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Efficient One-Pot Synthesis of 2-Carbonyl-
1-indanols by Palladium-Catalyzed Tandem

Heck–Aldol Reaction

Song Tu, Long-He Xu, and Chun-Rui Yu
State Key Laboratory of Fine Chemicals, Dalian University of Technology,

Dalian, China

Abstract: 2-Carbonyl-1-indanols were synthesized in moderate to good yields by
the reaction of orthohalogenated aryl aldehyde with Morita–Baylis–Hillman
adducts via a one-pot, palladium-catalyzed tandem Heck–aldol reaction. Various
Morita–Baylis–Hillman adducts were examined to find the scope and limitations
of this process.

Keywords: 2-carbonyl-l-indanol, Morita–Baylis–Hillman adducts, one-pot,
palladium-catalyzed

Indanols are important and useful organic intermediates;[1] among these,
2-carbonyl-1-indanols 3 present potential applications in the synthesis of
pharmaceutical and bioactive materials.[2] However, very little has been
reported about their preparation. This type of compound has been
synthesized by the reaction of orthomanganated acetophenone with acti-
vated alkenes[3] or by enone-selective reduction using organoiodotin
hydride.[4] Nevertheless, with these methodologies, either preparation of
starting materials is difficult[3] or yields of desired products are low.[4]

In this communication we report an efficient approach for the synthesis
of 2-carbonyl-1-indanols 3 using orthohalogenated aryl aldehydes 1 and
Morita–Baylis–Hillman adducts 2 via a one-pot, palladium-catalyzed
tandem Heck–aldol reaction (Scheme 1). To the best of our knowledge,
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it is the first report for the preparation of 2-carbonyl-l-indanols using this
process.

In recent years, many reports[5] have focused on the arylation of
Morita–Baylis–Hillman adducts 4 via a palladium-catalyzed Heck reac-
tion (Scheme 2), which provides a convenient method to synthesize b-
keto esters 5. Additionally, intramolecular aldol-type reactions have been
investigated extensively because of their significance in the construction
of carbo-cyclic systems.[6] Furthermore, Gerald Dyker and Grundt
reported[7] that 2-carbonyl-substituted indene compounds could be pre-
pared via a palladium-catalyzed process. This previous work led us to
develop the new methodology for the synthesis of 2-carbonyl-l-indanols.

In the first attempt, the starting materials 2-iodobenzaldehyde 1a (0.5
mmol) and methyl 2-(hydroxy(phenyl)methyl)acrylate 2a[8] (0.6 mmol)
were mixed with NaOAc (1.25 mmol), LiCl (1.0 mmol), and tetra-butyl-
ammonium bromide (TBAB) (1.0 mmol) in the presence of Pd(OAc)2

(5 mol %) in dimethyl formamide (DMF) (5 mL). The solution was kept
at 80�C under nitrogen for 2 h and 1-indanol 3a was produced as a
mixture of diastereoisomers in 38% yield (Table 1, entry 1).

Other factors were examined to optimize the reaction conditions.
When NaHCO3 was used instead of NaOAc as base, 1-indanol 3a was
obtained in 64% yield (Table 1, entry 2). However, using tetrahydrofuran
(THF) as solvent decreased the yield of product to 52% (Table 1, entry 3).
Prolonging the reaction time also decreased the yield of 1-indanol greatly
(Table 1, entry 4). It was noted that a favorable result could not be
obtained, and an undetermined compound was produced at higher

Scheme 2.

Scheme 1.
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temperature (Table 1, entry 5). Nevertheless, when reducing the tempera-
ture to 60�C, only traces of the desired product were obtained (Table 1,
entry 6). Using Et3N in the presence of PPh3 was inefficient for this pro-
cess (Table 1, entry 7). Accordingly, the conditions of entry 2 in Table 1
were chosen as optimal for the synthesis of 2-carbonyl-1-indanols.

Under the optimal conditions, a variety of orthohalogenated aryl
aldehydes 1 and Morita–Baylis–Hillman adducts 2[8] were tested, and
1-indanols 3 were produced as a mixture of diastereoisomers in a ratio
of approximately 2 : 1 in moderate to good yields. The results are sum-
marized in Table 2.

