
Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Color-tunable white-light of binary tris-β-diketonate-(Dy3+, Gd3+
x)

complexes’ blend under single wavelength excitation
Qi Shia,1, Jiaxiang Liub,1,⁎, Jia Wanga, Xiaohui Yanga, Xingmei Zhanga, Shuna Lia, Ping Suna,
Jin Chena, Beibei Lia, Xingqiang Lüb,⁎

a School of Chemistry and Chemical Engineering, Xi’an University, Xi’an 710065, Shaanxi, China
b School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Materials, Northwest University, Xi’an 710069, Shaanxi, China

G R A P H I C A L A B S T R A C T

Based on the Dy3+-centered yellow-light and the ligands-based blue-light of the tris-β-diketonate-(Dy3+, Gd3+
x)-mixed complex [Ln(acac)3(5-Br-2,2′-bpy)] (Ln3+ =

Dy3+, Gd3+
x), the stoichiometrically dichromatic integration gives the color-tunable white-light in solution or solid-state.
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A B S T R A C T

Based on the Dy3+-centered yellow-light and the ligands-based blue-light of the iso-structural two complexes [Ln
(acac)3(5-Br-2,2′-bpy)] (Ln3+ = Dy3+ (2) or Gd3+ (3); Hacac = acetylacetone, 5-Br-2,2′-bpy = 5-bromo-2,2′-
bipyridine), respectively, the stoichiometric fluorescence titrations of their tris-β-diketonate-(Dy3+, Gd3+

x)-
mixed complex, show that it is capable of the smooth color-tuning (yellow- to white- and to blue-light) under
single wavelength excitation. Moreover, through the dichromatic integration, the binary tris-β-diketonate-(Dy3+,
Gd3+

x) complex exhibits the straightforward white-light in solid-state.

1. Introduction

Contributing from the receptive “antenna” effect [1], the Dy3+-
centered characteristic emissions (4F5/2 → 6HJ/2; J = 9, 11, 13 or 15)
[2] can be sensitized through the Laporte- and spin-allowed ligand-
centered transition (0S → 1S) followed by the inter-system crossing

(ISC; 1S → 1T) and the 1T → Dy3+* transfer for one specific organo-
Dy3+ chromophore. Especially in consideration of its two prominent
yellow-light (578 nm; 4F5/2 → 6H13/2) and blue-light (484 nm; 4F5/2 →
6H15/2) line-like emission bands within the visible region characteristic
of ideal color-primary components toward straightforward white-light,
concerted efforts have been devoted to white-light-emissive organo-
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Dy3+ materials promising for optoelectronic devices [3] and sensing
platforms [4]. In principle, through the effective sensitization and the
subsequently complete energy transfer for one specific organo-Dy3+

complex, one feasible strategy to direct white-light seems highly at-
tractive after the simultaneous emissions of both Dy3+-centered blue-
light (λem = 478 nm; 4F9 → 6H15/2 magnetic dipole transition) and
yellow-light (λem = 572 nm; 4F9 → 6H13/2 electric dipole transition)
with a comparable intensity [5]. Nonetheless, due to the ligands-field
adjustment [6] just hyper-sensitive to the electric-dipole-governed
transition while insensitive to the magnetic dipole transition, the
dominated yellow-light as a universal basis, renders the Dy3+-exclusive
white-light greatly challenging [7] to one certain organo-Dy3+ com-
plex. Meanwhile, the dichromatic-integration just with the two Dy3+-
centered sharp visible emissions, does not cover the broad 400–700 nm
spectral region, also suffering from the inferior color-rendering prop-
erty [8]. By contrast, through the ligands-based residual blue-light
color-compensated with the Dy3+-dominated yellow-light, single-mo-
lecule dichromatic white-light [9] could be smoothly approached for
the specific organo-Dy3+ complex. However, this alternative strategy
still suffers from an intrinsic obstacle of having unsatisfactory white-
light efficiency (Φ < 5%) caused by the partial energy transfer.

