An Efficient Total Synthesis of Mulberrofuran B and L

Cheol Gi Kim and Jong-Gab Jun*

Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 200-702, Korea. *E-mail: jgjun@hallym.ac.kr Received February 22, 2015, Accepted May 18, 2015, Published online August 17, 2015

An efficient approach has been developed for the synthesis of mulberrofuran B and L from 2,4-dihydroxybenzaldehyde and 5-bromoresorcinol. The key steps of the synthesis are neutral Al₂O₃-mediated regioselective geranylation, Ramirez *gem*-dibromoolefination, and the Suzuki coupling.

Keywords: 2,4-Dihydroxybenzaldehyde, Regioselective geranylation, Miyaura borylation, Ramirez *gem*-dibromoolefination, Suzuki coupling, Mulberrofuran

Introduction

Heterocyclic structures have significant roles in the biological activities of pharmaceuticals. Benzofurans and their derivatives in particular are important scaffolds for drug development.¹

Several natural and non-natural 2-substituted benzofurans have been investigated as antifungal,² antioxidant,³ antiinflammatory,⁴ antimicrobial,⁵ peroxisome proliferatoractivated receptor (PPAR- δ) agonists,⁶ anti-HIV, antitumor and antiplatelet agents.⁷ Some benzofurans showed pesticidal and insecticidal activity.⁸ In supramolecular chemistry, extended molecular frameworks of benzofurans can be used as bowl-shaped hosts.⁹ Recently, ¹⁸F and ^{99m}Tc-labeled benzofuran derivatives were tested by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging, respectively, for β -amyloid plaques in Alzheimer's disease.¹⁰ Their wide range of biological and pharmacological properties has triggered extensive and enduring efforts toward the syntheses of these important heterocyclic compounds.

Mulberrofuran B and L (Figure 1), 2-arylbenzofuran derivatives isolated from the root bark of the cultivated mulberry tree (Japanese name "Rosô" a cultivated variety of *Morus lhou* (ser.) koidz.) displayed moderate cytotoxic activity.¹¹ Previously, Mann *et al.* developed a method for the synthesis of mulberrofuran B that utilizes chromium and toxic tin reagents.¹²

In continuation of our work¹³ on the synthesis of bioactive natural products and their derivatives, herein we wish to describe a straightforward synthesis of mulberrofuran B and L utilizing Al₂O₃-mediated regioselective geranylation, Ramirez *gem*-dibromoolefination, and the Suzuki coupling as the key steps.

Results and Discussion

Retrosynthetic approach for mulberrofuran B and L synthesis is depicted in Scheme 1. We envisaged that the target molecules could be achieved from intermediates **3**, **4**, and **5** by Suzuki coupling reaction, in which **3** and **4** could easily be prepared by means of regioselective geranylation of 2,4-dihydroxybenzaldehyde followed by Ramirez *gem*-dibromoolefination and intramolecular cyclization sequence. Intermediate **5** could be obtained from 5-bromoresorcinol by Miyaura borylation.

Accordingly, we commenced the synthesis from 2,4-dihydroxybenzaldehyde (9). As shown in Scheme 2, neutral alumina (Al₂O₃)-mediated regioselective geranylation of 9 with 1-bromo-3-methyl-2-butene gave the geranylated aldehyde 10.¹⁴ Treatment of about half portion of 10 with MeI and the remaining portion with chloromethyl ethyl ether in acetone in the presence of K₂CO₃ afforded 6 and 7 in high yields, respectively. 5-Bromoresorcinol (8) was protected as its ethoxy methylene ether 11 in 79% yield using chloromethyl ethyl ether in the presence of *N*,*N*-diisopropylethylamine (DIEA). Miyaura borylation¹⁵ of compound 11 using bis(pinacolato)diboron, KOAc, and catalytic amount of PdCl₂(dppf) afforded 5 in 95% yield, which is a common key intermediate for the synthesis of mulberrofuran B and L.