Initially, 2-iodobenzaldehyde 1a was reacted with Morita–Baylis–
Hillman adducts 2a, 2b, and 2c to give the corresponding 1-indanols
3a, 3b, and 3c in 64, 61, and 51% yields respectively (Table 2, entries
1–3). It is interesting that the reaction of heterocyclic substituted adducts
2d and 2e with 1a gave higher yields than those of the aromatic substi-
tuted adducts 2a, 2b, and 2c. 1-Indanols 3d and 3e were obtained in
70 and 78% yields respectively (Table 2, entries 4 and 5). When 3-(hydro-
xy(phenyl)methyl)-but-3-en-2-one 2f was tested, dicarbonyl-substituted
1-indanol 3f was efficiently prepared in a short time in 74% yield
(Table 2, entry 6). On the other hand, the reaction of 2-bromobenzalde-
hyde 1b with adduct 2a gave 1-indanol 3a in lower yield (Table 2, entry 7

Table 1. Synthesis of 2-carbonyl-l-indanol under different conditionsa

Entry Base Solvent Time(h) Temp. (�C) Yield (%)b

1 NaOAc DMF 2 80 38c

2 NaHCO3 DMF 2 80 64
3 NaHCO3 THF 2 80 52
4 NaHCO3 DMF 8 80 21
5 NaHCO3 DMF 2 100 0
6 NaHCO3 DMF 4 60 trace
7 Et3N DMF 3 80 traced

aReaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), TBAB (1.0 mmol), base
(1.25 mmol) except for Et3N (4.0 mmol), Pd(OAc)2 (5 mol %), and DMF (5 mL).

bIsolated yields of diastereoisomer mixtures.
c1.0 mmol LiCl was added.
d10 mol % PPh3 was added.
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Table 2. Synthesis of 2-carbonyl-l-indanolsa

Arylhalide Morita–Baylis–Hillman Time Product Yield
Entry 1 adducts 2 (h) 3 drb (%)c

1 1a 2 3a 66 : 34 64

2 1a 2 3b 66 : 34 61

3 1a 2 3c 68 : 32 51d

4 1a 2 3d 68 : 32 70

5 1a 2 3e 66 : 34 78

6 1a 1 3f 69 : 31 74

7 1b 2 3a 66 : 34 53

8 1b 5 3g 61 : 39 41

9 1c 1.5 3h 70 : 30 53

10 1c 2.5 3i 64 : 36 67

(Continued)
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compared with entry 1). At the same time, the reaction of 2-bromoben-
zaldehyde lb with alkyl substituted adduct 2g gave a lower yield than that
of the aromatic substituted adduct 2a (Table 2, entry 8 compared with
entry 7). 2-Bromo-5-fluoro-benzaldehyde lc also smoothly reacted with
the representative Morita–Baylis–Hillman adducts 2a, 2d, and 2f to produce
the corresponding 1-indanols 3h, 3i, and 3j in moderate yields (Table 2,
entries 9–11). It is important to note that the structure of Morita–Baylis–
Hillman adducts had little effect on the ratio of diastereoisomers.

Next, 2-(hydroxy(phenyl)methyl)acrylonitrile 6 was also tested to
broaden the scope of this process. Surprisingly, under identical con-
ditions 1-indanol 8 could not be obtained when Morita–Baylis–Hillman
adduct 6 was used (Scheme 3). Only the Heck cross-coupling product 7

was produced in 49% yield.
The relative configuration of diastereoisomers was determined by

1H-1H nuclear overhause effect spectroscopy (NOESY). In Fig. 1, nuclear
overhause effect (NOE) was observed between Ha (d ¼ 5.60) and Hb
(d ¼ 7.90) in the minor diastereoisomer. On the other hand, Ha (d ¼ 5.60)
and acetyl protons (d ¼ 2.22) had little NOE in them. However, NOE

Table 2. Continued

Arylhalide Morita–Baylis–Hillman Time Product Yield
Entry 1 adducts 2 (h) 3 drb (%)c

11 1c 1.5 3j 71 : 29 62

aReaction conditions: arylhalides 1 (1.0 mmol), Morita-Baylis-Hillman adducts
2 (1.2 mmol), TBAB (2.0 mmol), NaHCO3 (2.5 mmol), and Pd(OAc)2 (5 mol %),
DMF (10 mL) at 80�C.

bRatio of the diastereoisomers was determined by 1H NMR.
cIsolated yields of diastereoisomer mixtures.
dLower isolated yield due to hard purification of the product from the mixture

of starting material 2c and indanol 3c.