Convincingly, the circumvention of such problem can rely on (Dy,
Gd)-[10], (Dy, Eu)-[11], (Dy, Eu, Gd)-[12], (Dy, Sm, Gd)-[13], (Dy, La,
Sm)-[14], (Dy, Eu, Tb)-blended [15] metal-organic frameworks (MOFs)
or coordination polymers, where in dependence on a precise control of
the Ln3+-mixed stoichiometry, different color-compensatory contribu-
tions could be well balanced for efficient and high-quality white-lights.
However, despite their potential applications [3a] for white light-
emitting diodes (WLEDs), the detrimental deficiency of their processing
(vacuum-deposition or solution-process) inability, limits the utilization
in flexible white organic/polymer light-emitting diodes (WOLEDs/
WPLEDs) [3b–3d]. As a matter of fact, from the perspective of film-
forming capability necessary, the Ln3+-mixed complexes’ blending to-
ward direct white-light, does conceptually take effect on WOLEDs/
WPLEDs. Herein, in light of the color-tunable white-light of (Eu, Tb)-
mixed complexes [16] disadvantageous of unmanageable Tb3+-to-Eu3+

energy transfer, the (Dy, Gd) complexes’ blending should be more
worthy of motivation, because the patent absence of Dy3+-to-Gd3+

energy transfer is unambiguous, due to the extremely higher energy
level of Gd3+ ion [17]. Moreover, based on the yellow-plus-blue in-
tegration, one certain (Dy3+, Gd3+

x) complexes’ blending is also cap-
able of direct white-light. Interestingly, with the judicious adjustment
of the (Dy3+, Gd3+

x)-mixed ratio, the dichromatic white-light endowed
from the two isomeric Ln3+-complexes, can be easily realized under
single wavelength excitation.

As shown in Scheme 1, the N,N’-chelate ancillary ligand 5-Br-2,2′-
bpy was synthesized in the yield of 67% from the well-established Stille
coupling reaction between 2,5-dibromopyridine and 2-(tributylstannyl)
pyridine in the presence of Pd(PPh3)4 (0) as the literature [18]. Further
through the one-pot reaction of LnCl3⋅6H2O (Ln = La, Dy, or Gd), the
N,N’-chelate ancillary ligand 5-Br-2,2′-bpyand the β-diketone ligand
Hacac treated with an equimolar amount of anhydrous NaOH, the
series of binary tris-β-diketonate-Ln3+ complexes [Ln(acac)3(5-Br-2,2′-
bpy)] (Ln = La (1); Dy (2); or Gd (3)) were self-assembled in receptive
yields of 68–75%, respectively.

All of the three complexes 1–3, soluble in common organic solvents,
were well characterized by EA, FT-IR, 1H NMR and ESI-MS. Especially
in the 1H NMR spectrum of the anti-ferromagnetic [La(acac)3(5-Br-2,2′-
bpy)] (1), the combined proton resonances (δ = 8.82–1.73 ppm) of
both the deprotonated ligand (acac)− and the ancillary ligand 5-Br-
2,2′-bpy are observed with a stipulated molar ratio of 3:1. Meanwhile,
the presence of the typically enolic eCH]C proton singlet peak at
δ = 5.19 ppm of the (acac)− ligand should be resulted from the La3+-
coordination. Moreover, based on the ESI-MS results of the complexes
1–3, a strong mass peak at m/z 672.02 for [La(acac)3(5-Br-2,2′-bpy)]
(1), 695.91 for [Dy(acac)3(5-Br-2,2′-bpy)] (2)or 691.04 for [Gd

(acac)3(5-Br-2,2′-bpy)] (3), can be definitely assigned to the major
species [M−H]+, respectively. These observations confirm that each
binary tris-β-diketonate-Ln3+ species of the three iso-structural com-
plexes 1–3, can keep stable in the respective solution.

The photo-physical properties of the binary tris-β-diketonate-Ln3+

complex 2–3 were examined in dilute MeCN solutions at room tem-
perature or 77 K, and summarized in Figs. 1 and 1S. In contrast to the
strong absorption bands (Fig. 1S) limited to the λab < 350 nm range
for the two (Hacac and 5-Br-2,2′-bpy) free ligands, the complex 2–3
display the similar ligands-based (248–250 and 284–287 nm) while
significantly broadened (200–400 nm) absorption spectra, in which, the
lower strong one (284–287 nm) should be assigned to the ligands-based
π-π*-transitions. Moreover, upon Ln3+coordination, the molar ab-
sorption coefficients of the complexes 2–3 at the lower energy ab-
sorption peaks are almost three orders of magnitudes larger than those
of the two (Hacac and 5-Br-2,2′-bpy) free ligands, also indicative of
their tris-β-diketonate-Ln3+ component with the enhanced π-conjuga-
tion effect. For the Dy3+-based complex 2, upon photo-excitation of the
chromohphores at the range of 200–410 nm (λex = 340 nm), as shown
in Fig. 1, the strong Dy3+-characteristic line-like emissions (484 nm
(4F9/2 → 6H15/2 transition), 578 nm (4F5/2 → 6H13/2 transition), 629 nm
(4F5/2 → 6H11/2 transition) and 665 nm (4F5/2 → 6H9/2 transition)) and
the weak while detectable emission peaking at λem = 388 nm, are
concurrently observed. For the dual-emissive complex 2 featuring a
bright yellow-light with the CIE (Commission International De L’E-
clairage) chromatic coordinate × = 0.400 and y= 0.401, the ligands-
based residual (λem = 388 nm) emission should be assigned to the
intra-ligands π-π* transition, and the hyper-sensitive peak at 578 nm
from the 4F5/2 → 6H13/2 transition should be resulted from its low
molecular symmetry [19]. Moreover, its dual-emitting nature, can
further be confirmed with the lifetimes-decayed combination of the
ligands-based fluorescence (τ = 1.13 ns; λem = 388 nm) and the Dy3+-
centered phosphorescence (τ = 3.2 μs at λem = 578 nm; 4F5/2 → 6H13/2