Next, compounds 6 and 7 were subjected to Ramirez gemdibromolefination.¹⁶ Preformation of the active PPh₃CBr₂ vlide from PPh₃ and CBr₄ in CH₂Cl₂ at 0 °C, followed by slow addition of NEt₃ and aldehyde 6, provided the gem-dibromoolefin 12 while with the aldehyde 7, the corresponding gem-dibromoolefin 13 was obtained. A mild and ligand-free copper-catalyzed cross-coupling of compounds 12 and 13 ensued 2-bromobenzofurans 3 and 4 and the yields were 89 and 85%, respectively.¹⁷ Compounds 3 and 4 were then subjected to Suzuki coupling¹⁸ reaction with compound 5 using K_2CO_3 (2.0M aq. solution) as base and catalytic Pd(PPh₃)₄ in THF to furnish 2-aryl benzofurans 14 and 15, respectively. Finally, deprotection of 2-aryl benzofurans 14 and 15 using Dowex resin in MeOH at room temperature gave the target molecules, mulberrofuran B (1) and L (2) in 67 and 77%, respectively.

In conclusion, we have developed an efficient approach for the synthesis of mulberrofuran B (1) and L (2). Neutral Al_2O_3 -mediated regioselective geranylation, Ramirez *gem*dibromoolefination, and the Suzuki coupling are the key

Correction added on 01 October 2015, after first online publication: ISSN (Print) has been corrected.

transformations of the present method. Application of the present method for the synthesis of other prenyl (geranyl)-substituted natural 2-aryl benzofurans is in progress and will be disclosed in due course.

Experimental

All chemicals were purchased from Sigma-Aldrich (Munich, Germany) and Alfa Aesar Chemicals (Lancashire, UK) and were used without further purification unless noted otherwise. ¹H-NMR spectra were recorded at Varian Mercury-300 MHz FT-NMR (Varian, Palo Alto, CA, USA) and 75 MHz for ¹³C, with the chemical shift (δ) reported in parts per million (ppm) relative to TMS and the coupling constants (*J*) quoted in Hertz. CDCl₃ was used as a solvent and an internal standard. Mass spectra were recorded using a JMS-700 (JEOL) spectrometer (JEOL Ltd, Tokyo, Japan). Melting points were measured on a MEL-TEMP II apparatus (Laboratory Devices, Inc Holliston MA, USA) and were uncorrected. Thin-layer chromatography (TLC) was performed on DC-Plastikfolien 60, F₂₅₄ (layer thickness 0.2 mm; Merck, Darmstadt, Germany) plastic-

Figure 1. Structures of mulberrofuran B (1) and L (2).

1R = Me, R' = geranyl; mulberrofuran B2 R = H,R' = geranyl; mulberrofuran L

backed *silica* gel plates and visualized by UV light (254 nm) or staining with *p*-anisaldehyde.

3-(3,7-Dimethylocta-2,6-dien-1-yl)-2,4-dihydroxybenzaldehyde (10). To a stirred suspension of 2,4-dihydroxybenzaldehyde, 9 (0.2 g, 1.45 mmol) and neutral Al₂O₃ (10.0 g) in diethyl ether (100 mL) was added 1-bromo-3-methyl-2butene under nitrogen atmosphere and the suspension was stirred for 3 days at room temperature. Al₂O₃ was filtered off, washed with ether (50 mL), and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (EtOAc/hexane = 1/5) to yield the product **10** (0.138 g, 35%) white solid. $R_f = 0.32$ (EtOAc/hexane = 1/3); mp as 119–121 °C; ¹H NMR (300 MHz, CDCl₃) δ 11.75 (1H, s), 9.65 (1H, s), 7.29 (1H, d, J=8.7 Hz), 6.46 (1H, d, J=8.7 Hz), 6.35 (1H, s), 5.25 (1H, t, J=6.9 Hz), 5.03 (1H, t, J= 6.5 Hz), 3.45 (2H, d, J=6.9 Hz), 2.08 (4H, br s), 1.81 (3H, s), 1.66 (3H, m), 1.58 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 194.4, 162.5, 161.5, 139.9, 133.4, 132.1, 123.5, 120.5, 115.0, 113.5, 109.0, 39.7, 26.4, 25.8, 21.4, 17.8, 16.4.