Scheme 3.
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was observed obviously between He (d ¼ 6.10) and acetyl protons
(d ¼ 2.18) in the major diastereoisomer. As expected, He (d ¼ 6.10) and
Hd (d ¼ 7.88) had no NOE in this diastereoisomer. Accordingly, it was con-
cluded that the minor diastereoisomer had a trans configuration and the
major had a cisconfiguration. Other diastereoisomers 3 also were examined
similarly to determine their relative configuration.

A possible mechanism for this one-pot, palladium-catalyzed reaction
can be explained as follows. First, b-keto esters or 1,3-diketones are
formed by arylation of Morita–Baylis–Hillman adducts 2 with elimin-
ation of palladium hydride toward the hydroxy side and tautomerization
to the keto forms.[5b,9] Then an intramolecular aldol-type condensation
occurs and produces 1-indanols 3.

In conclusion, we have developed an efficient and convenient process
to synthesize 2-carbonyl-1-indanols via a one-pot, palladium-catalyzed
reaction. The application of this new methodology for the synthesis of
bioactive products is currently under way in our laboratories. Further-
more, the investigation of the stereochemistry for this process is also in
progress now.

EXPERIMENTAL

The spectra of 1H NMR and 13C NMR were recorded on a Varian
Mercury V� 300 NMR spectrophotometer with TMS as the internal
standard. A Perkin Elmer 983 was used to determine the IR spectra.
The mass spectra were obtained on an Apex II-FTMS. Silica gel
(100–140 mesh) was used for column chromatography. DMF, THF,
and Et3N were distilled and dried over 4-Å sieves.

General Procedure

2-Iodobenzaldehyde la (232 mg, 1.0 mmol), Morita–Baylis–Hillman
adduct 2a (230 mg, 1.2 mmol), TBAB (644 mg, 2.0 mmol), NaHCO3

(210 mg, 2.5 mmol), and Pd(OAc)2 (12 mg, 5 mol %) were added to a
sealed flask. After the flask was evacuated and purged with nitrogen,

Figure 1. The relative configuration of diastereoisomer 3f.
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10 mL of DMF was added into the flask via syringe. Then the flask
was placed into an 80�C oil bath, and stirring was continued for 2 h.
The reaction mixture was extracted with EtOAc. The combined organic
layers were dried over anhydrous Mg2SO4 and concentrated under
vacuum. The residue was purified by flash chromatography (hexane=
EtOAc ¼ 5=1) to afford the product (2-benzoyl-l-hydroxy-indan)-2-yl-
carboxylic acid methyl ester 3a as a viscous liquid; yield: 64%. The pro-
duct was a mixture of diastereoisomers. The following data is based on
the major diastereoisomer: IR (film): v ¼ 3480, 2950, 1730, 1680, 1255,
1075, 1030, 755, 690 cm�1. 1H NMR (CDC13, 300 MHz): d ¼ 3.39 (1H,
d, j ¼ 17.1 Hz, CHH), 3.70 (3H, s, OCH3), 4.12 (1H, d, J ¼ 17.1 Hz,
CHH), 6.05 (1H, s, CHOH), 7.20 (1H, m, ArH), 7.29 (2H, dd, J ¼ 6.0 Hz,
Hz, 3.0 Hz, ArH), 7.44–7.49 (3H, m, ArH), 7.58 (1H, m, ArH); 7.91(2H,
m, ArH). 13C NMR (CDC13, 75 MHz): d ¼ 38.92 (CH3), 52.70 (CH2),
69.22 [CCOPh(COOCH3)], 79.44 (CHOH), 124.45, 124.76, 127.53,
128.62, 129.09, 133.12, 134.77, 138.58, 139.98, 141.50, 142.20, 171.55
(COOCH3), 194.58 (COPh). MS: m=z 278 (Mþ –H2O), 174, 146, 143, 115.

