acetone overlayered with diethyl ether. X-ray crystal structure analysis confirmed the *cis*-arrangement of the organo moieties in the octahedral complex cation of **5**, which is an essential structural prerequisite for the reductive elimination of toluene. The molecular structure of the complex cation $[Rh(PNP)-(CH_3)(C_6H_5)(CH_3CN)]^+$ is shown in Figure 1.

Comparing the rhodium-carbon distances of the σ bonded methyl and phenyl groups [Rh-C(3) 2.085(3), Rh-C(11) 2.049(3)], only a very slight difference is apparent. The small difference in bond lengths of the two types of Rh-C bond may be viewed as reflecting the differential *trans* influence of the N(sp²) and N(sp) atoms of the coordinated pyridine moiety and acetonitrile ligand, respectively, which gives rise to an extension of the Rh-C(sp²) bond and a shortening of the Rh-C(sp³) bond. However, it may also be viewed as merely following the expected trend that the sp² carbon atom has a shorter distance to the rhodium atom than the sp³ carbon atom.

Furthermore, it is interesting to compare the molecular structure of 5 with that of the related cationic Rh^{III} complex [Rh(PNP)ClH(CH₃CN)]SO₃CF₃,^[4] which contains the same structural unit [Rh^{III}(PNP)(CH₃CN)]⁺, but with the hydrido ligand coordinated *trans* to the acetonitrile ligand. In both complexes, the N atom of the coordinated acetonitrile shows an identical distance to the rhodium atom of 2.14 Å, as a result of the comparable *trans* influence of the methyl and hydrido ligands. However, the distance of the pyridine N atom to the rhodium atom in 5 is significantly longer [Rh-N(2) 2.152(2) A] than the corresponding Rh-N(py) distance in the hydrido chloro Rh^{III} complex [Rh-N(2) 2.0656(17) Å].^[4] This is consistent with the expected stronger trans influence of the phenyl group, which has a lower electronegativity than the chloro ligand coordinated trans to the pyridine. The end-on coordinated acetonitrile shows an almost linear arrangement of Rh-N(1)-C(1)-C(2) [C(1)-N(1)-Rh 172.0(2)°, N(1)-C(1)-C(2) 178.4(4)°], as was also found in the cationic Rh^{III} complex [Rh(PNP)ClH(CH₃CN)]SO₃CF₃,^[4] as well as in the cationic rhodium(I) complex [Rh(PNP)(CH₃CN)]-BF4. [3b]

Conclusions

The organorhodium(I) complexes [Rh(PNP)R] smoothly undergo oxidative addition reactions with I_2 and CH_3I to give the stable organorhodium(III) complexes $[Rh(PNP)-RI_2]$ and $[Rh(PNP)(CH_3)RI]$, respectively.

Figure 1. PLATON^[13] drawing of the structure of the complex cation of $[Rh(PNP)(C_6H_5)(CH_3)(CH_3CN)]BF_4$ **5**. Selected bond lengths [Å] and angles [°]: Rh-N(1) 2.142(3), Rh-N(2) 2.152(2), Rh-C(3) 2.082(3), Rh-C(11) 2.049(3), Rh-P(1) 2.2913(9), Rh-P(2) 2.3098(8), P(1)-C(10) 1.848(5), P(2)-C(4) 1.835(3); P(1)-Rh-P(2) 164.58(3), N(1)-Rh-P(1) 93.92(7), N(1)-Rh-P(2) 89.55(7), N(1)-Rh-N(2) 88.56(9), C(3)-Rh-C(11) 91.77(12), N(1)-Rh-C(3) 176.65(11), N(2)-Rh-C(11) 179.9(2), C(1)-N(1)-Rh 172.0(2), N(1)-C(1)-C(2) 178.4(4).

It was shown that the diorganorhodium(III) complexes $[Rh(PNP)(CH_3)RI]$, in which the organo moieties are coordinated in a *cis* arrangement, C-C bond formation leading to the reductive elimination of the hydrocarbons RCH₃ is possible. This was realized by cleavage of the iodo ligand with TlBF₄ in the presence of acetone. Acetone is too weakly coordinating as a ligand to stabilize the resulting five-coordinate diorganyl rhodium(III) complex. However, when the reaction is carried out in the presence of the more strongly coordinating CH₃CN, the stable six-coordinate acetonitrile complex [Rh(PNP)(CH₃)(C₆H₅)(CH₃CN)]BF₄ is formed, confirming the dissociative mechanism of the reductive elimination.

