Studies in the Cycloproparene Series: Unexpected Products from Peterson Olefinations

Brian Halton,*^[a] Roland Boese,^[b] and Gareth M. Dixon^[a]

Keywords: Arenes / Small ring systems / Olefination / Nucleophilic addition / Strained molecules / Hydrosilation

Reaction of tetraphenylcyclopentadienone with anion **8** derived by monodesilylation of 1,1-bis(trimethylsilyl)cyclopropa[b]naphthalene (**10**) gives the 1-(5'-cyclopentadienyl)-substituted cycloproparene **17** from simple anion addition to the carbonyl group rather than fulvalene **16** from loss of Me₃SiO⁻. Reactions of anion **8** with *p*-(trifluoromethyl)benz-aldehyde and thiophene-2-carbaldehyde give the expected exocyclic olefins **12a** and **12b**, respectively. In contrast, the

Introduction

The class of strained aromatic hydrocarbons known as the cycloproparenes, and illustrated by parent 1*H*-cyclopropabenzene (1) and 1*H*-cyclopropa[*b*]naphthalene (2), has provided much fascinating chemistry^[1,2] since Anet and Anet^[3] reported the first authenticated derivative in 1964. The fact^[4,5] that the pK_a of 1 is ca. 36 means that the C1 cyclopropabenzenyl anion 3 and its naphthalenyl analogue 4 can be generated with relative ease and used in synthesis. This has proved to be the case^[6,7] as 3 and 4 have been used routinely in Peterson olefinations^[8–11] to give exocyclic alkenes 11 and 12 (Scheme 1) of which there now exist well in excess of 100 examples.^[1]

In the cyclopropabenzene series the reaction sequence can be performed as a one-pot operation for the transformation of 1 into $11.^{[12]}$ This contrasts with cyclopropa[*b*]naphthalene where the transformation of 2 into disilane 10 because monosilane 6 is deprotonated under the reaction conditions by unconsumed 4, regenerates 2 and gives 10 (via anion 8) in equimolar quantities (Scheme 1).^[6,11,12] Use of excess reagents leads to 10 in good yield (66%) and this stable, crystalline synthon can be stored in the refrigerator almost indefinitely. Desilylation of 10 with potassium *tert*butoxide regenerates anion 8 and this is able to react with added aldehyde or ketone to give the desired exocyclic alkene 12. In all but one of such reported Peterson olefinations^[1] the sequences from 1 to 11, and from 10 to 12, proceed directly to the alkene; the only side product recorded 3,6-dimethoxy analogue **24**, obtained from cycloproparene **20**, gives the C1 unsubstituted cycloproparene **19** and the Tishchenko products, p-(trifluoromethyl)benzyl p-(trifluoromethyl)benzoate (**21**) and 2-thienylmethyl thiophene-2-carboxylate (**22**), respectively.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

has come from the transformation of 1 into 11 ($R^1 = Ph$; $R^2 = H$) employing benzaldehyde. In this instance, and after short reaction periods, an unstable oil was obtained in yields of up to 40% that was proposed as the β -hydroxysilane 13 (Scheme 1) from workup prior to the loss of trimethylsilyl oxide.^[12] We provide here the first examples of attempted Peterson olefinations in the cyclopropanaph-thalene series where the desired olefination is thwarted and unexpected products are obtained.

Results and Discussion

The provision of polar fulvalenes from 1 and 2 has been appropriately demonstrated^[13] for derivatives of ring systems rather than for the parent molecules themselves. Thus, the fluorenylidene derivatives 14 and 15 are available in good yields^[14] although no simpler cyclopentadienylidene analogues are known - the facile thermal dimerisation of cyclopentadienone has precluded its use. In our study of "push-pull' electronic effects in the cycloproparenes,^[15] we attempted to prepare the tetracyclone derivative 16 for use as a model compound by employing what are now conventional procedures and workup. While an orange solid was isolated it proved not to be the alkylidene derivative 16, but alcohol 17 resulting from nucleophilic addition of anion 8 to the tetracyclone >C=O bond and subsequent protonation. The presence of ¹H NMR singlets at δ = 0.22 ppm (Me₃Si) and 5.20 ppm (OH) in a ratio of 9:1 together with an envelope of 26 aromatic protons in the range $\delta = 7.22 - 7.95$ ppm is fully consistent with this (see Exp. Sect.). That the cyclopropa[*b*]naphthalenyl moiety had been retained was clearly evident from the diagnostic^[1,16] shielding of the C2/C7 arene carbon atoms adjacent to the three-