Other Data

3b: Viscous liquid. IR (film): n ¼ 3480, 2955, 1710, 1670, 1260, 1080, 755 cm�1.
1H NMR (CDC13, 300 MHz):d ¼ 3.36 (1H, d, J ¼ 16.8 Hz, CHH), 3.66 (3H,
s, OCH3), 4.08 (1H, d, J ¼ 16.8 Hz, CHH), 5.99 (1H, s, CHOH), 7.23–7.26
(3H, m, ArH), 7.42–7.45 (3H, m, ArH), 7.84–7.87 (2H, m, ArH).

3c: Viscous liquid. IR (film): n ¼ 3470, 2950, 1720, 1680, 1600, 1510,
1430, 1240, 1040 cm�1. 1H NMR (CDC13, 300 MHz): d ¼ 3.36 (1H, d,
y ¼ 17. 1 Hz, CHH), 3.66 (3H, s, OCH3), 4.09 (1H, d, J ¼ 17.1 Hz,
CHH), 5.99 (1H, s, CHOH), 7.10–7.15 (3H, m, ArH), 7.42–7.45 (2H,
m, ArH), 7.56–7.62 (1H, m, ArH), 7.92–7.97 (2H, m, ArH).

3d: Viscous liquid. IR (film): n ¼ 3480, 2950, 1730, 1660, 1405, 1260,
1070, 1020, 760, 730 cm�1. 1H NMR (CDC13, 300 MHz): d ¼ 3.49 (1H,
d, J ¼ 16.8 Hz, CHH), 3.68 (3H, s, OCH3), 4.06 (1H, d, J ¼ 16.8,
CHH), 5.95 (1H, s, CHOH), 7.12–7..14 (1H, m, ArH), 7.16–7.28 (3H,
m, ArH), 7.42–7.44 (1H, m, ArH), 7.63–7.66 (1H, m, ArH), 7.71–7.75
(1H, m, ArH). 13 C NMR (CDCI3, 75 MHz): d ¼ 38.98 (CH3), 52.78
(CH2), 69.63 [CCOPh (COOCH3)], 78.94 (CHOH), 124.28, 124.68,
129.05, 132.19, 134.13, 138.92, 141.38, 142.14, 171.29 (COOCH3),
187.76 (COPh). MS: m=z 284 (Mþ –H2O), 226, 115, 111, 83.

3e: Viscous liquid. IR (film): n ¼ 3460, 2950, 1730, 1670, 1460, 1280,
1020, 755 cm�1. 1 H NMR (CDC13, 300 MHz): d ¼ 3.28 (1H, d, J ¼ 17.1,
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CHH), 3.65 (3H, s, OCH3), 4.04 (1H, d, J ¼ 17.1, CHH), 5.96 (1H, s,
CHOH), 6.52–6.54 (1H, m, ArH), 7.15–7.25 (4H, m, ArH), 7.40–7.43
(1H, m, ArH), 7.57–7.58 (1H, m, ArH). 13C NMR (CDC13, 75 MHz):
d ¼ 38.14 (CH3), 52.58 (CH2), 67.35 [CCOAr(COOCH3)], 78.11
(CHOH), 112.36, 118.39, 124.33, 124.63, 127.35, 128.91, 138.87, 141.44,
146.51, 151.08, 170.59 (COOCH3), 183.87 (COAr). MS: m=z 268 (Mþ

�H2O), 210, 115, 95.

3f: Viscous liquid. IR (film): n ¼ 3460, 2920, 1710, 1670, 1595, 1445,
1355, 1240, 750, 700 cm�1. 1 H NMR (CDC13, 300 MHz): d ¼ 2.18 (3H,
s, COCH3), 3.30 (1H, d, J ¼ 17.1 Hz, CHH), 4.18 (1H, d, J ¼ 17.1 Hz,
CHH), 6.10 (1H, s, CHOH), 7.16–7.19 (1H, m, ArH), 7.23–7.25 (2H,
m, ArH), 7.42–7.48 (3H, m, ArH), 7.55–7.62 (1H, m, ArH), 7.86–7.91
(2H, m, ArH). 13C NMR (CDCI3, 75 MHz): d ¼ 29.17 (CH3), 37.21
(CH2), 76.48 [CCOPh(COCH3)], 79.43 (CHOH), 123.92, 124.73,
127.66, 128.77, 128.95, 129.23, 133.46, 134.92, 135.50, 137.94, 139.35,
141.77, 196.77 (COCH3), 204.92 (COPh). MS: m=z 262 (Mþ –H2O),
158, 143, 115, 43.