The smooth oxidative addition reactions of the model compounds [Rh(PNP)R], and the stability as well as the reactivity of the Rh-C σ -bond in the rhodium-PNP complexes suggests that rhodium(I) has the potential to catalyze the hydroamination of olefins according to the proposed catalytic reaction mechanism.^[4]

Experimental Section

All reactions were carried out under dry argon. Acetone, $[D_6]$ acetone, CD_2Cl_2 , and $CDCl_3$ were refluxed over 4-Å molecular sieves and purged of oxygen by bubbling argon. THF and diethyl ether were refluxed over Na/benzophenone. Acetonitrile, DMSO, and methyl iodide were dried over 4-Å molecular sieves and distilled prior to use.

Infrared spectra were recorded from KBr pellets on a Perkin-Elmer FT-IR 16 spectrometer. – The ¹H-, ¹³C{¹H}-, and ³¹P{¹H}-NMR spectra were recorded at 300, 75, and 121 MHz, respectively, on a

Varian Gemini 300 NMR spectrometer. The ¹H- and ¹³C-NMR shifts were referenced to the solvent signals, while the ³¹P-NMR shifts were referenced to external 85% H_3PO_4 . – A Chrompack CP 9000 gas chromatograph was used for the identification of liquid organic compounds. – EI mass spectra were recorded on an AMD 402 spectrometer (AMD Intectra) at 70 eV. – C,H,N elemental analyses were carried out on a LECO CHN 932 analyzer, while Rh was determined using a photometric method.^[14]

Synthesis of [Rh(PNP)RI₂] ($\mathbf{R} = \mathbf{CH}_3$ trans: 2a, cis: 2a'; $\mathbf{C}_6\mathbf{H}_5$ 2b): 237 mg of I₂ (0.93 mmol) in 2 mL of THF was added to a solution of 552 mg (0.93 mmol) of 1a in 4 mL of THF. After a few seconds, a brown, microcrystalline solid precipitated, and the reaction mixture was stirred for 10 min. After a further 30 min (without stirring), the solid was filtered off and washed with THF and diethyl ether. The crude product was recrystallized from refluxing THF. The recrystallized product was washed twice with THF and twice with diethyl ether and dried in vacuo.

2a (trans)/2a' (cis): Yield: 498 mg (0.59 mmol, 63%); m.p. 295-298°C (dec.). - C₃₂H₃₀I₂NP₂Rh (846.90): calcd. C 45.34, H 4.52, N 1.90, Rh 12.15; found C 45.43, H 4.33, N 1.73, Rh 12.03. $-{}^{31}P$ NMR (CD₂Cl₂): $\delta = 14.3$ (d, $J_{P-Rh} = 99$ Hz, trans), 23.3 (d, $J_{P-Rh} = 106$ Hz, *cis*). $- {}^{1}H$ NMR (CD₂Cl₂): $\delta = 0.43$ (td, $J_{\rm H-P} = 6.2$ Hz, $J_{\rm H-Rh} = 2.2$ Hz, 3 H, CH₃, cis), 1.99 (td, $J_{\rm H-P} =$ 4.8 Hz, $J_{H-Rh} = 2.2$ Hz, 3 H, CH_3 , trans), 4.49 (d ps. t, $J_{Ha-Hb} =$ 17.3 Hz, $N_{\rm H-P}$ = 4.4 Hz, 2 H, $CH_{\rm a}$, *cis*), 4.80 (d ps. t, $J_{\rm Ha-Hb}$ = 17.3 Hz, $N_{\rm H-P} = 5.6$ Hz, 2 H, $CH_{\rm b}$, *cis*), 4.84 (vt, $N_{\rm H-P} = 4.6$ Hz, 4 H, CH_a, trans), 7.36-8.20 (m, PPh, py, trans/cis). - ¹³C NMR (CD₂Cl₂): $\delta = -18.4$ (dt, $J_{C-P} = 8.9$ Hz, $J_{C-Rh} = 16.1$ Hz, CH_3 , trans), 8.7 (dt, J_{C-P} = 4.0 Hz, J_{C-Rh} = 20.2 Hz, CH₃, cis), 44.7 (ps. t, N = 13.0 Hz, CH_2 , trans), 46.7 (ps. t, N = 15.5 Hz, CH_2 , cis), 121.3 (ps. t, N = 5.0 Hz, C_{3,5-py}), 121.5 (ps. t, N = 5.0 Hz, $C_{3,5-py}$), 127.9 (ps. t, N = 5.6 Hz, PC_{meta} , trans) 127.9 (ps. t, N =5.0 Hz, PC_{meta} , cis), 128.3 (ps. t, N = 4.6 Hz, PC_{meta} , cis), 130.0 (s,