^[a] School of Chemical & Physical Sciences, Victoria University of Wellington,

P. O. Box 600, Wellington, New Zealand

 [[]b] Institute for Inorganic Chemistry, University of Essen, Universitaetsstr. 3–5, 45117 Essen, Germany

FULL PAPER

membered ring ($\delta = 113.6$ ppm). Confirmation of the composition as C43H36OSi has come from high-resolution mass measurement and the compound is confidently assigned as the 1,1-disubstituted cycloproparene 17. The formation of alcohol is quite understandable when one considers the unfavourable geometrical constraints that are present in the syn-periplanar transition structure 18 needed for the ejection the trimethylsilyloxy anion in the additionelimination pathway. The formation of alcohols under the Peterson protocol is well documented and can be the normal outcome if the alkene is not stabilized.^[17] Moreover, subsequent alkene formation can often be brought about by dehydroxysilation under acid conditions. However, treatment of 17 with acid does not lead to the sought after exocyclic alkene. The cycloproparenes and their alkylidene derivatives are known to be sensitive to acids^[18] and the complex mixture of products formed is thought to be due to this. A comparable outcome was obtained from attempted Peterson olefination of the 3,6-dimethoxycyclopropanaphthalene 19 by way of disilane 20. However, in this instance the reaction product, assumed to be the 3,6-dimethoxy-substituted alcohol corresponding to 17 was not isolated as it proved to be light and air sensitive; it decomposed during attempted purification.

The behaviour of the unsubstituted disilane **10** towards *p*-(trifluoromethyl)benzaldehyde in the presence of base is in agreement with expectation (Scheme 2)^[1] in that exocyclic alkene **12a** ($\mathbf{R} = p$ -CF₃C₆H₄) is obtained as bright yellow needles in 62% yield, although this quantity is obtained only after variations in the reaction conditions (see Exp. Sect.). Spectroscopic data that are fully in agreement with the assigned structure were obtained, but these do not justify discussion here. Similarly, anion **8** is known to react with thiophene-2-carbaldehyde to give conjugated alkene **12b** ($\mathbf{R}^1 = \mathbf{H}; \mathbf{R}^2 = 2$ -thienyl), but only in low (34%) yield

(Scheme 2).^[11] In contrast, comparable reactions employing the 3,6-dimethoxy-substituted analogue **20** result in different outcomes that are less easily explained.

Following chromatography, the reaction of **20** with *tert*butoxide in the presence of *p*-(trifluoromethyl)benzaldehyde leads to yellow platelets that bear all the obvious external characteristics of a coloured, crystalline alkylidenecycloproparene. However, the NMR spectra immediately exclude such a structure since the ¹H spectrum shows an absence of methoxy protons and the ¹³C analogue has no shielded cycloproparene C2/C7 aromatic carbon atoms.^[1] Not only is a derivative of **12** discounted, but also is any compound in which the elements of the cycloproparenyl moiety were to have become involved. This was confirmed from subsequent continued chromatography, which provided the desilylated dimethoxycycloproparene **19** in almost quantitative yield.