3-(3,7-Dimethylocta-2,6-dien-1-yl)-2-hydroxy-4-methoxybenzaldehyde (6). To a stirred suspension of 10 (0.465 g, 1.69 mmol) and K₂CO₃ (0.281 g, 2.03 mmol) in acetone (15 mL) were added methyl iodide (0.13 mL, 2.03 mmol) under nitrogen atmosphere at room temperature. The suspension was stirred for 8 h at room temperature. Reaction mixture was filtered through celite pad, washed with acetone (30 mL), and the filtrate was concentrated in vacuo. EtOAc (30 mL) and H₂O (20 mL) were added to the residue and two layers separated. The aqueous layer was extracted with EtOAc $(2 \times 30 \text{ mL})$. The combined organic layer was washed with brine $(2 \times 40 \text{ mL})$, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude was purified by column chromatography (EtOAc/hexane = 1/6) to yield the product 6 (0.459 g, 94%) as a colorless liquid. $R_f = 0.52$ (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ 11.40 (1H, s), 9.69 (1H, s),

Scheme 1. Retrosynthetic analysis for the synthesis of mulberrofuran B and L.

Scheme 2. Reagents and conditions: (a) geranyl bromide, neutral Al₂O₃, ether, room temperature (rt), 72 h, 35%; (b) MeI, K₂CO₃, acetone, rt, 8 h, 94%; (c) chloromethyl ethyl ether, K₂CO₃, TBAI, acetone, rt, overnight, 72%; (d) chloromethyl ethyl ether, *N*,*N*-diisopropylethylamine, CH₂Cl₂, rt, 6 h, 79%; (e) bis(pinacolato)diboron, KOAc, PdCl₂(dppf), 1,4-dioxane, 80 °C, 11 h, 95%; (f) CBr₄, PPh₃, NEt₃, CH₂Cl₂, 0 °C, 30 min, then rt, 1 h, 45%; (12), 46% (13); (g) K₃PO₄, CuI, THF, 80 °C, 11 h, 89% (3), 85% (4); (h) 5, K₂CO₃ (2.0 M aq. Solution), Pd(PPh₃)₄, THF, 80 °C, 48 h, 50% (14), 60% (15); (i) Dowex resin, MeOH, rt, 3 days, 67% (1), 77% (2).

7.35 (1H, d, J = 8.7 Hz), 6.54 (1H, d, J = 8.7 Hz), 5.17 (1H, t, J = 7.2 Hz), 5.04 (1H, t, J = 6.5 Hz), 3.90 (3H, s), 3.34 (2H, d, J = 7.2 Hz), 2.03–1.98 (4H, m), 1.77 (3H, s), 1.63 (3H, s), 1.56 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 194.5, 163.9, 160.6, 135.4, 133.5, 131.1, 124.2, 121.3, 117.1, 115.5, 103.0, 55.9, 39.8, 26.7, 25.7, 21.4, 17.7, 16.2.

3-(3,7-Dimethylocta-2,6-dien-1-yl)-4-(ethoxymethoxy)-2-hydroxybenzaldehyde (7). To a stirred suspension of 10 (0.5 g, 1.82 mmol) and K₂CO₃ (0.655 g, 4.74 mmol) in acetone (20 mL) were added chloromethyl ethyl ether (0.21 mL, 2.19 mmol) and tetrabutylammonium iodide (TBAI) (0.034 g, 0.09 mmol) under nitrogen atmosphere at room temperature. The suspension was stirred for overnight at room temperature. Reaction mixture was filtered through celite pad, washed with acetone (40 mL), and the filtrate was concentrated in vacuo. EtOAc (30 mL) and H₂O (20 mL) were added to the residue and two layers separated. The aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine $(2 \times 40 \text{ mL})$, dried over anhydrous Na₂SO₄, and was concentrated in vacuo. The crude was purified by column chromatography (EtOAc/hexane = 1/ 8) to yield the product 7 (0.436 g, 72%) as a colorless liquid. $R_{\rm f}$

= 0.42 (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ 11.44 (1H, s), 9.69 (1H, s), 7.32 (1H, d, *J* = 8.7 Hz), 6.76 (1H, d, *J* = 8.7 Hz), 5.31 (2H, s), 5.18 (1H, t, *J* = 7.2 Hz), 5.04 (1H, t, *J* = 6.5 Hz), 3.71 (2H, q, *J* = 6.9 Hz), 3.36 (6H, s), 2.20–1.88 (4H, m), 1.78 (3H, s), 1.63 (3H, s), 1.56 (3H, s), 1.21 (2H, t, *J* = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 194.7, 161.6, 160.9, 135.4, 133.1, 131.2, 124.2, 121.3, 117.8, 115.8, 105.8, 92.6, 64.7, 39.8, 26.7, 25.8, 21.6, 17.7, 16.2, 15.2.