Eur. J. Inorg. Chem. 1999, 435-440

 $\begin{aligned} & \text{PC}_{paras}, trans), 130.2 \text{ (s, } \text{PC}_{para}, \text{cis)}, 130.5 \text{ (s, } \text{PC}_{para}, \text{cis)}, 132.3 \text{ (ps. t}, N = 4.7 \text{ Hz}, \text{PC}_{ortho}, \text{cis)}, 132.9 \text{ (ps. t}, N = 5.0 \text{ Hz}, \text{PC}_{ortho}, trans), \\ & 133.9 \text{ (ps. t}, N = 5.0 \text{ Hz}, \text{PC}_{ortho}, \text{cis)}, 138.2 \text{ (s, } \text{C}_{4-\text{py}}, \text{cis)}, 138.5 \text{ (s, } \text{C}_{4-\text{py}}, trans), 159.3 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, N < 3 \text{ Hz}, \text{C}_{2,6-\text{py}}, \text{cis)}, 162.1 \text{ (ps. t}, \text{Hz}, \text{C}_{2,6-\text{py}}, 162.1 \text{ (ps. t}, \text{Hz}, \text{C}_{2,6-\text{py$

The synthesis of 2b was carried out in the same manner as described for 2a/a', starting from 572 mg (0.87 mmol) of 1b in 4 mL of THF and 222 mg of I2 dissolved in 2 mL of THF. Yield: 565 mg (0.62 mmol, 71%); m.p. 293°C (dec.). - C₃₇H₃₂I₂NP₂Rh (909.33): calcd. C 48.87, H 3.55, N 1.54, Rh 11.32; found C 49.05, H 3.95, N 1.31, Rh 11.42. $-{}^{31}P$ NMR (CD₂Cl₂): $\delta = 18.8$ (d, $J_{\rm P-Rh} = 105$ Hz). $- {}^{1}$ H NMR (CD₂Cl₂): $\delta = 4.90$ (ps. t, $N_{\rm H-P} =$ 4.7 Hz, 4 H, CH₂), 6.88 (m, 3 H, Ph), 7.26-7.38 (m, 20 H, PPh), 7.60 (d, $J_{\rm H-H}$ = 7.7 Hz, 2 H, 3,5-py), 7.82 (t, $J_{\rm H-H}$ = 7.7 Hz, 1 H, 4-py), 7.96 (m, 2 H, Ph). $- {}^{13}$ C NMR (CD₂Cl₂): $\delta = 48.1$ (ps. t, N = 15.7 Hz, CH_2), 121.5 (ps. t, N = 5.3 Hz, $C_{3,5-py}$), 122.7 (s, Ph), 125.9 (s, Ph), 127.7 (ps. t, N = 5.0 Hz, PC_{meta}), 130.3 (s, PC_{para}), 134.3 (ps. t, N = 4.7 Hz, PC_{ortho}), 135.9 (ps. t, N = 24.5Hz, PC_{ipso}), 138.8 (s, C_{4-py}), 147.2 (ps. t, N = 4.3 Hz, Ph), 160.4 (ps. t, N < 3 Hz, $C_{2,6-py}$). – EI-MS: m/z (%): 832 (0.4) [M – C_6H_5]⁺, 781 (12.5) [M – I]⁺, 705 (100) [M – I – C_6H_5]⁺, 655 $(1.4) [M - I - I]^+, 578 (27) [M - I - I - C_6H_5]^+.$

Synthesis of [Rh(PNP)(CH₃)RI] (R = CH₃ 3a, C₆H₅ 3b): To a solution of 571 mg (0.96 mmol) of 1a in 6 mL of THF was added 60 μ l of CH₃I (Rh/CH₃I = 1:1). After a few seconds, a pale-yellow microcrystalline solid precipitated and the reaction mixture was stirred for 10 min. After a further 30 min (without stirring), the solid was filtered off and washed with THF and diethyl ether. The crude product was recrystallized by extraction with refluxing THF. The recrystallized product was washed twice with THF, twice with diethyl ether, and dried in vacuo.