The nature of the unexpected product became more obvious from observation of a conjugated carbonyl stretching vibration at 1685 cm⁻¹ in the IR spectrum and a molecular ion as the base peak of the E.I. mass spectrum at m/z =356. Furthermore, the presence of two independent para disubstituted benzene rings each carrying a CF₃ group (with appropriate long range ¹⁹F,¹³C couplings from distinct *p*-CF₃ moieties at $\delta = 130.3$ ppm and 134.7 ppm, respectively – see Exp. Sect.) and a benzylic function (δ_{H} : 5.48 ppm; $\delta_{\rm C}$: 66.2 ppm) are evident from the 2-D NMR spectra recorded. The product is confirmed as *p*-trifluoromethybenzyl *p*-(trifluoromethyl)benzoate (21; 41%; Scheme 2) from single-crystal X-ray structure determination. The details of the analysis have been deposited (see Exp. Sect.) and Figure 1 shows an ORTEP plot of the molecule at 50% probability. The recorded bond lengths and angles fall within expectation for such a routine structure but the six fluorine atoms are disordered over two sites with an occupancy at 0.5 each.

Figure 1. ORTEP plot of p-(trifluoromethyl)benzyl p-(trifluoromethyl)benzoate (21) at 50% probability

In a similar vein, the reaction between **20** and base in the presence of thiophene-2-carbaldehyde does not give anticipated exocyclic analogue of **12b**. It also yields the desilylated diether **19** (91%) this time accompanied by 2-thienylmethyl thiophene-2-carboxylate (**22**) (45%), the latter displaying spectroscopic data that match those recently published.^[19]

FULL PAPER

The reaction of an aldehyde to give an ester that carries the acid component from oxidation and the alcohol moiety from reduction is the known as the Tishchenko reaction,^[20] and it is catalysed by early lanthanoid reagents; Cp₂LaH- $(SiMe_3)_2$ is particularly effective. It has analogy to the Cannizzaro reaction inasmuch as an aldehyde with no α hydrogen atom has half an equivalent reduced and the other half oxidized. However, unlike the Cannizzaro reaction, an ester is obtained instead of an acid and an alcohol. Of particular relevance here is the fact that attempted hydrosilation of benzaldehyde with dimethylphenylsilane and catalyst provided the Tishchenko "dimer" benzyl benzoate in 90% yield.^[19] Moreover, when the silane was omitted, the same yield of dimer (88%) was obtained (Scheme 3). Under such catalysis, Tanaka and co-workers report a quantitative conversion of thiophene-2-carbaldehyde into ester 22.^[19]

Scheme 3

Of all the aldehydes and ketones that have reacted with disilane 20 in the presence of base^[15,21] only *p*-(trifluoromethyl)benzaldehyde and thiophene-2-carbaldehyde have afforded Tishchenko dimers and regenerated the original cycloproparene hydrocarbon 19. The regeneration of parent 2 upon desilylation of disilane 10 has been the subject of a detailed investigation in these laboratories.^[6] The reaction is base catalysed and requires one equivalent each of base and water to effect monodesilylation and subsequent protonation of the α -silvl anion. Proton capture releases hydroxide ion for the removal of the second trimethylsilyl group and protonation upon workup completes the sequence. The same process is presumed to operate for the analogous $20 \rightarrow 19$ transformation. The involvement of water in the Tishchenko reactions in which 21 and 22 are formed has been discounted, however, from the results of a dual reaction in which both p-(trifluoromethyl)- and pmethoxybenzaldehyde can react with α -silyl anion 24 from 20. Thus, reaction of 2 mol. equiv. each of disilane 20 and potassium tert-butoxide with a mixture of 1 mol. equiv. of each aldehyde leads to the isolation of hydrocarbon 19 (47%), Tishchenko dimer **21** (40%), and the normal exocyclic alkene 23 from anisaldehyde (77%; cf. 83% from a dedicated procedure with *p*-anisaldehyde alone – Exp. Sect.; Scheme 4).

