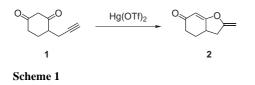
Mercuric Triflate Catalyzed Cycloisomerization of Alkynyl-1,3-Cyclohexanedione and Alkynyl-1,3-Cyclopentanedione

Hiroshi Imagawa, Shuhei Kotani, Mugio Nishizawa*


Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan Fax +81(88)6553051; E-mail: mugi@ph.bunri-u.ac.jp

Received 24 December 2005

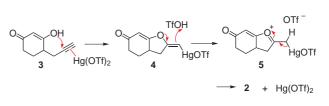
Abstract: Mercuric triflate was used to catalyze cycloisomerization of alkynyl-1,3-cyclohexanediones and cyclopentanediones to give fused oxabicyclic systems under mild reaction conditions with high catalytic turnover up to 1000 times.

Key words: mercuric triflate, catalytic cycloisomerization, alkynyl-1,3-cyclohexanediones

Alkyne heteroatom cyclization catalyzed by an electrophilic metal complex is a subject of considerable interest in modern synthetic organic chemistry.¹ Although cycloisomerization of alkynyl alcohols, amines, and carboxylic acids has been studied intensively, cyclization of alkynyl ketones has been limited to furan synthesis.² We previously reported a 2-methylfuran synthesis³ by cyclization of 1alkyn-5-one. The reaction was catalyzed by mercury(II) trifluoromethanesulfonate [mercuric triflate, hereafter Hg(OTf)₂], developed in our group as an olefin cyclization agent.⁴ Recently, we also reported that Hg(OTf)₂ and a Hg(OTf)₂-tetramethylurea (hereafter TMU) complex showed highly efficient catalytic activity for the following reactions: 1) hydration of terminal alkynes to give methyl ketones,⁵ 2) hydroxylative 1,6-envne cyclization to give exomethylene five-membered ring products,6 3) arylalkyne cyclization leading to dihydronaphthalene derivatives,⁷ and 4) biomimetic tandem cyclization yielding polycarbocycles.^{8,9} Using a variety of metal complexes Mascarenas and co-workers described cycloisomerization 4-propargyl-1,3-cyclohexanedione and cyclopenof tanedione generating dihydropyrane or dihydrofuran.¹⁰ In the present study, we examined cycloisomerization of alkynyl-1,3-cyclohexanediones and cyclopentanediones at ambient temperature using catalytic amounts of Hg(OTf)₂. Notably, we observed very high catalytic efficiencies up to 1000 times catalytic turnover in producing fused oxabicyclic products.

SYNLETT 2006, No. 4, pp 0642–0644 Advanced online publication: 20.02.2006 DOI: 10.1055/s-2006-932464; Art ID: U31805ST © Georg Thieme Verlag Stuttgart · New York

	8(-)2			
Entry	Catalyst (mol%)	Solvent	Time (min)	Yield (%) ^a
1	$Hg(OTf)_2(1)$	CH ₃ NO ₂	60	75
2	$Hg(OTf)_2(1)$	CH_2Cl_2	40	73
3	$Hg(OTf)_2(1)$	C_6H_6	45	81
4	$Hg(OTf)_2(1)$	MeCN	5	87
5	$Hg(OTf)_2(1)$	MeCN	0.5	92
6	$Hg(OTf)_2(0.1)$	MeCN	20	88
7	Hg(OTf) ₂ (0.01)	MeCN	300	0
8	Hg(OTf) ₂ ·TMU (1)	MeCN	15	91
9	Hg(OTf) ₂ ·2TMU (1)	MeCN	20	93
10	Hg(OTf) ₂ ·3TMU (1)	MeCN	30	96
11	Hg(OTf) ₂ ·3TMU (0.1)	MeCN	180	22
12	$Hg(OAc)_2(1)$	MeCN	40	0
13	$Hg(OTFA)_2(1)$	MeCN	10	93
14	$Hg(OTFA)_2(0.1)$	MeCN	1200	85


^a Isolated yield.