1-Bromo-3,5-bis(ethoxymethoxy)benzene (11). To a stirred solution of 5-bromoresocinol, **8** (0.809 g, 4.28 mmol) in CH₂Cl₂ (15 mL) was added DIEA (2.98 mL, 17.12 mmol) under nitrogen atmosphere at room temperature. After stirring for 15 min, chloromethyl ethyl ether (0.21 mL, 2.19 mmol) was added dropwise and the mixture was stirred for 6 h at room temperature. After completion of the reaction, H₂O (10 mL) was added and two layers separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 40 mL). The combined organic layer was washed with brine (2 × 30 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude was purified by column chromatography (EtOAc/hexane = 1/6) to yield the product **11** (1.03 g, 79%) as a colorless liquid. *R*_f = 0.7 (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ

7.08 (2H, d, J = 2.4 Hz), 6.82 (1H, t, J = 2.4 Hz), 5.21 (4H, s), 3.72 (4H, q, J = 6.9 Hz), 1.32 (12H, s), 1.22 (6H, t, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 115.3, 108.2, 93.1, 83.8, 64.3, 24.9, 15.2.

2-(3,5-Bis(ethoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1.3.2-dioxaborolane (5). To a 15 mL sealed tube equipped with a magnetic stir bar were added compound 11 (0.1 g, 0.33 mmol), bis(pinacolato)diboron (0.125 g, 0.49 mmol), KOAc (0.096 g, 0.98 mmol), and 1,4-dioxane (2 mL), and the mixture was degassed for 3 min. PdCl₂(dppf) (0.026 g, 0.04 mmol) was added to the mixture and degassed for another 3 min. The reaction was then stirred at 80 °C for 11 h. Solvent was removed under reduced pressure and the crude was purified by column chromatography (EtOAc/hexane = 1/7) to yield the product 5 (0.109 g, 95%) as a colorless liquid. $R_{\rm f}$ = 0.65 (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ 7.08 (2H, d, J = 2.4 Hz), 6.82 (1H, t, J = 2.4 Hz), 5.21 (4H, s), 3.72 (4H, q, J = 6.9 Hz), 1.32 (12H, s) 1.22 (6H, t, t)J = 6.9 Hz; ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 115.3, 108.2, 93.1, 83.8, 64.3, 24.9, 15.2.

6-(2,2-Dibromovinyl)-2-(3,7-dimethylocta-2,6-dien-1yl)-3-methoxyphenol (12). To a stirred solution of PPh₃ (2.281 g, 8.7 mmol) in CH_2Cl_2 (8.7 mL) at 0 °C was added a solution of CBr₄ (1.443 g, 4.35 mmol) in CH₂Cl₂ (4.5 mL). After 10 min, NEt₃ (1.21 mL, 8.7 mmol) was added dropwise and stirred for an additional 5 min, after which a solution of compound 6 (0.417 g, 1.45 mmol) in CH₂Cl₂ (1.5 mL) was added dropwise over 10 min. The internal temperature was maintained below 10 °C, over the addition of all reagents. The vessel was stirred for an additional 30 min at 0 °C, after which it was allowed to warm to room temperature and stirred for an additional 1 h. The reaction was quenched by addition of saturated aqueous NH₄Cl solution. The phases were then separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 40 mL). The combined organic layer was washed with brine $(2 \times 30 \text{ mL})$, dried over anhydrous Na₂SO₄ and was concentrated in vacuo. The crude was purified by column chromatography (EtOAc/hexane = 1/5) to yield the product 12(0.289 g, 45%) as a pale orange color liquid. $R_{\rm f} = 0.59$ (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, $CDCl_3$) δ 7.55 (1H, d, J = 8.7 Hz), 7.53 (1H, s), 6.49 (1H, d, J= 8.7 Hz, 5.70 (1H, s), 5.20 (1H, t, J = 7.2 Hz), 5.03 (1H, t, J =6.5 Hz), 3.81 (3H, s), 3.43 (2H, d, J = 7.2 Hz), 2.17–2.04 (4H, m), 1.81 (3H, s), 1.69 (3H, s), 1.60 (3H, s); ¹³C NMR (75 MHz, CDCl₃) & 157.7 153.3, 139.5, 132.2, 132.1, 126.9, 123.5, 121.2, 116.4, 114.4, 102.5, 88.2, 55.7, 39.7, 26.3, 25.8, 22.4, 17.8, 16.2.

