Accepted Manuscript

Synthesis, Molecular Structure and Spectroscopic Studies of Some New Quinazolin-4(3H)-one Derivatives; An Account on the N- versus S-Alkylation

Mohamed Hagar, Saied M. Soliman, Farahate Ibid, E.S.H. El Ashry

PII: S0022-2860(15)30496-8

DOI: 10.1016/j.molstruc.2015.12.007

Reference: MOLSTR 22040

To appear in: Journal of Molecular Structure

- Received Date: 5 November 2015
- Revised Date: 2 December 2015
- Accepted Date: 2 December 2015

Please cite this article as: M. Hagar, S.M. Soliman, F. Ibid, E.S.H. El Ashry, Synthesis, Molecular Structure and Spectroscopic Studies of Some New Quinazolin-4(3H)-one Derivatives; An Account on the N- versus S-Alkylation, *Journal of Molecular Structure* (2016), doi: 10.1016/j.molstruc.2015.12.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CER HIN

Synthesis, Molecular Structure and Spectroscopic Studies of Some New 1 Quinazolin-4(3H)-one Derivatives; An Account on the N- versus S-Alkylation. 2

Mohamed Hagar^{a,c}, Saied M. Soliman^{b,c}, Farahate Ibid^c, E. S. H. El Ashry^c*

- a. present address: Chemistry Department, Faculty of Science, Taibah University, Yanbu branch, Yanbu, KSA
- b. present address: Chemistry Department, College of Science & Arts, King Abdulaziz 7 8 University, P.O. Box 344 Rabigh 21911, Saudi Arabia
- c. permanent address: Chemistry Department, Faculty of Science, Alexandria 9 University, Alexandria, Ibrahimia, P.O. Box 426, Alexandria 21321. Egypt. E-mail: 10 eelashry60@hotmail.com 11
 - 12

13

3

4

5

6

Abstract

A new series of N- and S-alkylated products of 3-aryl-1H,3H-quinazolin-2,4-dione 14 and 3-aryl-2-mercapto-3H-quinazolin-4-one, respectively, were prepared in good 15 yields via efficient nucleophilic substitution reaction of the SH and NH substrates 16 with methyl iodide, ethyl bromoacetate, allyl bromide, propagyl bromide, 2-17 bromoethanol, 1,3-dibromopropane or phenacyl bromide in DMF as a solvent and 18 anhydrous potassium carbonate. The quinazolin-2,4-dione favored the N-alkylation 19 while the 2-mercapto-3H-quinazolin-4-one goes via the S-alkylation. DFT reactivity 20 studies showed that the former have the N-site with higher nucleophilicity compared 21 to the O-site. In contrast, the S-site is the more nucleophilic centre than the N-atom of 22 the latter. The structures of the synthesized products have been established on the 23 basis of their melting point (m.p), IR and ¹HNMR data. The molecular structures of 24 the products were calculated using the DFT B3LYP/6-311G(d,p) method. The 25 electronic and spectroscopic properties (Uv-Vis and NMR spectra) were calculated 26 using the same level of theory. The chemical reactivity descriptors that could help to 27 understand the biological activity of the products are also predicted. 28 29

Keywords: Quinazoline - DFT- S and N Alkylation- Reactivity

- 30
- 31
- 32
- 33
- 34

Introduction

4(3H)-Quinazolinones are a class of fused heterocycles that of considerable interest 36 because of the diverse range biological properties, such as anticancer, diuretic, anti-37 inflammatory, anticonvulsant and antihypertensive activities [1-5]. Some of 38 aminoquinazoline derivatives were found to be inhibitors of the tyrosine kinase [6, 7] 39 or dihydrofolate reductase enzymes [8]. The chemistry of the quinazolinone alkaloids 40 is well documented [9, 10] in a number of comprehensive reviews and monographs 41 which is continuously updated in Natural Product Reports [11, 12]. Recently, it was 42 reported that substituted quinazolines exhibited a good antibacterial activity [13]. 43 Prompted by these findings and continuing our interests devising approaches for the 44 preparations of heterocycles of potential biological activities, the aim of this work is 45 mainly concerned with studying the activity of N and S of quinazolin-4(3H)-one 46 derivatives towards alkylation reactions as well as the design and synthesis of an 47 extension series of quinazolin-4(3H)-one derivatives. Also, the molecular structures, 48 electronic and spectroscopic properties of the products were calculated using the DFT 49 method. 50

Experimental

General Methods

IR spectral data were recorded with a Tensor 37 Bruker infrared spectrophotometer 53 (KBr, v max: cm⁻¹). Mass spectra were recorded at 70 ev by 5980 series II GC 54 coupled with 5989 B mass spectrometer. ¹H NMR spectra were determined with a 55 JEOL spectrometer at 500 MHz. The ¹³C NMR spectra were recorded with JEOL 56 spectrometer at 125.7 MHz. The chemical shifts are expressed in the δ scale using 57 tetramethylsilane as a reference. Melting points were determined on a meltemp 58 apparatus and are uncorrected. TLC was performed on Merck Kiesel gel; 60-F254 59 plates, and the spots were detected by UV light absorption. 60

General method for synthesis of 2-(alkylthio)-3-(aryl)quinazolin-4(3H)-one (2-5)61A mixture of 3-aryl-2-mercaptoquinazolin-4(1H, 3H)-one 1a-c (0.78 mmol) and62anhydrous potassium carbonate (0.8 mmol) in dry DMF (3 mL) was stirred for 1hr,63alkyl halide (0.78 mmol) was added. The reaction mixture was stirred for further time6410:120 min and then diluted with cold water. The formed precipitate was filtered,65washed with water and recrystallized from ethanol.66

67

35

51

ACCEPTED MANUSCRIPT	
2-(Allylthio)-3-phenylquinazolin-4(3H)-one (2a)	68
Stirring time 5 min, colorless crystals; yield: 67 %; mp 147-148 °C [14].	69
2-(Allylthio)-3-(4-chlorophenyl)quinazolin-4(3H)-one (2b)	70
Stirring time 30 min, colorless needles; yield: 78 %; mp 138-140 $^{\circ}$ C, R _f 0.54 (1:6	71
EtOAc-hexane). ¹ H NMR (500 MHz, CDCl ₃): δ = 3.84 (d, 2H, J = 6.7 Hz, CH ₂ S),	72
5.14 (d, 1H, J = 9.5 Hz, CH-All), 5.30 (d, 1H, J = 1.9 Hz, CH-All), 5.91 (m, 1H, CH-	73
All), 7.25 (d, 2H, J = 8.6 Hz, Ar-H), 7.40 (t, 1H, J = 7.6 Hz, Quin-H), 7.50 (d, 2H, J =	74
8.6 Hz, Ar-H), 7.61 (d, 1H, J = 7.6 Hz, Quin-H), 7.73 (t, 1H, J = 6.7 Hz, Quin-H),	75
8.22 (d, 1H, $J = 6.7$ Hz, Quin-H). ¹³ C NMR (125.7 MHz, CDCl ₃): $\delta = 35.5$ (SCH ₂),	76
119.8 (CH ₂ ==), 126.0 (C-4a), 127.2 (C-5), 127.4 (C-8), 130.0 (C-6), 132.6 (CH==),	77
136.2 (C-7), 147.7 (C-8a), 156.4 (C-2), 161.8 (C-4). Anal. Calcd for C ₁₇ H ₁₃ ClN ₂ OS:	78
C, 62.10; H, 3.98; N, 8.52; S, 9.75. Found C, 61.98; H, 3.61; N, 8.23; S, 9.40.	79
2-(Allylthio)-3-(4-bromophenyl)quinazolin-4(3H)-one (2c)	80
Stirring time 60 min, colorless crystals; yield: 92%; mp 202-204 °C [15].	81
2-(1-Oxo-1-phenylethylthio)-3-phenylquinazolin-4(3H)-one (3a)	82
Stirring time 120 min, yellow needles; yield: 55%; mp 201-203 $^{\circ}$ C, R _f 0.38 (1:2)	83
EtOAc- petrolum ether). IR (KBr, in cm ⁻¹): 3060 (CH-Ar), 2910 (CH alkane), 1689	84
(CO), 1608 (CON), 1574 (C=N), 1547 (C=C). ¹ H NMR (500 MHz, CDCl ₃): δ = 4.64	85
(s, 2H, SCH ₂), 7.28 (d, 1H, J = 8.4 Hz, Ar-H), 7.37 (m, 3H, Ar-H), 7.55 (m, 5H, Ar-	86
H), 7.63 (dd, 2H, $J_1 = J_2 = 8.4$ Hz, Ar-H), 8.09 (d, 2H, $J = 6.9$ Hz, Ar-H), 8.20 (d, 1H,	87
$J = 7.6$ Hz, Ar-H). ¹³ C NMR (125.7 MHz, CDCl ₃): $\delta = 39.9$ (SCH ₂), 119.8 (C-4a),	88
126.2 (C-5), 127.4 (C-6), 147.2 (C-8a), 156.7 (C-2), 161.6 (C-4), 193.5 (CO). Anal.	89
Calcd for C ₂₂ H ₁₆ N ₂ O ₂ S: C, 70.95; H, 4.33; N, 7.52; S, 8.61. Found C, 71.14; H, 4.52;	90
N, 7.45; S, 8.32.	91
2-(1-Oxo-1-phenylethylthio)-3-(4-chlorophenyl)quinazolin-4(3H)-one (3b)	92
Stirring time 30 min, colorless needles; yield: 82.1%; mp 213-215 $^{\circ}$ C, R _f 0.46 (1:2	93
EtOAc-petrolum ether). IR (KBr, in cm ⁻¹): 3064 (CH-Ar), 2912 (CH alkane), 1774	94
(CO), 1606 (CON), 1596 (C=N), 1490 (C=C). ¹ H NMR (500 MHz, CDCl ₃): δ = 4.64	95
(s, 2H, SCH ₂), 7.28 (d, 1H, <i>J</i> = 7.6 Hz, Ar-H), 7.33 (d, 2H, <i>J</i> = 8.4, Ar-H), 7.37 (t, 1H,	96
$J = 7.6$, Ar-H), 7.53 (dd, 4H, $J = 6.9$ Hz, Ar-H), 7.64 (dd, 2H, $J_1 = J_2 = 7.6$ Hz, Ar-H),	97
8.08 (d, 2H, $J = 7.6$ Hz, Ar-H), 8.18 (d, 1H, $J = 7.6$ Hz, Ar-H). ¹³ C NMR (125.7 MHz,	98
CDCl ₃): δ = 40.1 (SCH ₂), 119.6 (C-4a), 126.2 (C-6), 127.3 (C-5), 147.1 (C-8a), 156.3	99
(C-2), 161.5 (C-4). Anal. Calcd for C ₂₂ H ₁₅ ClN ₂ O ₂ S: C, 64.94; H, 3.72; N, 6.88; S,	100
7.88. Found C, 65.17; H, 3.58; N, 6.61; S, 7.54.	101