3g: Viscous liquid. IR (film): n ¼ 3460, 2955, 1730, 1710, 1360, 1250,
920, 755 cm�1. 1H NMR (CDC13, 300 MHz): d ¼ 2.18 (3H, s, COCH3),
3.28 (1H, d, J ¼ 17.1 Hz, CHH), 3.68 (1H, d, J ¼ 17.1 Hz, CHH), 3.75
(3H, s, OCH3), 5.73 (1H, s, CHOH), 1.22–125 (3H, m, ArH), 7.28–7.38
(2H, m, ArH).

3h: Viscous liquid. IR (film): n ¼ 3450, 2955, 1730, 1680, 1600, 1580,
1490, 1240, 1025, 700 cm�1. 1H NMR (CDC13, 300 MHz): d ¼ 3.31 (1H,
d, J ¼ 16.5 Hz, CHH), 3.66 (3H, s, OCH3), 4.03 (1H, d, J ¼ 16.5 Hz,
CHH), 6.01 (1H, s, CHOH), 7.11–7.14 (2H, m, ArH), 7.34–7.37 (1H,
m, ArH), 7.47–7.49 (2H, m, ArH), 7.58–7.60 (1H, m, ArH), 7.88–7.91
(2H, m, ArH).

3i: Viscous liquid. IR (film): n ¼ 3460, 2955, 1730, 1660, 1485, 1405,
1260, 1025, 730 cm�1. 1 H NMR (CDC13, 300 MHz): d ¼ 3.43 (1H, d,
J ¼ 16.8 Hz, CHH), 3.67 (3H, s, OCH3), 3.98 (1H, d, J ¼ 16.8 Hz,
CHH), 5.92 (1H, s, CHOH), 6.93–6.98 (1H, m, ArH), 7.09–7.15 (3H,
m, ArH), 7.66–7.72 (2H, m, ArH).

3j: Viscous liquid. IR (film): n ¼ 3440, 2920, 1710, 1670, 1485, 1440,
1360, 1240 cm�1. 1H NMR (CDC13, 300 MHz): d ¼ 2.17 (3H, s,
COCH3), 3.25 (1H, d, J ¼ 16.8 Hz, CHH), 4.07 (1H, d, J ¼ 16.8 Hz,
CHH), 6.05 (1H, s, CHOH), 6.90–6.99 (1H, m, ArH), 7.07–7.14 (2H,
m, ArH), 7.43–7.50 (2H, m, ArH), 7.56–7.62 (1H, m, ArH), 7.84–7.89
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(2H, m, ArH). 13C NMR (CDC13, 75 MHz): d ¼ 29.21 (CH3), 36.65
(CH2), 76.62 [CCOPh(COCH3)], 79.12 (CHOH), 111.13, 111.78, 115.84,
116.64, 125.92, 128.89, 129.24, 133.04, 133.64, 134.51, 134.86, 143.75,
196.78 (COPh), 204.81 (COCH3). MS: m=z 280 (Mþ –H2O), 238, 133,
115, 95, 77. All these data are based on the major diastereoisomer.

7: Viscous liquid. IR (film): n ¼ 3430, 2920, 1840, 2220,1690, 1565,
1450, 1290, 1190, 1045, 760, 725, 700 cm�1. 1H NMR (CDC13,
300 MHz): d ¼ 2.82 (1H, bs, CUOH), 5.54 (1H, s, CHOH), 7.37–7.45
(3H, m, ArH), 7.52–7.55 (2H, m, ArH), 7.61–7.66 (2H, m, ArH), 7.79
(1H, dd, J ¼ 6.6Hz, 0.9 Hz, ArH), 7.87 (1H, dd, J ¼ 6.6 Hz, 2.1 Hz,
ArH), 8.13 (1H, s, ArCH ¼ C), 10.09 (1H, s, ArCHO).
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