6-(2,2-Dibromovinyl)-2-(3,7-dimethylocta-2,6-dien-1-yl)-3-(ethoxymethoxy)phenol (13). Following the procedure used for compound **12** preparation, where compound **7** (222 mg, 0.67 mmol) was used instead of **6**. The crude was purified by column chromatography (EtOAc/hexane = 1/5) to yield the product **12** (0.15 g, 46%) as a pale orange color liquid. R_f = 0.55 (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ 7.52 (1H, s), 7.50 (1H, d, J = 8.7 Hz), 6.70 (1H, d, J = 8.7 Hz), 5.67 (1H, s), 5.23 (2H, s), 5.21 (1H, t, J = 7.2 Hz), 5.03

(1H, t, J = 6.5 Hz), 3.72 (2H, q, J = 6.9 Hz), 3.45 (2H, d, J = 7.2 Hz), 2.17–1.99 (4H, m), 1.82 (3H, s), 1.68 (3H, s), 1.60 (3H, s), 1.23 (3H, t, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 155.6, 153.2, 139.5, 132.2, 132.1, 126.9, 123.4, 121.2, 117.1, 115.5, 106.1, 93.4, 88.7, 64.5, 39.7, 26.3, 25.8, 22.7, 17.8, 16.2, 15.2.

2-Bromo-7-(3,7-dimethylocta-2,6-dien-1-yl)-6-methoxybenzofuran (3). To a 15 mL sealed tube equipped with a magnetic stir bar were added the gem-dibromoolefin 12 (0.222 g, 0.50 mmol), CuI (0.004 g, 0.02 mmol), and K₃PO₄ (0.212 g, 1.00 mmol). The tube was flushed with nitrogen for 3 min, after which THF (2.5 mL) was added at room temperature. The mixture was then stirred at 80 °C for 11 h, after which it was allowed to cool to room temperature. The contents were filtered over a pad of celite and washed with copious amounts of Et₂O. The filtrate was concentrated under reduced pressure. The crude was purified by column chromatography (EtOAc/hexane = 1/8) to yield the product **3** (0.161 g, 89%) as a colorless liquid. $R_f = 0.59$ (EtOAc/hexane = 1/10); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.23 (1\text{H}, \text{d}, J = 7.8 \text{ Hz}), 6.83 (1\text{H}, \text{d}, J =$ 7.8 Hz), 6.60 (1H, s), 5.29 (1H, t, J = 7.5 Hz), 5.04 (1H, t, J =6.9 Hz), 3.86 (3H, s), 3.56 (2H, d, J = 6.9 Hz), 2.09–1.92 (4H, m), 1.81 (3H, s), 1.62 (3H, s), 1.56 (3H, s); ¹³C NMR (75 MHz, CDCl₃) & 155.0, 154.6, 135.6, 131.2, 126.4, 124.2, 122.3, 121.4, 116.8, 113.8, 108.1, 108.0, 56.7, 39.8, 26.7, 25.7, 22.7, 17.7, 16.2.