A Cannizzaro reaction of p-(trifluoromethyl)benzaldehyde to give a 1:1 mixture of acid (from oxidation) and alcohol (from reduction) in 90% overall yield is effected by aqueous NaOH over 30 minutes. In contrast, potassium *tert*-butoxide is ineffective and returns unchanged aldehyde almost quantitatively under conditions that match those

Scheme 5

Scheme 4

from which Tishchenko dimer is obtained. Furthermore, ester **21** is not hydrolysed by *tert*-butoxide in dry THF under the conditions of its formation. Given these data, we conclude that the two Tishchenko reactions recorded herein result from attack of cycloproparenyl anion **24** on the aldehydic carbon of the added aldehyde to give anion **25**, as shown in Scheme 5 for the trifluoromethyl compound. Intermolecular hydride ion transfer to aldehyde then generates acylcycloproparene **26** and alkoxide. In turn, this can then react at the acyl carbonyl centre in an addition-elimination sequence to liberate the Tishchenko dimer **21** and regenerate anion **24** which affords hydrocarbon **19** from baseinduced desilylation.

While the sequence of Scheme 5 adequately accounts for the formation of the observed products, it offers little to account for the anomalous behaviour of the two aldehydes in question. The fact that exocyclic alkenes *are* obtained using the *same* aldehydes with non-ether **10** argues strongly for the electron donating capacity of the methoxy groups of **20** to influence subtly the course of reaction. This appears most likely, as differences in steric demand at the reaction sites of **10** and **20** should not be large. We continue to explore the chemistry of these novel compounds.

Experimental Section

General: The Analytical Facility of Otago University, Dunedin, performed all microanalyses. Mr. O. Zubkov recorded mass measurements with high resolution coming from a PE Biosystems Mariner 5158 TOF spectrometer operating in electrospray mode, and

70 eV data from a Hewlett–Packard 5995C instrument. ¹H and ¹³C NMR spectra were recorded with a Varian Unity INOVA 300 MHz instrument for [D]chloroform solutions using the residual solvent peak as internal standard. The usual notations define NMR multiplicities and coupling constants are in Hertz. The assignment of ¹³C and ¹H NMR resonances was made with the aid of DEPT and ¹H-¹H COSY and ¹³C-¹H HSQC experiments, and heteronuclear multiple bond connectivity (HMBC) experiments. IR spectra of solid samples were recorded for KBr disks using a Biorad FTS 7 spectrophotometer while UV/Vis spectra were measured with a Hewlett–Packard 8452A diode array spectrophotometer. Melting points were determined with a Reichert hot-stage melting point apparatus and are uncorrected.

Thin-layer chromatographic (TLC) analyses were performed using Merck Kieselgel (Alufolien) 60 F_{254} to a thickness of 0.2 mm. Components were detected under an ultraviolet lamp at 254 or 350 nm, or in an iodine chamber. Radial chromatography plates were coated with Merck Kieselgel 60 GF_{254} to a thickness of 2.0 or 4.0 mm.

General Method for the Synthesis of Alkylidene-1*H*-cyclopropa[*b*]naphthalenes: To a stirred solution of disilane^[11] 10 or 20 (1 equiv.) and the carbonyl compound (1 equiv.) in anhydrous THF (ca. 10 mL), cooled to -70 °C and under nitrogen, was added dropwise via syringe needle to a solution of freshly sublimed potassium *tert*butoxide (1 equiv.) in the same anhydrous solvent (ca. 10 mL). The mixture was stirred at -70 °C for 1 h then warmed to ambient temperature overnight. The mixture was quenched (satd. NaHCO₃; 30 mL) and the organic phase extracted with dichloromethane (3 \times 20 mL). The combined organic extracts were washed (water; 3 \times 20 mL), dried (MgSO₄), filtered, and concentrated under reduced pressure to give a crude product that was purified by radial chromatography.