3a: Yield: 390 mg (0.53 mmol, 55%); m.p. 214-220°C (dec.). -C₃₃H₃₃INP₂Rh (735.39): calcd. C 53.90, H 4.52, N 1.90, Rh 13.99; found C 53.62, H 4.46, N 1.79, Rh 14.36. - ³¹P NMR (CD₂Cl₂): $\delta = 26.5$ (d, $J_{P-Rh} = 120$ Hz). $- {}^{1}$ H NMR (CD₂Cl₂): $\delta = -0.35$ (td, $J_{H-P} = 6.4$ Hz, $J_{H-Rh} = 2.2$ Hz, 3 H, CH₃), 1.02 (td, $J_{H-P} =$ 5.2 Hz, $J_{H-Rh} = 2.1$ Hz, 3 H, CH_3), 4.31 (d ps. t, $J_{Ha-Hb} = 16.6$ Hz, $N_{\rm H-P} = 4.2$ Hz, 2 H, $CH_{\rm a}$), 4.66 (d ps. t, $J_{\rm Ha-Hb} = 16.6$ Hz, $N_{\rm H-P}$ = 4.9 Hz, 2 H, CH_b), 7.32–7.41 (m, 12 H, PPh), 7.50 (d, $J_{\rm H-H} = 7.6$ Hz, 2 H, 3,5-py), 7.73 (t, $J_{\rm H-H} = 7.6$ Hz, 1 H, 4-py), 7.79 (m, 8 H, PPh). $-{}^{13}$ C NMR (CD₂Cl₂): $\delta = -14.5$ (dt, $J_{C-P} =$ 7.1 Hz, $J_{C-Rh} = 22.4$ Hz, CH_3), 6.9 (dt, $J_{C-P} = 6.3$ Hz, $J_{C-Rh} =$ 26.0 Hz, CH₃), 44.9 (ps. t, N = 13.6 Hz, CH₂), 120.8 (ps. t, N =5.0 Hz, $C_{3,5-py}$), 127.9 (ps. t, N = 5.0 Hz, PC_{meta}), 128.2 (ps. t, N =4.3 Hz, PC_{meta}), 129.4 (s, PC_{para}), 130.1 (s, PC_{para}), 131.8 (ps. t, N =4.8 Hz, PC_{ortho}), 134.3 (ps. t, N = 5.8 Hz, PC_{ortho}), 137.4 (s, C_{4-py}), 159.3 (ps. t, N < 3 Hz, $C_{2,6-py}$). – EI-MS: m/z (%): 719 (2) [M – CH₃]⁺, 705 (100) [M - CH₃ - CH₃]⁺, 578 (15) [M - CH₃ - CH₃ $- I]^+$.

3b: The complex was obtained in the same manner as described for **3a**, starting from 692 mg (1.05 mmol) of **1b** and 66 μ l of CH₃I in 7 mL of THF. – Yield: 528 mg (0.66 mmol, 63%); m.p. 186–195 °C (dec.). – C₃₈H₃₅INP₂Rh (797.46): calcd. C 57.23, H 4.42, N 1.76, Rh 12.90; found C 56.75, H 4.60, N 1.56, Rh 12.46. – ³¹P NMR (CD₂Cl₂): δ = 30.5 (d, J_{P-Rh} = 119 Hz). – ¹H NMR (CD₂Cl₂): δ = 0.35 (td, J_{H-P} = 6.4 Hz, J_{H-Rh} = 2.2 Hz, 3 H, CH₃), 4.34 (d ps. t, J_{Ha-Hb} = 16.9 Hz, N_{H-P} = 4.3 Hz, 2 H, CH_a), 4.80 (d ps. t, J_{Ha-Hb} = 16.6 Hz, N_{H-P} = 4.8 Hz, 2 H, CH_b), 6.90 (m, 3 H, Ph), 7.11–7.38 (m, 20 H, PPh), 7.56 (d, J_{H-H} = 7.7 Hz, 2 H, 3,5-py), 7.68 (m, 2 H, Ph). 7.83 (t, J_{H-H} = 7.7 Hz, 1 H, 4-py). – ¹³C NMR