2-Bromo-7-(3,7-dimethylocta-2,6-dien-1-yl)-6-(ethoxymethoxy)benzofuran (4). Following the procedure used for compound **3** preparation, where compound **13** (0.19 g, 0.39 mmol) was used instead of **12**. The crude was purified by column chromatography (EtOAc/hexane = 1/8) to yield the product **4** (0.135 g, 85%) as a colorless liquid. $R_{\rm f}$ = 0.65 (EtOAc/hexane = 1/10); ¹H NMR (300 MHz, CDCl₃) δ 7.22 (1H, d, *J* = 8.7 Hz), 7.04 (1H, d, *J* = 8.7 Hz), 6.61 (1H, s), 5.28 (1H, t, *J* = 7.2 Hz), 5.23 (2H, s), 5.03 (1H, t, *J* = 6.5 Hz), 3.74 (2H, q, *J* = 6.9 Hz), 3.57 (2H, d, *J* = 7.2 Hz), 2.10–1.92 (4H, m), 1.82 (3H, s), 1.61 (3H, s), 1.55 (3H, s), 1.23 (3H, t, *J* = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 154.9, 152.3, 135.6, 131.2, 126.6, 124.1, 123.0, 121.4, 116.9, 114.9, 111.8, 108.1, 94.2, 64.3, 39.8, 26.7, 25.7, 23.0, 17.7, 16.2, 15.2.

2-(3,5-Bis(ethoxymethoxy)phenyl)-7-(3,7-dimethylocta-2,6-dien-1-yl)-6-methoxybenzofuran (14). To a 15 mL sealed tube equipped with a magnetic stir bar were added compound 3 (0.033 g, 0.09 mmol), compound 5 (0.044 g, 0.12 mmol), 2.0 M K₂CO₃ aqueous solution (0.13 mL), and THF (1 mL), and the mixture was degassed for 3 min. Pd(PPh₃)₄ (0.01 g, 0.01 mmol) was added and degassed for another 3 min. The reaction mixture was then stirred at 80 °C for 48 h. Solvent was removed under reduced pressure. The crude was purified by column chromatography (EtOAc/hexane = 1/8) to yield the product 14 (0.023 g, 50%) as a colorless liquid. R_f = 0.51 (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ 7.30 (1H, d, *J* = 9.0 Hz), 7.16 (2H, d, *J* = 2.4 Hz), 6.92 (1H, s), 6.85 (1H, d, *J* = 9.0 Hz), 6.72 (1H, t, *J* = 2.4 Hz), 5.40 (1H, t, *J* = 7.2 Hz), 5.28 (4H, s), 5.07 (1H, t, J = 6.3 Hz), 3.92 (3H, s), 3.79 (4H, q, J = 6.9 Hz), 3.68 (2H, d, J = 7.2 Hz), 2.12–1.97 (4H, m), 1.93 (3H, s), 1.62 (3H, s), 1.56 (3H, s), 1.28 (6H, t, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) & 158.5, 155.0, 154.6, 154.1, 135.2, 132.6, 131.1, 124.3, 122.7, 121.8, 117.7, 113.8, 108.0, 106.0, 104.5, 101.9, 93.2, 64.4, 56.7, 39.8, 26.8, 25.7, 22.9, 17.7, 16.3, 15.2.

2-(3,5-Bis(ethoxymethoxy)phenyl)-7-(3,7-dimethylocta-2,6-dien-1-yl)-6-(ethoxymethoxy)benzofuran (15). Following the procedure used for compound 14 preparation, where compound 4 (0.03 g, 0.07 mmol) was used instead of 3. The crude was purified by column chromatography (EtOAc/hexane = 1/8) to yield the product 15 (0.024 g, 60%) as a colorless liquid. $R_{\rm f} = 0.57$ (EtOAc/hexane = 1/5); ¹H NMR (300 MHz, CDCl₃) δ 7.29 (1H, d, J = 8.4 Hz), 7.15 (2H, d, J = 2.4 Hz), 7.05 (1H, d, J = 8.4 Hz), 6.92 (1H, s), 6.71 (1H, t, J = 2.4Hz), 5.37 (1H, t, J = 7.2 Hz), 5.26 (2H, s), 5.25 (4H, s), 5.03 (1H, t, J = 6.5 Hz), 3.75 (4H, q, J = 7.2 Hz), 3.74 (2H, q, J = 7.2 Hz), 3.66 (2H, d, J=7.2 Hz), 2.09–1.93 (4H, m), 1.89 (3H, s), 1.59 (3H, s), 1.52 (3H, s), 1.25 (9H, t, J = 7.2 Hz);¹³C NMR (75 MHz, CDCl₃) δ 158.6, 154.8, 154.0, 152.6, 135.3, 132.5, 131.2, 124.2, 123.4, 121.7, 117.9, 114.8, 111.6, 106.0, 104.6, 102.0, 94.3, 93.2, 64.4, 39.8, 26.7, 25.7, 23.1, 17.7, 16.4, 15.2.