1-(5-Hydroxytetraphenylcyclopenta-1,3-dienyl)-1-trimethylsilyl-1*H*cyclopropa[*b*]naphthalene (17): Treated as described above, disilane 20 (100 mg. 0.35 mmol),^[21] tetracyclone (135 mg, 0.35 mmol) and potassium *tert*-butoxide (40 mg, 0.35 mmol) gave an orange-brown solid, which upon radial chromatography (light petroleum/dichloromethane, 4:1) gave 1H-cyclopropa[b]naphthalene^[14] (2) as the most mobile fraction. Yield 8 mg, (16%). The second fraction comprised of 17. Yield 94 mg, (45%). Orange powder, m.p. 106.0-107.5 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.22$ (s, 9 H, SiMe₃), 5.20 (broad s, 1 H, OH), 7.22 (tt, ${}^{3}J_{AB} = 7.5$, ${}^{4}J_{AC} =$ 1.6 Hz, 2 H), 7.32 (t, ${}^{3}J_{AB} = 7.8$ Hz, 4 H), 7.33 (tt, ${}^{3}J_{AB} = 7.5$, $^4J_{\rm AC}$ = 1.6 Hz, 2 H), 7.42–7.55 (m, 8 H), 7.61–7.76 (m, 8 H, 2 × 14/18-H, 4/5-H and 2/7-H), 7.91-7.95 (BB' of AA'BB', 2 H, 3/6-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 0.2$ (SiMe₃), 36.3 (C1), 83.8 (C8), 113.6 (C2/7), 125.3(C1a/7a), 126.8 (C4/5) 127.1(C3/6), 128.1 (C22), 128.6 (C10/11), 128.8 (C9/12), 129.7 (C16), 130.5 (C21/ 23), 130.6 (C20/24), 130.7 (C15/17), 131.5 (C14/18), 132.7 (C19), 133.1 (C13), 136.5 (C2a/6a) ppm. HRMS (positive APCI) calcd. for $C_{43}H_{36}OSi [M + H^+]$ 597.2613; found 597.2608 (-0.84 mmu). MS (70 eV): m/z (%) = 597 (52) [M + 1⁺] 596 (100) [M⁺], 582 (23), 581 (45), 568 (19), 525 (33), 524 (80), 522 (11), 496 (23), 105 (17). IR (KBr): $\tilde{v}_{max} = 3440, 3051, 2968, 2923, 2169, 1685, 1561,$ 1438, 1384, 1293, 1231, 1132, 1095, 1028, 955 cm⁻¹. UV/Vis (cyclohexane): λ_{max} (log ε) = 226 (4.05), 284 (3.84), 340 (3.88) nm; (acetonitrile): $\lambda_{\text{max}} = 226$ (4.02), 286 (3.79), 340 (3.86) nm.

Reaction of Silanol 17 with Dilute Hydrochloric Acid: During the space of 1 min an aqueous solution of HCl (10% v/v, 0.5 mL) was added dropwise to silanol **17** (30 mg, 0.05 mmol) in refluxing THF (20 mL). The mixture was refluxed for 30 min whereupon the colour changed from orange to black-brown. Following workup and concentration, the components of the resultant brown solid proved inseparable by radial chromatography. The ¹³C NMR spectrum of the crude product showed no shielded C2/7 centres and ring opening of the cycloproparene is presumed to have taken place.^[1]