Eur. J. Inorg. Chem. 1999, 435-440

 $\begin{array}{l} (\mathrm{CD}_{2}\mathrm{Cl}_{2}): \ \delta = 8.8 \ (\mathrm{dt}, \ J_{\mathrm{C-P}} = 5.5 \ \mathrm{Hz}, \ J_{\mathrm{C-Rh}} = 26.7 \ \mathrm{Hz}, \ \mathrm{CH}_{3}), \\ 46.3 \ (\mathrm{ps. t}, \ N = 14.1 \ \mathrm{Hz}, \ \mathrm{CH}_{2}), \ 121.1 \ (\mathrm{ps. t}, \ N = 5.1 \ \mathrm{Hz}, \ \mathrm{C}_{3,5\text{-py}}), \\ 121.5 \ (\mathrm{s. Ph}), \ 125.9 \ (\mathrm{s. Ph}), \ 127.5 \ (\mathrm{ps. t}, \ N = 5.0 \ \mathrm{Hz}, \ \mathrm{PC}_{meta}), \ 128.2 \\ (\mathrm{ps. t}, \ N = 4.7 \ \mathrm{Hz}, \ \mathrm{PC}_{meta}), \ 129.9 \ (\mathrm{s. PC}_{para}), \ 130.0 \ (\mathrm{s. PC}_{para}), \ 133.1 \\ (\mathrm{ps. t}, \ N = 5.1 \ \mathrm{Hz}, \ \mathrm{PC}_{meta}), \ 129.9 \ (\mathrm{s. PC}_{para}), \ 130.0 \ (\mathrm{s. PC}_{para}), \ 133.1 \\ (\mathrm{ps. t}, \ N = 5.1 \ \mathrm{Hz}, \ \mathrm{PC}_{ortho}), \ 134.2 \ (\mathrm{ps. t}, \ N = 5.6 \ \mathrm{Hz}, \ \mathrm{PC}_{ortho}), \ 138.0 \\ (\mathrm{s. C}_{4\text{-py}}), \ 142.3 \ (\mathrm{ps. t}, \ N = 4.0 \ \mathrm{Hz}, \ \mathrm{Ph}), \ 159.7 \ (\mathrm{ps. t}, \ N < 3 \ \mathrm{Hz}, \\ \mathrm{C}_{2,6\text{-py}}). \ - \ \mathrm{EI-MS:} \ m/z \ (\%): \ 781 \ (0.1) \ [\mathrm{M} - \mathrm{CH}_{3}]^{+}, \ 719 \ (0.8) \ [\mathrm{M} - \mathrm{C}_{6}\mathrm{H_{5}}]^{+}, \ 578 \ (17) \ [\mathrm{M} - \mathrm{CH}_{3} - \mathrm{C}_{6}\mathrm{H_{5}}]^{+}, \ 578 \ (17) \ [\mathrm{M} - \mathrm{CH}_{3} - \mathrm{C}_{6}\mathrm{H_{5}} - \mathrm{I}]^{+}, \ 91 \ (57) \ [\mathrm{C}_{7}\mathrm{H_{8}} - \mathrm{H}]^{+}. \end{array}$

Reactivity of 3a and 3b Toward TIBF₄**: (a)** A mixture of 20 mg (0.027 mmol) of **3a** and 8 mg (0.027 mmol) of TIBF₄ in 0.7 mL of [D₆]acetone was shaken in a sealed NMR tube over 2 days. While TII precipitated the solution changed colour to dark-red. In the ¹H-NMR spectrum a singlet is found at $\delta = 0.82$ for ethane, whereas the signals of **3a** completely disappeared.

78 mg (0.27 mmol) of TlBF₄ was added to a solution of 215 mg (0.27 mmol) of **3b** in 5 mL of acetone. After stirring overnight, a yellow precipitate of TlI was filtered off. Toluene was detected in the dark-red filtrate by means of gas chromatography. Upon addition of 0.5 mL of DMSO, the solution became orange-red in colour. The DMSO-rhodium(I) complex [Rh(PNP)(DMSO)]BF₄ (4) was detected by ³¹P-NMR spectroscopy (in acetone/external C₆D₆: $\delta = 40.2$, $J_{P-Rh} = 148$ Hz). This was consistent with an authentic sample, which was prepared from [Rh(PNP)(C₂H₄)]BF₄ and DMSO.^[3b]