2-(1-Oxo-1-phenylethylthio)-3-(4-bromophenyl)quinazolin-4(3H)-one (3c)	102
Stirring time 60 min, colorless needles; yield: 74 %; mp 222-224 °C, Rf 0.42 (1:2.5	103
EtOAc-hexane). IR (KBr, in cm ⁻¹): 3064 (CH-Ar), 2914 (CH alkane), 1772 (CO),	104
1606 (CON), 1596 (C=N), 1488 (C=C). ¹ H NMR (500 MHz, CDCl ₃): δ = 4.66 (s, 2H,	105
SCH ₂), 7.26 (d, 1H, J = 8.4 Hz, Ar-H), 7.29 (d, 2H, J = 8.4, Ar-H), 7.37 (t, 1H, J =	106
7.6, Ar-H), 7.53 (t, 2H, $J = 7.6$ Hz, Ar-H), 7.64 (dd, 2H, $J_1 = J_2 = 7.6$ Hz, Ar-H), 7.70	107
(d, 2H, J = 8.4 Hz, Ar-H), 8.08 (d, 2H, J = 7.6 Hz, Ar-H), 8.18 (d, 1H, J = 7.6 Hz, Ar-	108
H). ¹³ C NMR (125.7 MHz, CDCl ₃): δ = 40.2 (SCH ₂), 119.7 (C-4a), 126.7 (C-5),	109
127.3 (C-5), 146.9 (C-8a), 156.3 (C-2), 161.4 (C-4), 193.4 (CO).	110
2-(2-Hydroxyethylthio)-3-phenylquinazolin-4(3H)-one (4a)	111
Stirring time 20 min, colorless needles; yield: 68 %; mp 129-131 °C, Rf 0.37 (1:1.5	112
EtOAc- petrolum ether). IR (KBr, in cm ⁻¹): 3270 (OH), 3058 (CH-Ar), 2936 (CH	113
alkane), 1608 (CON), 1573 (C=N), 1479 (C=C). ¹ H NMR (500 MHz, DMSO- d_6): $\delta =$	114
3.22 (t, 2H, <i>J</i> = 6.1 Hz, SCH ₂), 3.60 (q, 2H, <i>J</i> = 6.1 Hz, CH ₂ OH), 4.94 (t, 1H, <i>J</i> = 5.3	115
Hz, OH), 7.41 (m, 2H, Ar-H), 7.44 (d, 1H, J = 6.9 Hz, Ar-H), 7.54 (m, 3H, Ar-H),	116
7.57 (d, 1H, <i>J</i> = 8.4 Hz, Ar-H), 7.80 (m, 1H, Ar-H), 8.04 (dd, 1H, <i>J</i> ₁ = 8.4 Hz, <i>J</i> ₂ = 1.5	117
Hz, Ar-H). Anal. Calcd for C ₁₆ H ₁₄ N ₂ O ₂ S: C, 64.41; H, 4.73; N, 9.39; S, 10.75. Found	118
C, 64.86; H, 4.51; N, 9.04; S, 10.52.	119
2-(2-Hydroxyethylthio)-3-(4-chlorophenyl)quinazolin-4(3H)-one (4b)	120
Stirring time 120 min, colorless needles; yield: 86.3%; mp 165-167 °C [15].	121
2-(2-Hydroxyethylthio)-3-(4-bromophenyl)quinazolin-4(3H)-one (4c)	122
Stirring time 60 min, colorless needles; yield: 87%; mp 184-185 °C, Rf 0.63 (1:2	123
EtOAc- petrolum ether). IR (KBr, in cm ⁻¹): 3566 (OH), 3062 (CH-Ar), 2938(CH	124
alkane), 1606 (CON), 1574 (C=N), 1486 (C=C), 530 (C-Br). ¹ H NMR (500 MHz,	125
DMSO- d_6): $\delta = 3.23$ (t, 2H, $J = 6.1$ Hz, SCH ₂), 3.60 (q, 2H, $J = 6.1$ Hz, CH ₂ OH), 4.94	126
(t, 1H, J = 5.3 Hz, OH), 7.42 (d, 2H, J = 8.4 Hz, Ar-H), 7.44 (d, 1H, J = 7.6 Hz, Ar-	127
H), 7.57 (d, 1H, J = 8.4 Hz, Ar-H), 7.74 (d, 2H, J = 8.4 Hz, Ar-H), 7.80 (m, 1H, Ar-	128
H), 8.03 (d, 1H, $J = 6.9$ Hz, Ar-H). Anal. Calcd for $C_{16}H_{13}BrN_2O_2S$: C, 50.94; H,	129
3.47; N, 7.43; S, 8.50. Found C, 51.09; H, 3.66; N, 7.72; S, 8.61.	130
General method for acid hydrolysis of (12a-c)	131
A solution of (0.91 mmol) of 9a-c and conc HCl (6mL) was warmed in water path for	132
1hr, then the reaction mixture was poured into water. The formed precipitate was	133
filtered, washed with water and recrystalized from ethanol.	134
3-Phenylquinazoline-2,4(1H,3H)-dione (12a)	135

colorless crystals; yield: 82 %; mp 281-283 °C, Rf 0.43 (1.5:1 EtOAc- petrolum ether).	136
¹ H NMR (500 MHz, DMSO- d_6): 7.19 (dd, 2H, $J_1 = 7.6$, $J_2 = 6.9$, Ar-H), 7.29 (d, 2H, J	137
= 8.4 Hz, ArH), 7.39 (dd, 2H, J_1 = 7.6, J_2 = 6.9, Ar-H), 7.45 (dd, 2H, J_1 = 8.4, J_2 =	138
6.9, Ar-H), 7.67 (dd, 2H, $J_1 = 8.4$, $J_2 = 6.9$, Ar-H), 7.90 (d, 1H, $J = 8.4$ Hz, Ar-H),	139
11.53 (s, 1H, NH).	140
3-(4-Phlorophenyl)quinazoline-2,4(1H,3H)-dione (12b)	141
Colorless crystals; yield: 88 %; mp 299-300 °C, Rf 0.63 (1:2.5 EtOAc- petrolum	142
ether). ¹ H NMR (500 MHz, DMSO- d_6): 7.22 (m, 2H, Ar-H), 7.37 (d, 2H, $J = 15$ Hz,	143
Ar-H), 7.54 (d, 2H, J = 15 Hz, Ar-H), 7.70 (m, 1H, Ar-H), 7.93 (d, 1H, J = 11.5 Hz,	144
Ar-H), 11.55 (s, 1H, NH), m/z: 272.	145
3-(4-Bromophenyl)quinazoline-2,4(1H,3H)-dione (12c)	146
Colorless crystals; yield: 91 %; mp 326-328 °C, Rf 0.38 (1:1 EtOAc- petrolum ether).	147
IR (KBr, in cm ⁻¹): 3455 (NH), 1669 (CON), 1581 (C=N), 1515 (C=C). ¹ H NMR (500	148
MHz, DMSO- <i>d</i> ₆): 7.18 (m, 2H, Ar-H), 7.28 (d, 2H, <i>J</i> = 8.4 Hz, Ar-H), 7.66 (m, 3H,	149
Ar-H), 7.90 (d, 1H, J = 8.4, Ar-H), 11.56 (s, 1H, NH).	150
General procedure for alkylation reaction of 3-arylquinazolin-2,4(1H,3H)-dione	151
A mixture of 12a-c (0.6 mmol) and anhydrous potassium carbonate (0.9 mmol) in	152
dry DMF (3 mL) was stirred for 1hr, appropriate alkyl halide (0.6 mmol) was added.	153
The reaction mixture was stirred for further time 10:60 min, then diluted with cold	154
water. The formed precipitate was filtered, washed with water and recrystallized from	155
ethanol	156
1-Methyl-3-phenylquinazoline-2,4(1H,3H)-dione (13a)	157
Stirring time 30 min, colorless needles; yield: 91 %; mp 220-221°C. ¹ H NMR (500	158
MHz, CDCl ₃): δ = 3.64 (s, 3H, CH ₃), 7.28 (m, 4H, Ar-H), 7.44 (dd, 1H, J_1 = 7.6 Hz,	159
$J_2 = 6.9$ Hz, Ar-H), 7.51 (dd, 2H, $J_1 = 8.4$ Hz, $J_2 = 6.9$ Hz, Ar-H), 7.73 (m, 1H, Ar-H),	160
8.62 (dd, 1H, $J_1 = 7.6$ Hz, $J_2 = 1.5$ Hz, Ar-H).	161
1-Methyl-3-(4-Chlorophenyl)quinazolin-2,4(1H,3H)-dione (13b)	162
Stirring time 20 min, colorless crystals; yield: 99 %; mp 223-225°C. IR (KBr, in cm	163
¹): 2982 (CH alkane), 1707 (NCON), 1661 (CON), 1482 (C=C), 761 (C-Cl). ¹ H NMR	164
(500 MHz, CDCl ₃): δ = 3.63 (s, 3H, CH ₃), 7.21 (d, 2H, J = 8.4 Hz, Ar-H), 7.28 (m,	165
2H, Ar-H), 7.47 (d, 2H, <i>J</i> = 8.4, Ar-H), 7.74 (m, 1H, Ar-H), 8.25 (m, 1H, Ar-H). m/z	166
286.	167
1-Methyl-3-(4-bromophenyl)quinazolin-2,4(1H,3H)-dione (13c)	168