5-(7-(3,7-Dimethylocta-2,6-dien-1-yl)-6-methoxybenzofuran-2-yl)benzene-1,3-diol; mulberrofuran B (1). To a stirred solution of compound 14 (0.014 g, 0.03 mmol) in MeOH (2 mL) was added Dowex resin (40 mg) under nitrogen atmosphere and the mixture was stirred at room temperature for 3 days. The resin was filtered, washed with EtOAc (10 mL), and the filtrate was concentrated in vacuo. The crude was purified by column chromatography (EtOAc/ hexane = 1/3) to yield the product 1 (0.007 g, 67%) as a white solid. $R_f = 0.15$ (EtOAc/hexane = 1/5); mp 65–67 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.31 (1H, d, J = 8.4 Hz), 6.89 (1H, s), 6.88 (2H, d, J = 2.4 Hz), 6.86 (1H, d, J = 8.4 Hz),6.31 (1H, t, J = 2.4 Hz), 5.38 (1H, t, J = 6.9 Hz), 5.04 (1H, t, J = 6.3 Hz), 3.89 (3H, s), 3.64 (2H, d, J = 6.9 Hz), 2.09–1.93 (4H, m), 1.88 (3H, s), 1.60 (3H, s), 1.54 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 156.9, 155.0, 154.2, 154.1, 135.3, 133.0, 131.3, 124.2, 122.6, 121.8, 117.8, 113.7, 108.0, 104.1, 102.5, 102.0, 56.8, 39.8, 26.7, 25.7, 23.1, 17.8, 12.4; EI-MS m/z 392 (M⁺, base), 269, 207, 165, 123. HRMS (EI) calcd. for C₂₅H₂₈O₄ M⁺ 392.1988, found 392.1987.

5-(7-(3,7-Dimethylocta-2,6-dien-1-yl)-6-methoxybenzofuran-2-yl)benzene-1,3-diol (mulberrofuran L) (2). Following the procedure used for compound 1 preparation, where compound 15 (0.02 g, 0.04 mmol) was used instead of 14. The crude was purified by column chromatography (EtOAc/hexane = 1/5) to yield the product 2 (0.01 g, 77%) as a white solid. $R_{\rm f}$ = 0.12 (EtOAc/hexane = 1/5); mp 148–151 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.23 (1H, d, *J* = 8.4 Hz), 6.87 (2H, d, *J* = 2.4 Hz), 6.84 (1H, s), 6.76 (1H, d, *J* = 8.4 Hz), 6.32 (1H, t, *J* = 2.4 Hz), 5.40 (4H, br s), 5.04 (1H, t, *J* = 6.3 Hz), 3.71 (2H, d, *J* = 7.2 Hz), 2.17–2.02 (4H, m), 1.87 (3H, s), 1.66 (3H, s), 1.57 (3H, s); 13 C NMR (75 MHz, CDCl₃) δ 157.0, 154.0, 153.8, 152.4, 139.1, 133.0, 132.0, 123.6, 122.1, 120.8, 118.6, 112.9, 110.2, 104.1, 102.6, 102.3, 39.7, 26.5, 25.8, 23.2, 17.8, 16.4; EI-MS *m*/z 378 (M⁺, base), 293, 254, 207, 123. HRMS (EI) calcd. for C₂₄H₂₆O₄ M⁺ 378.1831, found 378.1831.

Acknowledgements. This research was financially supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2009-0094071), and by Hallym University Research Fund, 2015 (HRF-201501-012).