transition) from the same chromophores. As to the Gd3+-based complex
3 in solution at room temperature, it displays the typically ligands-
based fluorescence (λem = 394 nm, τ = 1.02 ns and Φem = 4.7%) also
shown in Fig. 1, exhibiting a blue-light with the CIE chromatic co-
ordinate × = 0.203 and y = 0.202. In contrast, the Gd3+-centered
complex 3 in solution at 77 K, shows the 0–0 transition phosphores-
cence (λem = 433 nm andτ = 0.98 μs; also Fig. 1), from which, the
triplet (3π-π*) energy level of 23095 cm−1 is obtained. With regard to
the singlet (1π-π*) energy level, it (27855 cm−1) can be reasonably
estimated from the lower wavelength (359 nm) of its UV–visible ab-
sorbance edge, and thus, the first energy gap ΔE1 (1π-π* - 3π-π*,
4760 cm−1; Fig. 2S) near to the desirable 5000 cm−1, endows a rela-
tively effective ISC process according to the Reinhoudt’s empirical rule
[20]. Importantly, further checking the energy level match between the
ligands-based 3π-π* energy and the lowest excited state 4F5/2

(20830 cm−1) of Dy3+ ion, the second energy gap ΔE2 (2265 cm−1; 3π-
π*-4F5/2) is beyond the ideal 2500-–4500 range ruled by the Latva’s
empirical rule [21], and thus, the allowed back energy transfer should
be the reason to the dual emissions of the Dy3+-based complex 2.
Noticeably, the absolute quantum efficiency (Φem) of the complex 2,
characteristic of the Dy3+-endowed yellow-light, is up to 5.8%, which
is at the top level among previously reported organo-Dy3+-complexes
[3b–3d,8–9], which should be mainly due to the strengthened optical
absorbance and the effective suppression from the oscillator-induced
quenching [22] or the non-radiative deactivation by the 5-Br-2,2′-bpy-
ancillary involvement.

In consideration of the relatively higher efficiencies for the yellow-
light of the Dy3+-based complex 2 and the blue-emitting of the isomeric
Gd3+-based complex 3, it is particular interest on their binary tris-β-
diketonate-(Dy3+, Gd3+

x) complexes’ blend toward the dichromatic
white-light modulation as desirable. After adding different amounts of
the Gd3+-based complex 3 to the Dy3+-based complex 2, the
UV–visible absorption and fluorescence titrations in MeCN solution
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were examined at room temperature, respectively. As shown in Fig. 2,
the UV–visible absorption titration of the binary tris-β-diketonate-
(Dy3+, Gd3+

x) complexes’ blending system, displays that both of the
two absorbance at 250 nm and 284 nm of the Dy3+-based complex 2 in
solution monotonously increase with the increasing ((Dy3+, Gd3+

0.02) to
(Dy3+, Gd3+

1.04)) of the concentration of the Gd3+-based complex 3.
Whereas besides the absence of an isosbestic point, each absorbance is
almost proportional to the (Dy3+, Gd3+)-mixed total (1 + x) content,
which strictly adhered to the Lambert-Beer law [23] with the R of 0.993
or 0.996, should be arisen from the physical coexistence of two isomeric
complexes 2 and 3 without intermolecular interactions in dilute solu-
tions. As to the fluorescence titration (λex = 340 nm) shown Table 1S
and in Fig. 3, during the amount increasing ((Dy3+, Gd3+