Stirring time 15 min, colorless crystals; yield: 90 %; mp 214-216 °C. IR (KBr, in cm⁻ 169 ¹): 3062 (CH alkane), 1657 (CON), 1715 (NCON), 1481 (C=C), 515 (C-Br). ¹H NMR 170 (500 MHz, CDCl₃): δ = 3.63 (s, 3H, CH₃), 7.15 (d, 2H, *J* = 8.4 Hz, Ar-H), 7.28 (m, 171 2H, Ar-H), 7.63 (d, 2H, *J* = 8.4, Ar-H), 7.74 (m, 1H, Ar-H), 8.25 (dd, 1H, *J*₁ = 7.6 Hz, 172 *J*₂ = 1.5 Hz, Ar-H). 173

1-Allyl-3-phenylquinazolin-2,4(1*H*,3*H*)-dione (14a)

Stirring time 30 min, colorless needles; yield: 91 %; mp 160-161 °C, Rf 0.59 (1:1 175 EtOAc-hexane). IR (KBr, in cm⁻¹): 2901 (CH-Ar), 2987 (CH alkene), 1706 (NCON), 176 1655 (CON), 1478 (C=C). ¹H NMR (500 MHz, CDCl₃): δ = 4.80 (d, 2H, J = 4.6 Hz, 177 NCH₂), 5.29 (m, 2H, CH₂=), 5.96 (m, 1H, CH=), 7.26 (m, 4H, Ar-H), 7.44 (dd, 178 1H, $J_1 = 7.6$ Hz, $J_2 = 6.8$ Hz, Ar--H), 7.51 (dd, 2H, $J_1 = 8.4$ Hz, $J_2 = 6.8$ Hz, Ar-H), 179 7.69 (m, 1H, Ar-H), 8.26 (m, 1H, Ar-H). ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 46.2$ 180 (NCH₂), 114.0 (C-8), 118.1 (CH₂=), 122.8 (C-4a), 128.0 (C-6), 128.8 (C-5), 129.5 181 (CH=), 131.2 (C-7), 140.2 (C-8a), 150.9 (C-2), 161.9 (C-4). Anal. Calcd for 182 C₁₇H₁₄N₂O₂: C, 73.37; H, 5.07; N, 10.07. Found C, 73.18; H, 5.28; N, 10.27. 183

1-Allyl-3-(4-chlorophenyl)quinazolin-2,4(1*H*,3*H*)-dione (14b)

Stirring time 20 min, colorless needles; yield: 96 %; mp 156-157 °C, Rf 0.62 (1:1 185 EtOAc-hexane). IR (KBr, in cm⁻¹): 3089 (CH-Ar), 3064 (CH alkene), 2988 (CH 186 alkane), 1722 (NCON), 1666 (CON), 1479 (C=C), 759 (C-Cl). ¹H NMR (500 MHz, 187 DMSO- d_6): $\delta = 4.72$ (d, 2H, J = 3.4 Hz, NCH₂), 5.29 (2d, $J_1 = 17.2$ Hz, $J_2 = 10.3$ Hz, 188 2H, CH₂==), 5.90 (m, 1H, CH==), 7.28 (dd, 1H, $J_1 = 8.0$ Hz, $J_2 = 6.9$ Hz, Ar-H), 189 7.37 (dd, 3H, $J_1 = 8.5$ Hz, $J_2 = 8.0$ Hz, Ar--H), 7.52 (d, 2H, J = 8.5 Hz, Ar-H), 7.75 190 (m, 1H, Ar-H), 8.03 (m, 1H, Ar-H). ¹³C NMR (125.7 MHz, DMSO- d_6): $\delta = 45.8$ 191 (NCH₂), 115.8 (C-8), 116.1 (CH₂=), 122.9 (C-4a), 123.7 (C-6), 128.7 (C-5), 129.2 192 (CH=), 131.6 (C-7), 140.5 (C-8a), 150.6 (C-2), 161.8 (C-4), m/z: 312.1. Anal. 193 Calcd for C₁₇H₁₃ClN₂O₂: C, 65.29; H, 4.19; N, 8.96.. Found C, 65.58; H, 4.01; N, 194 8.72. 195

1-Allyl-3-(4-bromophenyl)quinazolin-2,4(1*H*,3*H*)-dione (14c)

Stirring time 15 min, colorless needles; yield: 92 %; mp 177-179 °C, R_f 0.14 (1:1.5 197 EtOAc-hexane). IR (KBr, in cm⁻¹): 3087 (CH-Ar), 3058 (CH-Ar), 3063 (CH alkene), 198 2936 (CH alkane), 1722 (NCON), 1662 (CON), 1479 (C=C), 514 (C-Br). ¹H NMR 199 (500 MHz, CDCl₃): $\delta = 4.79$ (d, 2H, J = 5.2 Hz, NCH₂), 5.29 (m, 2H, CH₂-All), 5.95 200 (m, 1H, CH-All), 7.16 (d, 2H, J = 8.4 Hz, Ar-H), 7.26 (m, 2H, Ar--H), 7.62 (d, 2H, J = 201 = 8.4 Hz, Ar-H), 7.69 (m, 1H, Ar-H), 8.25 (m, 1H, Ar-H). ¹³C NMR (125.7 MHz, 202

184

196

CDCl ₃): $\delta = 46.3$ (NCH ₂), 114.1 (C-8), 118.2 (CH ₂ ==), 123.7 (C-4a), 129.4 (C-6),	203
129.8 (C-5), 130.7 (CH==), 131.5 (C-7), 140.1 (C-8a), 150.6 (C-2), 161.7 (C-4).	204

205

219

231

Computational details

All the quantum chemical calculations of the studied compounds were performed by 206 applying DFT method with the B3LYP functional and 6-311G(d,p) basis set using 207 Gaussian 03 software [16]. The geometries were optimized by minimizing the 208 energies with respect to all the geometrical parameters without imposing any 209 molecular symmetry constraints. GaussView 4.1 [17] and Chemcraft [18] programs 210 have been used to draw the structure of the optimized geometry. The computational 211 study of the reactant species was first carried out in gas phase, then, the Self-212 Consistent Reaction Field (SCRF) theory [19], with Polarized Continuum Model 213 (PCM) was used to predict the effect of solvent (DMSO) on the stability of the 214 tautomers studied [20]. The natural atomic charges are calculated using NBO 215 calculations as implemented in the Gaussian 03 package [21] at the DFT/B3LYP 216 level. The nucleophilicity index [21] is calculated referred to tetracyanoethylene 217 (TCE) is given by 218

$$N = E_{HOMO(Nu)} - E_{HOMO(TCE)}$$

Fukui functions for electrophilic attack on an atom, k, in an N-electron system was220introduced by Yang and Mortier [8] as221

$$f_{k}^{-} = q_{k}(N) - q_{k}(N-1)$$
 (7) 222

(5)

where $q_k(N)$ and $q_k(N-1)$ are the atomic charges of the system with N and N-1 223 electrons, respectively. The condensed Fukui functions f_k^- are calculated using 224 Natural population analysis (NPA) [23]. 225 Condensed local nucleophilicity index (N_k) [24] is defined 226

$$N_k = f_k^- N \tag{9}$$

Also the molecular structures of the products 2a-c, 14a and 14c were calculated using228the same level of theory. The electronic and spectroscopic properties of the selected229products were also predicted.230

Results and discussion

The starting materials 3-aryl-2-mercapto-3H-quinazolin-4-one **1a-c** were prepared 232 adopting the reported procedure [25]. The 2-mercapto group of **1a-c** was alkylated 233 with a variety of alkyl halides, methyl iodide, allyl bromide, phenacyl bromide and 2- 234 bromoethanol in DMF as a solvent and anhydrous potassium carbonate to give the 235

thio-ether derivatives, (scheme 1). The structures of the products were confirmed by236their spectral data.237

The treatment of the ester **5a-c** with hydrazine hydrate afforded the corresponding 238 hydrazide 9a-c [26, 27]. The reaction of 9a-c with ammonium mercaptocyanate failed 239 to give 10 neither in aqueous HCl nor in benzene as a solvent [28] while the reaction 240 in aqueous HCl proceeds to give 3-aryl-1H,3H-quinazolin-2,4-dione 12a-c instead. 241 The yield of **12a-c** is improved from 42 % in dilute HCl to 91% in concentrated HCl. 242 The structure was confirmed by IR spectroscopy which showed absence of peaks at 243 3303 cm⁻¹ corresponding to NH_2 group of 9. The mass spectrum of 12b showed the 244 molecular ion peak at m/z 272. 245

The NH-group of **12a-c** was alkylated with a series of alkyl halides, methyl iodide and 246 allyl bromide using potassium carbonate in DMF to give **13a-c** and **14a-c**, 247 respectively. The structures of these compounds were confirmed by their spectral data. 248