References

- (a) B. A. Keay, P. W. Dibble, In *Comprehensive Heterocyclic Chemistry II*, Vol. 2, A. R. Katritzky, C. W. Rees, E. F. V. Scriven Eds., Elsevier, Oxford, UK, 1996, p. 395;
 (b) X.-L. Hou, Z. Yang, H. N. C. Wong, *Prog. Heterocycl. Chem.* 2002, 14, 139.
- (a) S. Zacchino, G. Rodriguez, G. Pezzenati, G. Orellana, R. Enriz, S. M. Gonzalez, *J. Nat. Prod.* **1997**, *60*, 659;
 (b) S. Sogabe, M. Masubuchi, K. Sakata, T. A. Fukami, K. Morikami, Y. Shiratori, H. Ebiike, K. Kawasaki, Y. Aoki, N. Shimma, A. D'Arcy, F. K. Winkler, D. W. Banner, T. Ohtsuka, *Chem. Biol.* **2002**, *9*, 1119.
- D. H. S. Silva, F. C. Pereira, M. V. B. Zanoni, M. Yoshida, *Phytochemistry* 2001, 57, 437.
- S. H. Day, N. Y. Chiu, L. T. Tsao, J. P. Wang, C. N. Lin, J. Nat. Prod. 2000, 63, 1560.
- 5. R. Basawaraj, G. Parameshwarappa, S. S. Sangapure, *Indian Drugs* 2007, 44, 8.
- G. F. Filzen, L. Bratton, X. M. Cheng, N. Erasga, A. Geyer, C. Lee, G. Lu, J. Pulaski, R. J. Sorenson, P. C. Unangst, B. K. Trivedi, X. Xu, *Bioorg. Med. Chem. Lett.* 2007, 13, 3630.
- (a) T. Vang, Y. Xie, W. H. Liu, D. Vidovic, Y. Liu, S. Wu, D. H. Smith, A. Rinderspacher, C. Chung, G. Gong, T. Mustelin, D. W. Landry, R. C. Rickert, S. C. Schürer, S.-. X. Deng, L. Tautz, J. Med. Chem. 2011, 54, 562;
 (b) W. J. Song, X. D. Yang, X. H. Zeng, X. L. Xu, G. L. Zhang, H. B. Zhang, RSC Adv. 2012, 2, 4612.
- J. A. Findlay, S. Buthelezi, G. Li, M. Seveck, J. Nat. Prod. 1997, 60, 1214.
- T. Wang, Z.-Y. Li, A.-L. Xie, X.-J. Yao, X.-P. Cao, D. Kuck, J. Org. Chem. 2011, 76, 3231.
- (a) M. Ono, Y. Cheng, H. Kimura, M. Cui, S. Kagawa, R. Nishii, H. Saji, *J. Med. Chem.* **2011**, *54*, 2971;
 (b) Y. Cheng, M. Ono, H. Kimura, M. Ueda, H. Saji, *J. Med. Chem.* **2012**, *55*, 2279.
- (a) T. Fukai, T. Fujimoto, Y. Hano, T. Nomura, J. Uzawa, *Heterocycles* **1984**, *22*, 2805; (b) Y.-Q. Shi, T. Fukai, H. Sakagami, W.-J. Chang, P.-Q. Yang, F.-P. Wang, T. Nomura, *J. Nat. Prod.* **2001**, *64*, 181.
- 12. I. S. Mann, D. A. Widdowson, J. M. Clough, *Tetrahedron* **1991**, 47, 7991.

- (a) S.-J. Kim, J. J. Lee, H.-H. Yoon, J.-G. Jun, *Bull. Korean Chem. Soc.* 2013, 34, 2815; (b) Y. H. Seo, J.-K. Kim, J.-G. Jun, *Bioorg. Med. Chem. Lett.* 2014, 24, 5727.
- 14. C. G. Kim, J.-H. Jeon, Y. H. Seo, J.-G. Jun, *Bull. Korean Chem. Soc.* **2014**, *35*, 1996.
- 15. T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508.
- N. B. Desai, N. McKelvie, F. Ramirez, J. Am. Chem. Soc. 1962, 84, 1745.
- 17. S. G. Newman, V. Aureggi, C. S. Bryan, M. Lautens, *Chem. Commun.* **2009**, 5236.
- (a) N. Miyaura, A. Suzuki, *Chem. Rev.* 1995, 95, 2457;
 (b) A. J. J. Lennox, G. C. Lloyd-Jones, *Chem. Soc. Rev.* 2014, 43, 412.