When the alkynyldione 1 was treated with 1 mol% of $Hg(OTf)_2$ in CH_3NO_2 at room temperature for 1 hour, the oxabicyclic product 2 was obtained (Scheme 1). Yield of 2 was 75% after column chromatography on silica gel (Table 1, entry 1). Although comparable yields were obtained by using CH₂Cl₂ or benzene as the solvent, MeCN afforded an improved yield of 87% yield (entries 2-4). When the reaction of 1 with 1 mol% of $Hg(OTf)_2$ in MeCN was quenched after 30 seconds by addition of Et₃N, the yield was 92% (entry 5).¹¹ Using 0.1 mol% of $Hg(OTf)_2$, an 88% yield of 2 was obtained within an acceptable reaction period (entry 6). Hg(OTf)₂·TMU and Hg(OTf)₂·2TMU complexes afforded 2 in high yield (entries 8 and 9). However, the highest yield was obtained using $Hg(OTf)_2$ ·3TMU complex to produce 2 with a 96% yield after a 30 minutes reaction (entry 10), These results suggested that the unstable product 2 was partially decomposed by the reactive Hg(OTf)₂. Although Hg(OAc)₂ did not catalyze any detectable cycloisomerization (entry 12),

Table 1 Hg(OTf)₂-Catalyzed Cyclization of 1

conversion to **2** was achieved using Hg(OTFA)₂ (1 mol%) with a 93% yield after 10 minutes in MeCN (entry 13). Increased reactivity of Hg(OTf)₂ versus Hg(OTFA)₂ is evident when the reactions with 0.1 mol% catalyst are compared. The reaction of **1** with 0.1 mol% of Hg(OTf)₂ afforded an 88% yield of **2** after 20 min (entry 6), however, Hg(OTFA)₂ required 20 hours to give an 85% yield of **2** (entry 14).

The cycloisomerization catalyzed by $Hg(OTf)_2$ is predicted to proceed as shown in Scheme 2. The reaction is initiated by π -complexation of an alkynyl group with $Hg(OTf)_2$ as seen in **3**. Participation of an enol group leads to vinyl mercury intermediate **4**. Protonation of **4** by in situ generated TfOH leads to oxonium cation **5**. Subsequent demercuration of **5** yields product **2** and regenerates the catalyst $Hg(OTf)_2$.

Scheme 2

Next we examined Hg(OTf)₂-catalyzed cyclization of various 1,3-diones (Table 2). Dione **6** (a methyl homologue of **1**) was reacted with Hg(OTf)₂ (1 mol%) in MeCN at room temperature for 30 minutes. This reaction produced a mixture of *exo*-cyclization product **7** and *endo*-cyclization product **8** in an 88:12 ratio, with a total yield of 84%. Cyclization of **6** was also achieved using 0.1 mol% of Hg(OTf)₂ producing **7** and **8** with an 80% total yield (87:13 ratio) after three hours at room temperature.

 Table 2
 Hg(OTf)₂-Catalyzed Cyclization of 1,3-Dione

Substrate	Hg(OTf) ₂	Product (yield) ^a	
6 6	1 mol%, 30 min, 84% (88:12) ^b 0.1 mol%, 3 h, 80% (87:13)	°	0 8
0=√_0 9	1 mol%, 25 min, 78% 0.1 mol%, 3 h, 73%	o=< ↓ 0 ↓ 10	
o= ↓ 0 11	1 mol%, 5 min, 76%	o=√ 12	
0 13	1 mol%, 20 min	0 5 14 90%	
0 15	1 mol%, 20 min	0 5 16 89%	
0 0 17	1 mol%, 30 min	0 18 48% 19 8%	0 20 28%
0 0 21	1 mol%, 30 min	0 22 82%	

^a Isolated yield.

^b The ratio was determined by ¹H NMR.

Reaction of 4-propargyl-1, 3-cyclopentanedione (9) with 1 mol% and 0.1 mol% of Hg(OTf)₂ generated exomethylene oxabicyclic product 10 with 78% (25 min) and 73% (3 h) yields, respectively. In contrast, methyl homologue 11 was converted to its endo-mode cyclization product 12 with a 76% yield using 1 mol% catalyst after only five minutes. Next, we examined the cyclization of 2-propargyl-1,3-cyclohexanedione (13) using 1 mol% of Hg(OTf)₂ in MeCN at room temperature for five minutes. This reaction gave rise to 2-methylfuran 14 with a 90% yield. Similarly, methyl homologue 15 was converted to 2-ethylfuran 16 with an 89% yield. On the other hand, cyclization of 2-propargyl-1,3-cyclopentanedione (17) produced a mixture of exo-mode cyclization product 18, endo-mode cyclization product 19, and 2-methylfuran 20 with 48%, 8%, and 28% yields, respectively. Reaction of the methyl homologue 21 produced exclusively endomode cyclization product 22 with an 82% yield.