249

262

It is clear that the reactants 1a-c and 12a-c could undergo the tautomeric equilibrium 250 reactions shown in scheme 3. The relative stability as well as chemical reactivity of 251 these tautomers in gas phase and in solution have been predicted using DFT/B3LYP 252 method. The alkylation reaction of the thiones (1a-c) proceeds to the formation of the 253 S-alkylated products whatever the alkyl halide used. In these cases, the attack occurs 254 on the S-atom rather than the ring N-atom of the heterocycle. In contrast, the diones 255 12a-c yielded the N-alkylated products via the attack of the alkyl halide on 256 quinazoline ring nitrogen instead of the carbonyl O-atom, hence N-alkylated products 257 were obtained. In this section the stability of the possible tautomers will be 258 investigated in the framework of the DFT method followed by studying the chemical 259 reactivity, site reactivity and selectivity towards these alkylation reactions using the 260 well known quantum chemical descriptors described above. 261

Stability of the studied tautomers

The relative stabilities and the population of these isomers are predicted using 263 B3LYP/6-311G(d,p) calculations. The B3LYP/6-311G(d,p) calculated energy 264 predictions of the studied tautomers are compared in Table S1 (Supplementary 265 Materials) which shows that T1 tautomers have lower energy values than T2 in all 266 cases. The relative abundance of the studied tautomers was calculated from: $\Delta G = -267$ RTlnK, where ΔG denotes the difference between the Gibbs free energies of a given 268 isomer relative to the most stable one and K is the corresponding equilibrium 269

constant. The abundance of the most stable species, T1 tautomer equal ~100.00% at 270 298 K in the gas phase. The T2 forms have zero total populations and are expected to 271 be of no importance. Because the solvent effects are important in tautomer stability 272 phenomena as the polarity differences among isomers can make significant changes in 273 their relative energies in solution so we used PCM to model the effect of solvent on 274 these tautomeric equilibrium reactions. Table S2 (Supplementary Information) 275 showed the total energies and thermodynamic parameters of the studied isomers in 276 presence of DMSO as solvent. The effect of solvent on the calculated energies and 277 thermodynamic parameters is shown in Table S2 (Supplementary Information). In 278 solution, the energy barrier (ΔE) between the two tautomers increased compared to 279 the gas phase. It is revealed that the stability of T1 increases in presence of solvent. 280 Anyway the most stable isomer T1 is almost the only species that could exist in 281 solution where the T2 has almost null population. 282

Reactivity and site selectivity of the reactants

283

For the studied substrates, the calculated quantum chemical descriptors such as 284 E_{HOMO}, E_{LUMO} and nucleophilicity index (N) obtained at the DFT/B3LYP/6-311G(d,p) 285 level of theory are collected in Table 1. The atomic charge densities at the N- and S-286 sites of the N (Q_N) and N-1 (Q_{N-1}) systems were calculated and presented in Table 2. 287 The calculated local nucleophilicity trend of the studied substrates is analyzed using 288 local nucleophilicity index N_k and Fukui function f_k . The values of these local 289 reactivity descriptors on the N- and S-atoms of compounds 1a-c and 12a-c are given 290 in Table 2. The most significant results that can be easily concluded from Table 1 is 291 the lower nucleophilicity index values for compounds b and c due to the presence of 292 the halogen substitution at the phenyl ring. The nucleophilicity index has maximum 293 values for compounds **a**. In a number of studies, NPA charges are usually used for f_k 294 calculations where the atomic centers with maximal f_k are interpreted as the most 295 reactive nucleophilic reaction sites [29-32]. For compounds **1a-c**, the N_k and f_k 296 values are higher for the S-sites compared to the N-one. These results indicated the 297 higher reactivity of the S-site towards nucleophilic attack compared to the N-site, 298 hence S-alkylated products were obtained. In contrast, the compounds 12a-c have N-299 atom with higher nucleophilicity index N_k and Fukui function f_k values than the O-300 atom. The N-alkylation is the best option for 12. From this point of view we could 301 conclude that, the compounds **1a-c** favor the S-alkylation while the **12a-c** favor the N-302 alkylation reaction. 303

Modeling the structure of the products:

The optimized structures of the products 2a-c, 14a and 14c were calculated using 6-305 311G(d,p) level of theory which used as models to describe the geometric structure of 306 the obtained products. The optimized geometry of these compounds are shown in 307 Fig.1. The optimized geometric parameters (bond distances and bond angles) were 308 compared with the X-ray structure of the structurally related compounds [33,34] and 309 the results were collected in Table 3. The results showed a good agreement between 310 the calculated geometric parameters and the experimental data. It is worthnoting that, 311 the quinazoline and phenyl rings are planar. The angle between the plane passing 312 through the quinazoline ring and the plane passing through the phenyl ring is 88.3°, 313 69.4° and 68.88° for compounds 2a-c, respectively. Moreover, the angle between the 314 two ring planes in case of 14a and 14c is 85.5 and 80.1, respectively. The two rings 315 are perpendicular to one another in compounds a where there is no substituent at the 316 phenyl ring. The presence of large size halogen (Br) at the phenyl ring make the angle 317 between the two ring planes becomes less compared to the unsubstituted derivatives, a 318 i.e, more deviation from the perpendicularity of the two rings takes place. On other 319 hand the R-groups are not coplanar with the quinazoline ring plane for all the studied 320 compounds. 321

The charge calculations at different atomic sites play a crucial role in different 322 properties such as dipole moment, molecular polarizability as well as electronic 323 structure of a compound [35]. In this regard, the natural atomic charges (NAC) were 324 calculated using NBO method at the DFT B3LYP/6-311G(d,p) level of theory and the 325 results are given in Table 4. The natural charge calculations indicate the 326 electronegative nature of the O and N-atoms. The maximum natural charges occur at 327 the O-atoms for all the studied compounds (-0.5864 to -0.6247). All the carbon atoms 328 are negative except those attached to strong electronegative atoms (O or N atoms). 329 The most positively charged carbon atoms are C4, C8, C10 and C13 for compounds 2 330 and C4, C8, C10 and C12 for 14. The maximum positive charge occurs at C10 for the 331 former and C8 for the latter. The reason is that these C-atoms bonded to larger 332 number of strong electronegative atoms. All H-atoms have positive charge densities. 333 The halogen substituent showed very little effect on the natural charge of the different 334 atomic sites. Only we noted significant increase in the natural charge values at C16 335 and C15 of compounds 2b-c and 14c compared to 2a and 14a, respectively. The 336

electron withdrawing character of the halogen (Cl or Br) increase the natural charge337value at the C-atom bonded to it compared to compounds **a**.338

The dipole moments and polarizability of the studied systems are given in Table 5. It 339 could be seen that the dipole moment is in the order 14c>14a>2a>2b>2c. The polarity 340 of the compounds 14 is higher due to the presence of one more O-atom while those 341 having S-atom are less polar compounds. Significantly, the presence of the thione O-342 atom and the Br-atom in the same direction is a reasonable factor for the highest 343 polarity predicted for 14c. It seems that, the presence the hydrophobic moiety bonded 344 to the S-atom in case of compounds 2 in the same direction with the halogen tends to 345 decrease the polarity of the mercapto products. Polarizability depends on how the 346 tendency of electron cloud of molecular system to distort under the effect of 347 approaching charge. In fact, this depends on the structure complexity as well as the 348 size of the molecular system. Molecules having large size are more polarizable. We 349 noted that combination of S- and Br-atom in the same molecule leads to show the 350 highest polarizability (2c). 351

Frontier molecular orbitals

For chemists and physicist, the properties of the frontier molecular orbitals (FMOs) 353 like energy and electron densities are very important quantum chemical parameters. 354 The electron densities of these FMOs were used for predicting the most reactive 355 position in π -electron systems and also explained several types of reactions in 356 conjugated system [36]. Moreover, the energies of the lowest unoccupied molecular 357 orbital (E_{LUMO}) and the highest occupied molecular orbital (E_{HOMO}) and their energy 358 gap (ΔE) reflect the chemical reactivity of the molecule. A molecule having high 359 frontier orbital gap (ΔE) is less polarizable and is generally associated with a low 360 chemical reactivity and high kinetic stability [37]. Recently, the energy gap between 361 HOMO and LUMO has been used to prove the bioactivity from intramolecular charge 362 transfer (ICT) [38, 39]. The E_{HOMO} , E_{LUMO} and ΔE values of the studied compound 363 were calculated by B3LYP/6-311G(d,p) method. The HOMO and LUMO pictures are 364 shown in Fig. 2. For compounds 2, the electron densities of the HOMO and LUMO 365 are mainly localized on the S-atom. The electron density of the HOMO level on the 366 quinazoline ring is less significant in case of 2b and 2c. For compounds 14, the 367 HOMO is located on the quinazoline and phenyl rings for a and c, respectively. The 368 LUMO of all the studied systems is mainly localized on the π -system of the 369 quinazoline ring. 370

In general, the presence of halogen substituent on the phenyl ring stabilizes both 371 HOMO and LUMO levels. The LUMO is stabilized further in comparison with 372 HOMO, hence the energy gap decreased. For compounds 2, the energy gap is in the 373 order a > b > c. The molecule (2a) has highest energy gap (4.8208 eV). The presence of 374 Br-atom attached to the phenyl ring enhances the ability of the system towards 375 electron transfer process hence 2c is the most polarizable due to the presence of 376 combination of S and Br-atoms. In comparison, the oxo compounds 14a and 14c has 377 higher energy gap compared to 2a and 2c, respectively. It is the maximum for 14a 378 which showed the maximum kinetic stability. 379

Based on the energies of the frontier molecular orbitals, various chemical reactivity 380 descriptors such as electronegativity (χ), chemical potential (μ), chemical hardness 381 (η), global softness (S) and global electrophilicity index (ω) [40-44] were proposed 382 for understanding the different pharmacological aspects of drug molecules. These 383 descriptors are calculated using Eqs (1)-(5) given below: 384

$\chi = \frac{(I+A)}{2}$	1	385
$\mu = -\chi = -\frac{(I+A)}{2}$	2	386
$\eta = \frac{(I-A)}{2}$	3	387
$S = \frac{1}{2\eta}$	4	388
$\omega = \frac{\mu^2}{2\eta}$	5	389