0.02) to (Dy3+,
Gd3+

1.04)) of the Gd3+-based complex 3, its emission and the ligands’
residual emission of the Dy3+-based complex 2 are combined in the
350–450 nm range, which, together with the Dy3+-centered

characteristic emissions (4F5/2→6HJ/2; J = 9, 11, 13 or 15) are si-
multaneously observed and cover the broad-ranging 350–750 nm.
Moreover, for the binary tris-β-diketonate-(Dy3+, Gd3+

x ) complexes, the
gradual waxing of the combined (350–450 nm) emission intensity,
trades off the gradual waning of the two (572 and 478 nm) Dy3+-
characteristic dominated and ratio-fixed emission intensities. Interest-
ingly, after the introduction of the Gd3+-based complex 3, their in-
tegrated colors change from yellow-light (CIE chromatic co-
ordinates × = 0.385, y = 0.386; (Dy3+, Gd3+

0.02)) to white-lights (CIE
chromatic coordinates × = 0.258–0.337, y = 0.250–0.324, CCTs of
3628–4153 K and CRIs of 90–92; (Dy3+, Gd3+

0.08) to (Dy3+, Gd3+
0.92)) and

to blue-lights (CIE chromatic coordinates × = 0.230–0.250,
y = 0.207–0.229; (Dy3+, Gd3+

0.98) to (Dy3+, Gd3+
1.04)). And during the

linear shifting of the color-point beginning from the yellow-light of the
Dy3+-based complex 2 and ending at the blue-light of the Gd3+-based

Scheme 1. Synthetic scheme of the ancillary ligand 5-Br-2,2′-bpy and its binary tris-β-diketonate-Ln3+ complexes 1–3 (Ln3+ = La3+ (1); Ln3+ = Dy3+ (2) or Ln3+

= Gd3+ (3)).

Fig. 1. The excitation and visible emission spectra of the complexes [Dy
(acac)3(5-Br-2,2′-bpy)] (2) and [Gd(acac)3(5-Br-2,2′-bpy)] (3) in dilute MeCN
solution (1 × 10−5 M) at room temperature or 77 K. Fig. 2. The UV–visible absorption titration at room temperature of the binary

tris-β-diketonate-Dy3+ complex 2 in MeCN solution with its isomeric binary tris-
β-diketonate-Gd3+ complex 3 in MeCN solution.
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complex 3, the best white-light point at the (Dy3+, Gd3+
0.08)-mixed

content, enables the color-coordinate of × = 0.337, y = 0.324, the
CCT of 4153 K and the CRI of 90. Noticeably, through the physical
blending with an additional 1π-π* to 3π-π* and to Dy3+ radiative
transition (also Fig. 2S) endowed by the Gd3+-based complex 3, the
slightly increased quantum yield is up to 6.3% for the white-light-
emitting tris-β-diketonate-(Dy3+, Gd3+

0.08) complex. This result is further
reflected from the Dy3+-centered longer phosphorescent lifetime
(τ = 4.0 μs at λem = 578 nm; 4F5/2 → 6H13/2 transition) for tris-β-
diketonate-(Dy3+, Gd3+) complex than that (τ = 3.2 μs) decayed for
the Dy3+-based complex 2, also indicative of the strengthened energy
transfer [24] during the dichromatic balance.

Inspiringly, motivated with the (Dy3+, Gd3+
x )-mixed content, the in-

tegrated color (the CIE chromatic coordinate × = 0.356, y = 0.346, the
CCT of 4188 K and the CRI of 85) of the tris-β-diketonate-(Dy3+, Gd3+

0.08)
complex at room temperature in solid-state, also falls within the white-
light regime, as shown in Fig. 4, which is significantly incomparable to the
yellow-light (the CIE chromatic coordinate x = 0.387, y = 0.395) of the
solid-state Dy3+-based complex 2. Despite the inferior white-light per-
formance (Φem = 4.4%) probably arisen from the aggregation-induced
quenching [22], the realization of the straightforward white-light renders
the binary tris-β-diketonate-(Dy3+, Gd3+

x) complexes’ blending a new
platform to solid-state white-light-emitting materials.

2. Conclusions

In summary, through the fluorescence titration of the yellow-light-
emitting complex [Dy(acac)3(5-Br-2,2′-bpy)] (2) with its isomeric blue-
light-emissive complex [Gd(acac)3(5-Br-2,2′-bpy)] (3), the dichromatic
balance is strictly dependent on the (Dy3+, Gd3+

x)-mixed content,
exhibiting the smoothly adjustable integration colors from yellow-lights
to white-lights and blue-lights. This result renders the binary tris-β-di-
ketonate-(Dy3+, Gd3+

x) complexes’ blending a new platform to solid-
state white-light-emitting materials, whose performance to be improved
by the future structural optimization, is now under way.
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