(b) In the Presence of CH₃CN: 322 mg (0.4 mmol) of 3b was suspended in a mixture of 7 mL of THF and 1 mL of acetonitrile. To this was added 120 mg of TlBF4 and the mixture was stirred overnight. A yellow precipitate of TII was deposited, which was filtered off. Diethyl ether was added dropwise to the pale-yellow filtrate, resulting in the precipitation of a white, crystalline solid. This was filtered off, washed with diethyl ether, and dried in vacuo. The solid was characterized as $[Rh(PNP)(CH_3)(C_6H_5)(CH_3CN)]BF_4$ (5): Yield: 271 mg (0.34 mmol, 85%); m.p. 146°C (dec.). C40H38BF4N2P2Rh (798.41): calcd. C 60.17, H 4.80, N 3.51, Rh 12.89; found C 60.30, H 5.28, N 3.75, Rh 12.57. - $^{31}\mathrm{P}$ NMR (CDCl₃): δ = 32.7 (d, J_{P-Rh} = 117 Hz). – ¹H NMR (CDCl₃): δ = 0.09 (td, $J_{H-P} = 6.6$ Hz, $J_{H-Rh} = 1.5$ Hz, 3 H, CH₃), 1.45 (s, 3 H, NCH₃), 4.30 (d ps. t, $J_{\text{Ha-Hb}}$ = 17.5 Hz, $N_{\text{H-P}}$ = 4.3 Hz, 2 H, CH_a), 4.47 (d ps. t, $J_{Ha-Hb} = 17.5$ Hz, $N_{H-P} = 4.2$ Hz, 2 H, CH_b), 6.95 (m, 3 H, Ph), 7.07–7.40 (m, 22 H, PPh, Ph), 7.75 (d, J_{H-H} = 7.7 Hz, 2 H, 3,5-py), 7.99 (t, $J_{\rm H-H}$ = 7.7 Hz, 1 H, 4-py). – ¹³C NMR (CDCl₃): $\delta = 2.03$ (s, NCH₃), 2.03 (m, overlapped with the NCH₃ signal, CH₃), 44.7 (ps. t, N = 13.7 Hz, CH₂), 120.4 (s, Ph), 122.5 (ps. t, N = 5.6 Hz, $C_{3,5-py}$), 127.2 (s, Ph), 128.5 (br, CN), 128.7 (br, PC_{meta}), 130.7 (s, PC_{para}), 130.8 (s, PC_{para}), 131.7 (ps. t, N = 18.3 Hz, PC_{ipso}), 132.7 (ps. t, N = 5.7 Hz, PC_{ortho}), 132.9 (ps. t, N = 5.6 Hz, PC_{ortho}), 138.1 (ps. t, N < 4.0 Hz, Ph), 139.6 (s, C_{4-py}), 159.1 (ps. t, N < 3 Hz, C_{2,6-py}). – IR (KBr): $\tilde{v} = 2281, 2376$ cm⁻¹ (CH₃CN); 1574, 1606 (py); 1062 (BF₄).

Crystal Structure Determination of Compound 5: *Crystal Data:* $C_{40}H_{38}BF_4N_2P_2Rh \cdot (C_4H_{10}O)_{0.8}$, formula weight 857.79 g mol⁻¹, monoclinic, $P2_1/n$ (No. 14), a = 12.6065(6), b = 24.5689(10), c = 13.5059(9) Å, $\beta = 102.356(6)^\circ$, V = 4086.3(4) Å³, Z = 4, $d_{calc} = 1.394$ g cm⁻³, F(000) = 1767. – *Data Collection:* STOE-IPDS,^[14] Mo- K_a radiation (graphite monochromator, $\lambda = 0.71073$ Å), crystal size $0.34 \times 0.30 \times 0.26$ mm³, T = 193(2) K, scan range $2.0 < \theta < 25.7^\circ$; intensities were measured for 31092 reflections with 7411 unique reflections, of which 5469 were considered observed [$I \ge 2\sigma(I)$]. The reflections were corrected for Lorentz and polarization effects; $\mu = 0.55$ mm⁻¹, no absorption correction. – *Structural Analysis and Refinement:* Preliminary positions of heavy atoms

were found by direct methods,^[16] while positions of the other nonhydrogen atoms were determined from subsequent difference Fourier synthesis coupled with initial isotropic least-squares refinement.^[17] An additional diethyl ether solvent molecule was located in the asymmetric unit and refined with 80% partial occupancy. With the exception of those of the solvent molecule, all hydrogen atoms were found in a difference Fourier map and refined with individual isotropic temperature parameters. Refinement: Full-matrix least-squares on F^2 ; 7070 reflections; 649 refined parameters; final $R_1 = 0.0333$, $wR_2 = 0.0806$, goodness-of-fit on $F^2 = 1.040$.