The chemical hardness is a measure of the resistance to charge transference [45], 390 while the electronegativity is a measure of the tendency to attract electrons in a 391 chemical bond, as is defined as the negative of the chemical potential in DFT [45]. 392 Moreover, the electrophilicity index (ω) measures the stabilization in energy when the 393 system acquires an additional electronic charge from the environment. It contains 394 information about both electron transfer (chemical potential) and stability (hardness) 395 and is a better descriptor of global chemical reactivity (Eq. 5). For the studied 396 compounds, these chemical reactivity descriptors are given in Table 6. It is seen that 397 all the studied systems have negative chemical potential and it means that the 398 399 compounds are stable. The hardness signifies the resistance towards the deformation of electron cloud of chemical systems under small perturbation encountered during 400 chemical process. Soft systems are large and highly polarizable, while hard systems 401 are relatively small and much less polarizable. It is found that the compound (14a) is 402

the hardest while 2c is the softest. Moreover, the high value of electrophilicity index403(ω) of 2c favors its electrophilic behavior to be the highest [46].404

Electronic spectra and TD-DFT calculations

405 406

The lowest energy electronic transition implies the electron transfer from the highest 407 occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 408 (LUMO). The easiest way, but the less accurate, to calculate the energy of this 409 transition is to calculate the energy gap between HOMO and LUMO levels. The 410 calculated transition energy of the studied molecules are shown in Fig. 2. To get the 411 accurate electronic transitions, we performed the time-dependant density functional 412 theory (TD-DFT) calculations. The TD-DFT results of the spin allowed singlet-413 singlet electronic transitions collected in Table S3 (Supplementary Information). The 414 most important electronic transition bands are shown in Table 7 while the theoretical 415 spectra are shown in Fig. 3. Compound 2a showed two electronic transition bands at 416 295.4 nm (f=0.0559) and 273.0 (f=0.1968) due to the H \rightarrow L (87%) and H \rightarrow L+1 417 (75%) transitions, respectively. These bands showed significant bathochromic shift in 418 case of 2b and 2c. On other hand the longest wavelength band for 14c at 289.1nm 419 (f=0.0701) which is mainly due to $H \rightarrow L$ (85%) excitation showed slight 420 bathochromic shift in presence of halogen substitution at the ring. 421

Molecular electrostatic potential

Electrostatic potential maps are very useful three dimensional diagrams used to 423 visualize the charge distributions and charge related properties of molecules. The 424 MEP is typically visualized through mapping its values onto the surface reflecting the 425 molecules boundaries so it allows us to visualize the size and shape of molecules. This 426 can be generated by overlapping the vdW radii of all atoms in the molecule. MEP 427 diagram has been also used to predict the reactive sites for electrophilic and 428 nucleophilic attack, and in studies of biological recognition and hydrogen bonding 429 interactions [47, 48]. The MEP of the studied compounds calculated using B3LYP 430 method with 6–311G(d,p) basis set is shown in Fig. 4. This figure provides a visual 431 representation of the chemically active sites and comparative reactivity of atoms. 432 Potential increases in the order red < orange < yellow < green < blue. For all the 433 studied compounds, the negative regions (red) are mainly localized over the carbonyl 434 oxygen atoms (-0.0271 to -0.0409 au). The maximum positive regions (blue) are 435 localized on the phenyl ring attached to the N-atom of the quinazoline ring in case of 436

2 and at the carbonyl carbon for 14. We noted that, the presence of halogen group
437
attached to the phenyl ring shifts its electrostatic potential to more positive value for
438
compounds 2. Also, the negative MEP values at the fused phenyl ring of the
439
quinazoline moiety are decreased, hence the ring become deactivated towards
440
electrophilic attack.

NLO properties

442

The development of materials with large nonlinear optical (NLO) properties has been 443 of great interest in past few decades. These materials find numerous device 444 applications, from lasers to optical switches and electronics [49]. So far, the organic 445 π -conjugated molecules have been considered mostly for this purpose because of their 446 easy functionalization to fine tune the desired properties and the ease of fabrication 447 and integration into devices [50-52]. NLO is very important in areas such as 448 telecommunications, optical interconnections and signal processing [53, 54]. 449 The components of the static polarizability components (α_0) and the average 450

polarizability (α_0) of the studied compound are given in Table 5. The α_0 values are calculated to be in the order 2c>2b>2a>14c>14a. The ranking of the HOMO-LUMO 452 energy gap is in the opposite order. It is well known that compounds having good 453 NLO activity are characterized by high value of polarizability and low energy gap. It could be seen from the presence investigation that 2c has the highest polarizability 455 and lowest energy gap; hence 2c could be the best candidates for NLO applications. 456

NMR spectra

457

The isotropic magnetic shielding (IMS) values calculated using the GIAO approach at 458 the 6-311G(d,p) level are used to predict the ¹³C and ¹H chemical shifts (δ_{calc}) for the 459 studied compounds and the results are correlated to the experimental NMR data (δ_{exp}) 460 in CDCl₃ solvent. The experimental and theoretical ¹H- and ¹³C-NMR chemical shift 461 values of the studied compounds are given in Table S4 (Supplementary Information). 462 According to these results, the calculated chemical shifts are in compliance with the 463 experimental findings. A representative example for the correlation between the 464 experimental and theoretical chemical shifts of the studied is shown in Fig. 5. It can 465 be seen that, there is good agreement between the experimental and the calculated 466 chemical shifts. The correlation coefficients for the carbon-13 ($R^2 = 0.970$) and 467 proton ($\mathbf{R}^2 = 0.976$) are high for **2a**. 468

469

Conclusion

The molecular structure, electronic and spectroscopic properties of newly synthesized S-alkylated products of the 3-aryl-2-mercapto-3H-quinazolin-4-one; 1 and N-alkylated products of 3-aryl-1H,3H-quinazolin-2,4-dione; 12 were investigated using B3LYP/6-311G(d,p) method. The structures of the products were experimentally identified using m.p., IR and ¹HNMR data. The synthesized compounds were prepared in good yields via efficient nucleophilic substitution reaction of SH and NH substrates. The chemical reactivity descriptors that could help to understand the biological activity of the products are also predicted. The reactivity of these substrates toward the nucleophilic attack at either the N or S/O sites was predicted using the reactivity descriptors obtained from the DFT calculations. DFT reactivity studies showed that 12 have the N-site with the highest nucleophilicity while the S-site is the most nucleophilic in 1.

- '

		505
Refer	ences :	506
1.	J. H. Chan,; J. S. Hong,; L. F. Kuyper,; M. L. Jones,; D. P. Baccanari,; R.	507
	L.Tansik,; C. M.Boytos,; S. K.Rudolph,; A. D. Brown, J. Heterocycl. Chem.	508
	1997, 34, 145.	509
2.	S. L. Gackenheimer,; J. M. Schaus,; D. R. Gehlert, J. Pharmacol. Exp. Ther.	510
	113 (1996) 732.	511
3.	R. O. Dempcy,; Skibo, E. B. Biochemistry 30 (1991) 8480.	512
4.	Nordisk-Droge. 18113; Patent, N. A. Ed.; Nordisk Drogeand Kemi-	513
	Kalieforretning AIS: Netherlands, 1965.	514
5.	D. J. Connolly,; D. Cusack,; T. P. O'Sullivan; P. J. Guiry Tetrahedron 61	515
	(2005) 10153.	516
6.	D. W. Fry,; A. J. Kraker,; A. McMichael,; L. A. Ambroso,; J. M. Nelson,; W.	517
	R. Leopold,; R. W. Connors,; A. J. Bridges, Science 265 (1994) 1093.	518
7.	T. M. Traxler,; P. Furet,; H. Melt,; E. Buchdunger,; T. Meyer,; N. Lydon, J.	519
	Med. Chem. 39 (1996) 2289.	520
8.	J. B. Hynes,; A. Tomazić,; A. Kumar,; V. Kumar,; J. H. Freisheim, J.	521
	Heterocycl. Chem. 28 (1991) 1981	522
9.	A. Witt,; J. Bergman, Curr. Org. Chem. 7 (2003) 659.	523
10.	(a) W. L. F. Armarego, Adv. Heterocycl. Chem. 24 (1979) 1; (b) S. Johne,	524
	Prog. Chem. Org. Nat. Prod. 46 (1984) 159; (c) Johne, S. Rodd's Chemistry	525
	of Carbon Compounds (supplements to the 2nd ed.); M. F. Ansell, , Ed.;	526
	Elsevier: Amsterdam 1995; Vol. IV I/J, 223-240; (d) D. J. Brown,	527
	Quinazolines. In The Chemistry of Heterocyclic Compounds (supplement I);	528
	Wiley: New York, NY, 1996, 55. (e) A. L. D'yakonov,; M. Telezhenetskaya,	529
	V. Chem. Nat. Compd. 33 (1997) 221; (f) Johne, S. Rodd's Chemistry of	530
	Carbon Compounds (second supplements to the 2nd ed.); M.Sainsbury, Ed.;	531
	Elsevier: Amsterdam 2000; IV I/J, 203–231; (g) S. R. Padala,; P. R. Padi,; V.	532
	Thipireddy, Heterocycles 60 (2003) 183; (h) D. J. Connolly,; D.Cusack,; T. P.	533
	O'Sullivan,; P. J. Guiry, Tetrahedron 61 (2005) 10153; (i) Z. Ma, Y. Hano, T.	534
	Nomura, Heterocycles, 65 (2005) 2203. (j) V. S. Patil, V. S. Padalkar,	535
	N. Sekar, J. fluoresce. 24 (2014) 1077-1086, (k) H. S. Bhatti, S. Seshadri,	536
	Coloration Technology 120 (2006) 101 – 107.	537