Therefore, Hg(OTf)₂-catalyzed cycloisomerization of alkynyl-1,3-cyclohexanediones and cyclopentanediones occurs readily at ambient temperature. In comparison with previous transition-metal-catalyzed procedures,¹⁰ very high catalytic turnovers were achieved.

Acknowledgment

This study was financially supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and Notes

(1) (a) Brown, R. C. D. Angew. Chem. 2005, 44, 850.
(b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (c) Mendez, M.; Echavarren, A. M. Eur. J. Org. Chem. 2002, 15. (d) McDonald, F. E. Chem. Eur. J. 1999, 5, 3103.

- (2) (a) Wakabayashi, Y.; Fukuda, Y.; Shiragami, H.; Uchimoto, K.; Nozaki, H. Tetrahedron 1985, 41, 3655. (b) Padwa, A.; Ishida, M.; Muller, C. L.; Murphree, S. S. J. Org. Chem. 1992, 57, 1170. (c) Kataoka, Y.; Tezuka, M.; Takai, K.; Uchimoto, K. Tetrahedron 1992, 48, 3495. (d) Arcadi, A.; Cacchi, S.; Larock, R. C.; Marinelli, F. Tetrahedron Lett. 1993, 34, 2813. (e) Ji, J.; Lu, X. J. Chem. Soc., Chem. Commun. 1993, 764. (f) Wang, Z.; Lu, X. J. Org. Chem. 1996, 61, 2254. (g) Cacchi, S.; Fabrizi, G.; Moro, L. J. Org. Chem. 1997, 62, 5327. (h) Picquet, M.; Bruneau, C.; Dixneuf, P. H. Tetrahedron 1999, 55, 3937. (i) MaGee, D. I.; Leach, J. D.; Setiadji, S. Tetrahedron 1999, 55, 2847. (j) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem. 2003, 42, 2681. (k) Yoshida, M.; Morishita, Y.; Fujita, M.; Ihara, M. Tetrahedron Lett. 2004, 45, 1861. (l) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.
- (3) Imagawa, H.; Kurisaki, T.; Nishizawa, M. Org. Lett. 2004, 6, 3679.
- (4) (a) Nishizawa, M.; Takenaka, H.; Nishide, H.; Hayashi, Y. *Tetrahedron Lett.* **1983**, *24*, 2581. (b) Nishizawa, M.; Morikuni, E.; Asoh, K.; Kan, Y.; Uenoyama, K.; Imagawa, H. *Synlett* **1995**, 169.
- (5) Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 12.
- (6) Nishizawa, M.; Yadav, V. K.; Skwarczynski, M.; Takao, H.; Imagawa, H.; Sugihara, T. Org. Lett. 2003, 5, 1609.
- (7) Nishizawa, M.; Takao, H.; Yadav, V. K.; Imagawa, H.; Sugihara, T. Org. Lett. 2003, 5, 4563.
- (8) Imagawa, H.; Iyenaka, T.; Nishizawa, M. Org. Lett. 2005, 7, 451.
- (9) Imagawa, H.; Iyenaka, T.; Nishizawa, M. Synlett 2005, 703.
- (10) Gulias, M.; Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. Org. Lett. 2003, 5, 1975.
- (11) **Typical Experimental Procedure.** Tetramethylurea (1.15 mg, 0.0099 mmol) and a stock solution of $Hg(OTf)_2$ in MeCN (0.01 M solution, 330 µL, 0.0033 mmol) were added to a solution of alkynyldione **1** (50 mg, 0.333 mmol) in MeCN (3.3 mL, 0.1 M) at r.t. The solution was stirred for 30 min at r.t., and aq NaHCO₃ was added. The mixture was extracted with CH_2Cl_2 and dried. Concentrated extract was subjected to a column chromatography on silica gel (hexane–EtOAc, 6:1) to give exclusively the oxabicyclic product **2** (50 mg, 0.333 mmol).