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC-100736). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [Fax: (internat.) + 44-1223/336033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 347 of the University of Würzburg) for financial support.

^[1] ^[1a] R. Taube in Applied Homogeneous Catalysis with Organome*tallic Compounds* (Eds.: B. Cornils, W. A. Herrmann), Verlag Chemie, Weinheim, **1996**, vol. 1, pp. 507. – ^[Ib] D. Steinborn, R. Taube, Z. Chem. **1986**, 26, 349–359. – ^[Ic] J.-J. Brunet, D. Neihedrer, F. J. Niederser, J. Mich. Cornel, **1009**. Neibecker, F. J. Niedercorn, J. Mol. Catal. **1989**, 49, 235–259. -^[1d] J.-J. Brunet, Gazz. Chim. Ital. **1997**, 127, 111–118. - ^[1e] T. E. Müller, M. Beller, Chem. Rev. 1998, 98, 675-703.

- ^[2] E. Krukowka, R. Taube, D. Steinborn, DD 296 909 A5
- (10.11.88), 1988; Chem. Abstr. 1992, 213993b.
 ^[3] C. Hahn, J. Sieler, R. Taube, Chem. Ber. 1997, 130, 939-945.
 ^[3b] C. Hahn, J. Sieler, R. Taube, Polyhedron 1998, 17, Hahn, J. Sieler, R. Taube, Polyhedron 1998, 17, 1183-1193.
- ^[4] C. Hahn, M. Spiegler, E. Herdtweck, R. Taube, Eur. J. Inorg. *Chem.* **1998**, 1425–1432. ^[5] G. Vasapollo, P. Giannoccaro, C. F. Nobile, A. Sacco, *Inorg.*
- *Chim. Acta* **1981**, *48*, 125–128. ^[6] J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, *Prin*-

- ¹⁶¹ J. P. Coliman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Aplications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, **1987**.
 ¹⁷¹ ^{17a} T. E. Nappler, D. W. Meek, R. M. Kirchner, J. A. Ibers, J. Am. Chem. Soc. **1973**, 95, 4194–4210. ^{17b} J. A. Tiethof, J. L. Peterson, D. W. Meek, Inorg. Chem. **1976**, 15, 1365–1370.
 ¹⁸¹ P. S. Pregosin, R. W. Kunz in ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes (Eds.: P. Diehl, E. Fluck, R. Kosfeld). Springer-Verlag. Berlin. Heidelberg. New York **1979** feld), Springer-Verlag, Berlin, Heidelberg, New York, 1979, vol. 16.
- ^[9] D. Milstein, Acc. Chem. Res. 1984, 17, 221-226.
- ^[10] B. N. Storhoff, H. C. Lewis, *Coord. Chem. Rev.* **1977**, *23*, 1–29. ^[11] W. V. Dahlhoff, S. M. Nelson, J. Chem. Soc. (A) 1971, 2184-2190.
- ^[12] W. Beck, K. Sünkel, *Chem. Rev.* 1988, 88, 1405–1421.
 ^[13] A. L. Spek, "PLATON-92", *Acta Crystallogr. Sect. A* 1990, 46, C34.
- [14] B. Lange, Z. J. Vejdelek, *Kolorimetrische Analyse*, Verlag Chemie, Weinheim, **1982**, p. 232.
 [15] *IPDS Operating System Version 2.8.*, STOE & CIE GmbH,
- Darmstadt, Germany, 1997.
- ^[16] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guargliardi, M. C. Burla, G. Polidori, M. Camalli, SIR-92, University of Bari, Italy, 1992.
 G. M. Sheldrick, SHELXL-93, in Crystallographic Computing
- *3* (Ed.: G. M. Sheldrick, C. Krüger, R. Goddard), Oxford University Press, England, **1993**, pp. 175–189.

Received June 6, 1998 [198181]