11. M. F. Grundon, Nat. Prod. Rep. 1 (1984) 195; (ii) M. F. Grundon, Nat. Prod.	539
Rep. 2 (1985) 393; (iii) M. F. Grundon, Nat. Prod. Rep. 4 (1987) 225; (iv) M.	540
F. Grundon, Nat. Prod. Rep. 5 (1988) 293; (v) M. F. Grundon, Nat. Prod. Rep.	541
7 (1990) 131; (vi) M. F. Grundon, Nat. Prod. Rep., 8 (1991) 53; (b) (i) J. P.	542
Michael, Nat. Prod. Rep. 9 (1992) 25; (ii) J. P. Michael, Nat. Prod. Rep. 10 (1992) 00_{11} (iii) L. D. Michael, Nat. Prod. Rep. 11 (1994) 162 (iv) L. D.	543
(1993) 99; (11) J. P. Michael, Nat. Prod. Rep. 11 (1994) 163; (1V) J. P. Michael Nat Prod Pap 12 (1995) 77; (v) J. P. Michael Nat. Prod. Pap 12	544 545
(1995) 465: (vi) I P Michael Nat Prod Rep. 14 (1997) 11: (vii) I P	545
Michael, Nat. Prod. Rep. 14 (1997) 605; (viii) J. P. Michael, Nat. Prod. Rep.	547
15 (1998) 595; (ix) J. P. Michael, Nat. Prod. Rep. 16 (1999) 697; (x) J. P.	548
Michael, Nat. Prod. Rep. 17 (2000) 603; (xi) J. P. Michael, Nat. Prod. Rep. 18	549
(2001) 543; (xii) J. P. Michael, Nat. Prod. Rep. 19 (2002) 742; (xiii) J. P.	550
Michael, Nat. Prod. Rep., 20 (2003) 476; (xiv) J. P. Michael, Nat. Prod. Rep.	551
21 (2004) 650; (xv) J. P. Michael, Nat. Prod. Rep. 22 (2005) 627.	552
12. S. B. Mhaske,; N. P. Argade Tetrahedron 62 (2006) 9787.	553
13. A. M. Alafeefy J. Saudi Chem. Soc. 15 (2011) 337.	554
14. V. V. Orisik; Y. L. Zborovs'kii; A. A. Dobosh; V. I. Staninets; S. M.	555
Khripak, Ukrainskii Khimicheskii Zhurnal 68 (2002) 36.	556
15. Y. A. Azey, Chem. Heterocycl. Compd., 43 (2007) 356.	557
16. M. J. Frisch, et al., Gaussian-03, Revision C.01, Gaussian, Inc., Wallingford,	558
CT, (2004).	559
17. GaussView, Version 4.1, R. Dennington II, T. Keith, J. Millam, Semichem	560
Inc., Shawnee Mission, KS, (2007).	561
18. G.A. Zhurko, D.A. Zhurko, Chemcraft: Lite Version Build 08 (Freeware),	562
2005.	563
19. A. D. Becke, Phys. Rev. A 38 (1988) 3098-3100.	564
20. W. Wang, W.J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708-5711.	565
21. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1,	566
CI, University of Wisconsin, Madison, (1998).	567
22. D.R. Roy, R. Parthasarathi, J. Padmanabhan, U. Sarkar, V. Subramanium,	568
P.K. Chattaraj J. Phys. Chem. A 110 (2006) 1084–1093.	569
23. W. Yang, W.J. Mortier J. Am. Chem. Soc. 108 (1986) 5708-5711.	570
24. P. Perez, L.R. Domingo, M. Doque-Norena, E. Chamorro J. Mol. Struct .:	571
(THEOCHEM) 895 (2009) 86–91.	572
25. V. J. P.Mishra; S. Kashaw; J. P. Stables Eur. J. Med. Chem. 43 (2008).	573

26. F. A. M. Al-Omary, L. A. Abou-zeid, M. N. Nagi, E. E. Habib, A. AM.	574
Abdel-Aziz, A. S. El-Azab, S. G. Abdel-Hamide, M. A. Al-Omar, A. M. Al-	575
Obaid, H. I. El-Subbagh, Bioorg. Med. Chem. 18 (2010) 2849.	576
27. A. S., El-Azab Phosphorus, Sulfur, and Silicon 182 (2007) 333.	577
28. M.Belkadi; A. A., Othman Arkivoc (2006) 183.	578
29. V. Pilepicć, S. Uršić, Nucleophilic reactivity of the nitroso group. Fukui	579
function DFT calculations for nitrosobenzene and 2-methyl-2-nitrosopropane,	580
J. Mol. Struct. (Theochem) 538 (2001) 41-49 and reference within.	581
30. H. Chermette, Chemical reactivity indexes in density functional theory, J.	582
Comput. Chem. 20 (1999) 129-154.	583
31. R. K. Roy, F. De Proft, P. Geerlings J. Phys. Chem. A 102 (1998) 7035-7040.	584
32. W. Langenaeker, F. De Proft, P. Geerlings J. Mol. Struct. (Theochem) 362	585
(1996) 175-179.	586
33. F. Al-Omran, R. M. Mohareb and A. A. El-Khair, Molecules 16 (2011) 6129-	587
6147.	588
34. Y Kitano, M. Kashiwag, Y. Kinoshita, Acta Cryst. (1972). B28, 1223-1231.	589
35. I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964 (2010) 134-151.	590
36. K. Fukui, T. Yonezawa, H.J. Shingu J. Chem. Phys. 20 (1952) 722–725.	591
37. N. Sinha, O. Prasad, V. Narayan, S.R. Shukla, J. Mol. Simul. 37 (2011) 153-	592
163.	593
38. L. Padmaja, C. Ravikumar, D. Sajan, I. H. Joe, V. S. Jayakumar, G. R. Pettit,	594
F. O. Neilsen, J. Raman Spectrosc. 40 (2009) 419-428.	595
39. C. Ravikumar, I. H. Joe, V. S. Jayakumar, Chem. Phys. Lett. 460 (2008) 552-	596
558.	597
40. R.G. Pearson, J. Org. Chem. 54 (1989) 1430-1432.	598
41. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512-7516.	599
42. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793-	600
1873.	601
43. R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922–1924.	602
44. K. Chattaraj, S. Giri, J. Phys. Chem. A 111 (2007) 11116-11121.	603
45. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules,	604
Oxford University Press, New York, 1989.	605

46. R. N. Singh, A. Kumar, R. K. Tiwari, P. Rawat, V. P. Gupta, J. Mol. Struct.	606
1035 (2013) 427–440.	607
47. E. Scrocco, J. Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry,	608
vol. 2, Academic Press, New York, 1978.	609
48. J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and	610
Applications, Elsevier, Amsterdam, 1996.	611
49. P. N. Prasad, D. J. Williams, Introduction to nonlinear optical effects in	612
molecules and polymers, (New York: Wiley) 1991.	613
50. G. A. Lindsay, K. D. Singer, Polymers for second-order nonlinear optics, ACS	614
Symposium Series, No. 601 (Washington, DC: ACS) 1995.	615
51. D. Burland Chem. Rev. 94 (1994) 1-2.	616
52. E. Hanamura Phys. Rev. B37 (1988) 1273-1244.	617
53. V. M. Geskin, C. Lambert, J. L. Bredas, J. Am. Chem. Soc. 125 (2003) 15651-	618
15658.	619
54. D. Sajan, H. Joe, V.S. Jayakumar, J. Zaleski, J. Mol. Struct. 785 (2006) 43-53.	620
	621
	622
	623
	624

Table 1 The calculated quantum chemical parameters of the studied reactants.

Compound	E _{HOMO}	E _{LUMO}	ΔΕ	Ν		
	Gas					
1a	-6.0584	-1.8825	4.1759	3.310		
1b	-6.1993	-2.0074	4.1919	3.169		
1c	-6.1906	-2.0039	4.1868	3.177		
12a	-6.6407	-1.6615	4.9792	2.727		
12b	-6.7781	-1.8126	4.9656	2.590		
12c	-6.7683	-1.8139 4.9544		2.600		
		Solu	tion			
1a	-6.2946	-1.8014	4.4932	2.623		
1b	-6.3419	-1.8300	4.5120	2.576		
1c	-6.3384	-1.8289	4.5095	2.579		
12a	-6.5019	-1.5853	4.9166	2.416		
12b	-6.5275	-1.6218	4.9057	2.390		
12c	-6.5286	-1.6164	4.9122	2.389		

Compound	Q _N	Q _{N-1}	$\mathbf{f}_{\mathbf{k}}$	N_k	Q _N	Q _{N-1}	$\mathbf{f}_{\mathbf{k}}$	N_k
	Gas (N-site)				Gas (S-site)			
1a	-0.5645	-0.5276	0.0369	0.1221	-0.1861	0.2886	0.4746	1.5709
1b	-0.5638	-0.5297	0.0341	0.1080	-0.1823	0.2448	0.4272	1.3536
1c	-0.5638	-0.5289	0.0349	0.1108	-0.1821	0.2131	0.3952	1.2559
		Solution	(N-site)			Solution	(S-site)	
1a	-0.5554	-0.5227	0.0328	0.0860	-0.3219	0.3594	0.6813	1.7869
1b	-0.5544	-0.5217	0.0327	0.0841	-0.3166	0.3508	0.6674	1.7188
1c	-0.5544	-0.5210	0.0334	0.0861	-0.3170	0.3363	0.6534	1.6851
		Gas (N	I-site)		Gas (O-site)			
12a	-0.6028	-0.4954	0.1074	0.2930	-0.6107	-0.5160	0.0947	0.2583
12b	-0.6018	-0.5122	0.0896	0.2320	-0.6107	-0.5469	0.0639	0.1654
12c	-0.6017	-0.5210	0.0807	0.2098	-0.6108	-0.5546	0.0562	0.1460
		Solution	(N-site)			Solution	(O-site)	
12a	-0.6002	-0.4507	0.1495	0.3611	-0.6700	-0.5528	0.1172	0.2831
12b	-0.5996	-0.4503	0.1492	0.3567	-0.6679	-0.5512	0.1166	0.2788
12c	-0.5996	-0.4488	0.1508	0.3602	-0.6682	-0.5530	0.1152	0.2753

Table 2 The reactivity descriptors of the studied reactants.

Parameter	Calc.			Exp. ³³	Parameter	Calc.		Exp. ³⁴	
	2a	2b	2c		-	14a	14c		
R(1-2)	1.404	1.405	1.405	1.388	R(1-2)	1.397	1.397	1.415	
R(1-6)	1.383	1.383	1.383	1.366	R(1-6)	1.384	1.384	1.386	
R(1-19)	1.084	1.084	1.084		R(1-18)	1.083	1.083		
R(2-3)	1.383	1.383	1.383	1.382	R(2-3)	1.388	1.388	1.378	
R(2-20)	1.084	1.084	1.084		R(2-19)	1.084	1.084		
R(3-4)	1.407	1.406	1.406	1.404	R(3-4)	1.405	1.405	1.402	
R(3-21)	1.083	1.083	1.083		R(3-20)	1.079	1.079		
R(4-5)	1.409	1.406	1.406	1.397	R(4-5)	1.406	1.406	1.392	
R(4-7)	1.384	1.384	1.384	1.389	R(4-7)	1.398	1.398	1.379	
R(5-6)	1.402	1.402	1.402	1.398	R(5-6)	1.399	1.399	1.391	
R(5-10)	1.465	1.463	1.463	1.456	R(5-10)	1.472	1.471	1.478	
R(6-22)	1.083	1.083	1.083		R(6-21)	1.083	1.083		
R(7-8)	1.287	1.286	1.286	1.285	R(7-8)	1.395	1.393	1.372	
R(8-9)	1.389	1.398	1.398	1.400	R(7-28)	1.476	1.476		
R(8-12)	1.788	1.799	1.799	1.761	R(8-9)	1.403	1.405	1.414	
R(9-10)	1.425	1.431	1.431	1.402	R(8-27)	1.214	1.214	1.201	
R(9-13)	1.446	1.444	1.444	1.440	R(9-10)	1.409	1.410	1.383	
R(10-11)	1.214	1.214	1.214	1.219	R(9-12)	1.449	1.446	1.455	
R(12-28)	1.849	1.856	1.856		R(10-11)	1.213	1.213	1.213	
R(13-14)	1.392	1.393	1.393	1.382	R(12-13)	1.390	1.390	1.396	
R(13-18)	1.392	1.393	1.393	1.378	R(12-17)	1.390	1.390	1.391	
R(14-15)	1.392	1.391	1.392	1.384	R(13-14)	1.392	1.391	1.423	
R(14-23)	1.083	1.082	1.082		R(13-22)	1.083	1.083		
R(15-16)	1.393	1.391	1.391	1.355	R(14-15)	1.393	1.391	1.384	
R(15-24)	1.084	1.082	1.082		R(14-23)	1.084	1.082		
R(16-17)	1.394	1.391	1.391	1.373	R(15-16)	1.393	1.391	1.384	
R(16-25)	1.084	1.758	1.916		R(15-24)	1.084	1.917		
R(17-18)	1.391	1.391	1.391	1.393	R(16-17)	1.392	1.391	1.399	
R(17-26)	1.084	1.082	1.082		R(16-25)	1.084	1.082		
R(18-27)	1.083	1.082	1.083		R(17-26)	1.083	1.083		
R(28-29)	1.093	1.094	1.094		R(28-29)	1.092	1.092		
R(28-30)	1.088	1.090	1.090		R(28-30)	1.090	1.090		
R(28-31)	1.497	1.494	1.495		R(28-31)	1.505	1.505		
R(31-32)	1.087	1.087	1.087		R(31-32)	1.087	1.087		
R(31-33)	1.329	1.330	1.330		R(31-33)	1.329	1.329		
R(33-34)	1.084	1.084	1.084		R(33-34)	1.087	1.086		
R(33-35)	1.084	1.085	1.086		R(33-35)	1.084	1.084		
A(2-1-6)	119.8	120.0	120.0	119.9	A(2-1-6)	119.0	119.0	119.4	
A(2-1-19)	120.0	119.9	119.9		A(2-1-18)	120.5	120.5		
A(1-2-3)	120.8	120.7	120.7	120.9	A(1-2-3)	121.3	121.3	120.7	
A(1-2-20)	119.6	119.6	119.6		A(1-2-19)	119.9	119.9		
A(6-1-19)	120.2	120.1	120.1		A(6-1-18)	120.6	120.5		
A(1-6-5)	120.0	119.8	119.8	120.4	A(1-6-5)	120.6	120.6	120.1	
A(1-6-22)	121.8	121.8	121.8		A(1-6-21)	121.9	121.9		
A(3-2-20)	119.6	119.7	119.7		A(3-2-19)	118.8	118.8		
A(2-3-4)	120.2	119.9	120.0	119.8	A(2-3-4)	120.1	120.1	119.2	
A(2-3-21)	121.5	121.9	121.9		A(2-3-20)	119.3	119.3		
A(4-3-21)	118.3	118.1	118.1		A(4-3-20)	120.6	120.6		
A(3-4-5)	118.8	119.2	119.2	118.9	A(3-4-5)	118.6	118.6	120.3	
A(3-4-7)	119.2	118.8	118.8	118.6	A(3-4-7)	122.0	121.9	119.8	
A(5-4-7)	122.0	122.0	122.0	122.5	A(5-4-7)	119.4	119.5	119.9	
A(4-5-6)	120.5	120.4	120.4	120.2	A(4-5-6)	120.5	120.5	120.2	
A(4-5-10)	119.6	119.6	119.6		A(4-5-10)	120.8	120.9	119.4	
A(4-7-8)	118.5	119.0	119.0	117.3	A(4-7-8)	123.0	123.0	124.6	

Table 3 The calculated geometric parameters of the studied compounds (2a-c, 14aand 14c) using the B3LYP/6-311G(d,p) method.

A(6-5-10)	119.9	120.0	120.0	119.9	A(4-7-28)	121.3	121.3		
A(5-6-22)	118.3	118.4	118.4		A(6-5-10)	118.7	118.7	120.4	
A(5-10-9)	113.8	114.0	114.0	114.0	A(5-6-21)	117.4	117.5		
A(5-10-11)	125.7	125.2	125.2	126.0	A(5-10-9)	114.7	114.6	115.4	
A(7-8-9)	124.6	124.2	124.1	124.8	A(5-10-11)	124.2	124.3	123.6	
A(7-8-12)	120.7	115.9	115.9	122.0	A(8-7-28)	115.7	115.7		
A(9-8-12)	114.8	119.9	119.9	113.2	A(7-8-9)	116.4	116.4	115.2	
A(8-9-10)	121.5	121.1	121.1	121.5	A(7-8-27)	122.1	122.3	121.6	
A(8-9-13)	121.5	123.0	122.9	120.2	A(7-28-29)	108.8	108.8		
A(8-12-28)	100.4	102.9	103.0		A(7-28-30)	105.5	105.5		
A(10-9-13)	117.0	115.8	115.9	118.3	A(7-28-31)	113.5	113.4		
A(9-10-11)	120.6	120.8	120.8	120.0	A(9-8-27)	121.5	121.3	122.9	
A(9-13-14)	119.5	119.9	119.9	95.7	A(8-9-10)	125.7	125.7	125.4	
A(9-13-18)	119.7	120.0	120.0	119.6	A(8-9-12)	116.7	116.6	116.5	
A(12-28-29)	103.0	101.3	101.3		A(10-9-12)	117.7	117.7	118.1	
A(12-28-30)	107.4	110.3	110.3		A(9-10-11)	121.2	121.0	121.0	1
A(12-28-31)	112.7	113.2	113.2		A(9-12-13)	119.7	119.9	117.9	
A(14-13-18)	120.8	120.0	120.0	121.5	A(9-12-17)	119.6	119.7	119.0	
A(13-14-15)	119.5	120.2	120.2	118.6	A(13-12-17)	120.7	120.4	123.1	
A(13-14-23)	119.6	119.7	119.8		A(12-13-14)	119.6	120.1	116.8	
A(13-18-17)	119.5	120.2	120.2	118.6	A(12-13-22)	119.6	119.9		
A(13-18-27)	119.6	119.9	119.9		A(12-17-16)	119.5	120.1	118.4	
A(15-14-23)	120.9	120.1	120.0		A(12-17-26)	119.7	119.9		
A(14-15-16)	120.1	119.2	119.2	120.5	A(14-13-22)	120.8	120.1		
A(14-15-24)	119.7	120.6	120.4		A(13-14-15)	120.1	119.1	121.2	
A(16-15-24)	120.2	120.2	120.5		A(13-14-23)	119.7	120.5		
A(15-16-17)	120.1	121.2	121.2	121.2	A(15-14-23)	120.2	120.5		
A(15-16-25)	120.0	119.4	119.4		A(14-15-16)	120.0	121.3	120.0	
A(17-16-25)	120.0	119.4	119.4		A(14-15-24)	120.0	119.4		
A(16-17-18)	120.1	119.2	119.2	119.7	A(16-15-24)	120.0	119.3		
A(16-17-26)	120.2	120.2	120.5		A(15-16-17)	120.1	119.1	120.4	
A(18-17-26)	119.7	120.6	120.3		A(15-16-25)	120.2	120.5		
A(17-18-27)	120.9	119.9	119.9		A(17-16-25)	119.7	120.5		
A(29-28-30)	109.5	108.1	108.2		A(16-17-26)	120.8	120.1		
A(29-28-31)	111.5	111.1	111.1	$\langle \rangle$	A(29-28-30)	108.2	108.1		
A(30-28-31)	112.2	112.2	112.2		A(29-28-31)	111.4	111.5		
A(28-31-32)	116.0	116.0	116.0		A(30-28-31)	109.2	109.2		
A(28-31-33)	124.2	124.0	124.0		A(28-31-32)	115.2	115.2		
A(32-31-33)	119.8	120.1	120.1		A(28-31-33)	124.5	124.5		
A(31-33-34)	121.4	121.5	121.5		A(32-31-33)	120.2	120.2		
A(31-33-35)	121.5	121.7	121.7		A(31-33-34)	121.8	121.8		
A(34-33-35)	117.2	116.8	116.8		A(31-33-35)	121.6	121.6		
					A(34-33-35)	116.6	116.6		

Atom	<u>2</u> a		2b	2c	Atom	14a	14c
C	1	-0.2091	-0.1988	-0.1989	C1	-0.2213	-0.2201
C	2	-0.1703	-0.1712	-0.1712	C2	-0.1536	-0.1522
C	3	-0.1995	-0.1871	-0.1871	C3	-0.2455	-0.2447
C	4	0.1876	0.1750	0.1751	C4	0.2092	0.2093
C	5	-0.1797	-0.1710	-0.1711	C5	-0.1799	-0.1811
C	6	-0.1441	-0.1465	-0.1464	C6	-0.1308	-0.1300
N	7	-0.5683	-0.5069	-0.5070	N7	-0.4598	-0.4590
C	8	0.3672	0.3529	0.3526	C8	0.8486	0.8483
N	[9	-0.5017	-0.5031	-0.5032	N9	-0.5190	-0.5199
C	10	0.6919	0.6914	0.6916	C10	0.6958	0.6960
0	11	-0.5943	-0.5960	-0.5960	011	-0.5869	-0.5864
S	12	0.2530	0.2230	0.2239	C12	0.1667	0.1649
C	13	0.1386	0.1486	0.1499	C13	-0.1846	-0.1667
C	14	-0.1856	-0.1779	-0.1784	C14	-0.1880	-0.2179
C	15	-0.1885	-0.2227	-0.2226	C15	-0.1922	-0.0752
C	16	-0.1861	-0.0106	-0.0758	C16	-0.1879	-0.2178
C	17	-0.1880	-0.2207	-0.2207	C17	-0.1852	-0.1675
C	18	-0.1804	-0.1717	-0.1730	H18	0.2074	0.2082
Н	19	0.2046	0.2059	0.2059	H19	0.2044	0.2052
H	20	0.2031	0.2052	0.2052	H20	0.2147	0.2154
H	21	0.2114	0.2181	0.2181	H21	0.2281	0.2285
H	22	0.2238	0.2249	0.2249	H22	0.2098	0.2157
H	23	0.2151	0.2230	0.2233	H23	0.2032	0.2209
H	24	0.2055	0.2223	0.2226	H24	0.2020	0.0552 ^b
H	25	0.2037	-0.0030^{a}	0.0612 ^b	H25	0.2032	0.2209
H	26	0.2054	0.2226	0.2229	H26	0.2098	0.2159
H	27	0.2151	0.2210	0.2210	O27	-0.6247	-0.6247
C	28	-0.5038	-0.5008	-0.5011	C28	-0.2108	-0.2107
H	29	0.2185	0.2253	0.2253	H29	0.1969	0.1976
H.	30	0.2375	0.2120	0.2124	H30	0.2449	0.2452
C.	31	-0.1994	-0.1969	-0.1969	C31	-0.1807	-0.1820
H.	32	0.1897	0.1997	0.1996	H32	0.1988	0.1988
C.	33	-0.3462	-0.3571	-0.3571	C33	-0.3641	-0.3626
H.	34	0.1868	0.1928	0.1927	H34	0.1781	0.1784
H.	35	0.1866	0.1782	0.1783	H35	0.1933	0.1939
^a Cl ^b	Br						
	~						
)					
	X						

Table 4 The calculated natural atomic charges of the studied compounds (2a-c, 14a and **14c**) using the B3LYP/6-311G(d,p) method.

Table 5 The dipole moments components μ (D), polarizability components (a.u.) and the average polarizability α_0 of the studied compounds.

Parameter	2a	2b	2c	14a	14c
μ _x	0.048	1.353	1.285	3.180	-5.267
μ _y	2.132	1.380	1.252	-0.666	0.703
μ _z	-0.215	0.594	0.578	-0.200	-0.177
μ	2.1438	2.0218	1.8848	3.2555	5.3171
axx	309.146	341.321	354.458	280.111	333.474
α_{xy}	7.374	-10.354	-19.983	8.181	6.630
$\alpha_{\rm vv}$	218.591	192.251	197.730	188.959	194.517
a _{xz}	-5.240	-2.272	-4.388	-0.499	-1.001
$\alpha_{\rm vz}$	-2.834	-18.986	-19.079	2.072	-5.168
azz	146.218	180.215	183.689	136.071	142.406
α_0	224.652	237.929	245.292	201.714	223.466

Table 6 The calculated chemical potential (μ), electronegativity (χ), global hardness (η), softness (S) and global electrophilicity index (ω) (in eV) for the studied compound.

Descriptor	2a	2b	2c	14a	14c
Ι	6.1602	6.4652	6.4554	6.5017	6.6260
А	1.3394	1.7271	1.7285	1.5723	1.7037
χ	3.7498	4.0962	4.0919	4.0370	4.1649
μ	-3.7498	-4.0962	-4.0919	-4.0370	-4.1649
η	2.4104	2.3690	2.3635	2.4647	2.4612
S	0.2074	0.2111	0.2116	0.2029	0.2032
ω	2.9167	3.5412	3.5423	3.3061	3.5240

Table 7 The most important electronic transition bands calculated using the TD-DFT

method for the studied compounds.

		2a
295.4	0.0559	H→L (87%)
273.0	0.1968	H→L+1 (75%)
217.9	0.1669	H-5→L+1 (25%), H-4→L+1 (37%)
216.0	0.1903	H-5→L+2 (18%), H-3→L (23%), H-2→L+2 (10%)
		2b
311.6	0.0609	$H-1 \rightarrow L (17\%), H \rightarrow L (69\%)$
280.4	0.2085	$H-1 \rightarrow L (51\%), H \rightarrow L+1 (25\%)$
222.2	0.2648	H-7→L (11%), H-3→L+1 (26%), H-1→L+4 (24%)
218.8	0.2171	$H-3 \rightarrow L+1 (15\%), H-1 \rightarrow L+4 (46\%)$
		2c
311.8	0.0629	$H-1 \rightarrow L (15\%), H \rightarrow L (70\%)$
281.2	0.2217	$H-1 \rightarrow L (51\%), H \rightarrow L+1 (28\%)$
		H-7→L (18%), H-6→L (10%), H-4→L+2 (12%), H-3→L+1 (11%), H-2→L+3
222.7	0.1765	(13%)
219.4	0.2112	H-3→L+1 (11%), H-2→L+2 (13%), H-1→L+5 (46%)
		14a
289.1	0.0701	H→L (85%)
214.2	0.4694	H-7 \rightarrow L (21%), H-4 \rightarrow L (21%), H \rightarrow L+1 (16%)
210.6	0.2037	H-7 \rightarrow L (19%), H-2 \rightarrow L+1 (45%)
192.1	0.0875	H-8→L (12%), H-7→L+1 (16%), H-6→L+1 (26%), H→L+5 (13%)
180.4	0.1632	H-2→L+5 (55%)
		14c
289.6	0.0736	H→L (85%)
221.3	0.4203	$H-6 \rightarrow L (10\%), H-1 \rightarrow L+2 (57\%)$
212.9	0.1044	H-8 \rightarrow L (48%), H-3 \rightarrow L+1 (12%)
211.1	0.2767	H-8 \rightarrow L (31%), H-5 \rightarrow L (10%)
204.8	0.1063	H-10→L (16%), H-4→L+1 (32%), H-2→L+1 (10%), H→L+6 (14%)

1a: X=H 1b: X=Cl 1c: X=Br

 $\xrightarrow{\text{RX'}}_{\text{K}_2\text{CO}_3, \text{ DMF}}$

Х

2a: X=H, R= $CH_2CH=CH_2$ 2b: X=CI, R= $CH_2CH=CH_2$ 2c: X=Br, R= $CH_2CH=CH_2$ 3a: X=H, R= CH_2COPh 3b: X=CI, R= CH_2COPh 3c: X=Br, R= CH_2COPh 4a: X=H, R= $CH_2CH_2CH_2OH$ 4b: X=CI, R= $CH_2CH_2CH_2OH$ 4c: X=Br, R= $CH_2CH_2CH_2OH$ 5a: X=H, R= CH_2COOEt 5b: X=CI, R= CH_2COOEt 5c: X=Br, R= CH_2COOEt

Scheme 1

Fig. 1 The optimized molecular structures of the studied compounds (**2a-c**, **14a** and **14c**) calculated using B3LYP/6-311G(d,p) method.

Fig. 2The ground state isodensity surface plots for the frontier molecular orbitals.

Fig. 3The calculated electronic spectra of the studied compounds.

14a

14c

Fig. 4 Molecular Electrostatic potentials (MEP) mapped on the electron density surface calculated by the DFT/B3LYP method.

¹H NMR (2b) 9.0 y = 0.7564x + 1.598 Experimental chemical shifts (ppm) 8.0 R² = 0.9765 7.0 6.0 5.0 4.0 3.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 Calculated chemical shifts (ppm)

Fig. 5 Correlations between the experimental and calculated chemical shifts using the GIAO method for compound **2a**.

Highlights

- A new series of N- and S-alkylated quinazolines derivatives were synthesized.
- The 2-mercapto-3H-quinazolin-4-one, **1** goes via the S-alkylation.
- The quinazolin-2,4-dione, **12** favored the N-alkylation.
- Chemical reactivity and site selectivity of the reactants 1 and 12 were presented.
- The molecular structures, electronic and spectroscopic properties of the products were predicted.