1-(p-Trifluoromethylphenyl)methylidene-1H-cyclopropa[b]naphthalene (12a): Although p-(trifluoromethyl)benzaldehyde is stable to the reaction conditions (see below), the best yield of alkene 12a resulted from a variation in the general procedure. Thus p-(trifluoromethyl)benzaldehyde (0.78 mL, 61 mg, 0.35 mmol) was added to anion 8, preformed by reacting disilane 10 (100 mg, 0.35 mmol)^[21] with potassium tert-butoxide (40 mg, 0.35 mmol) at -70 °C. Workup according to the general procedure gave a yellow solid, which upon radial chromatography (light petroleum elution) yielded from the most mobile fraction the title alkene 12a. Yield: 64 mg (62%). Bright yellow needles (light petroleum), m.p. 162.5-164.0 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.57$ (s, 1 H, 8-H), 7.49-7.55 (AA', 2 H, 4/5-H), 7.63-7.66 (m, 2 H, 11/13-H), 7.71 (d, $J_{para} = 1.7$ Hz, 1 H, 7-H), 7.78 (d, $J_{para} = 1.7$ Hz, 1 H, 2-H), 7.88 (d, ${}^{3}J_{AB} = 8.3$ Hz, 2 H, 10/14-H), 7.92–7.98 (BB', 2 H, 3/6-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 104.9$ (C8), 109.0 (C7), 109.3 (C2), 114.0 (C1), 124.2 (q, ${}^{1}J_{C,F} = 272$ Hz, CF₃), 124.9 (C7a), 125.6 (q, ${}^{3}J_{C,F} = 4$ Hz, C11/13), 127.0 (C1a), 127.1(0) (C10/ 14), 127.1(5) (C5), 127.2 (C4), 129.0 (C6), 129.2 (C3), 129.0 (q, ${}^{2}J_{C,F}$ = 32 Hz, C12), 138.5 (C6a), 138.6 (C9), 139.2 (C2a) ppm. IR (KBr): $\tilde{v}_{max} = 3235, 2926, 2853, 2170, 1773, 1636, 1616, 1406,$ 1325, 1161, 1111, 1067, 1006, 860, 752, 610 cm⁻¹. UV/Vis (cyclohexane): λ_{max} (log ϵ) = 286 (3.32), 394 (3.40), 422 (3.51) nm; (acetonitrile): $\lambda_{max} = 286$ (3.30), 394 (3.41), 418 (3.46) nm. MS $(70 \text{ eV}): m/z \ (\%) = 297 \ (22) \ [M + 1^+], 296 \ (100), \ [M^+], 275 \ (10),$ 246 (8), 226 (31) [M - CF₃], 123 (11). μ (21 °C) = 3.02 D. C19H11F3 (296.08): calcd. C 77.0, H 3.7; found C 77.1; H 3.6.

1-(2'-Thienyl)methylidene-1*H***-cyclopropa**[*b***]naphthalene (12b)** was synthesised in the same yield and with the same spectroscopic data as described previously.^[11]

p-(Trifluoromethyl)benzyl *p*-(Trifluoromethyl)benzoate (21): The general procedure described above employing disilane 20 (100 mg,

FULL PAPER

0.29 mmol)^[21] and *p*-(trifluoromethyl)benzaldehyde (51 mg, 0.29 mmol) gave a bright yellow solid that was radially chromatographed (3:1 light petroleum/dichloromethane elution). The most mobile fraction provided title benzoate 21. Yield: 50 mg (41%). Yellow platelets (light petroleum), m.p. 61.0-62.0 °C. ¹H NMR (300 MHz, CDCl₃): δ = 5.48 (s, 2 H, 8-H), 7.57 (d, ${}^{3}J_{AB}$ = 8.1 Hz, 2 H, 2'/6'-H), 7.65 (d, ${}^{3}J_{AB} = 8.1$ Hz, 2 H, 3'/5'-H), 7.72 (d, ${}^{3}J_{AB} =$ 8.1 Hz, 2 H, 3/5-H), 8.19 (d, ${}^{3}J_{AB} = 8.1$ Hz, 2 H, 2/6-H) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 66.2$ (C8), 123.5 (q, ${}^{1}J_{C,F} = 273$ Hz, C10), 123.9 (q, ${}^{1}J_{C,F} = 273$ Hz, C9), 125.5 (q, ${}^{3}J_{C,F} = 3$ Hz, C3/5), 125.7 (q, ${}^{3}J_{C,F} = 3$ Hz, C3'/5'), 128.3 (C2'/6'), 130.1 (C2/6), 130.3 (q, ${}^{2}J_{C,F} = 33$ Hz, C4'), 132.9 (C1), 134.7 (q, ${}^{2}J_{C,F} = 33$ Hz, C4), 139.5 (C1'), 165.0 (C7) ppm. IR (KBr): $\tilde{v}_{max} = 2934, 2374, 1724,$ 1513, 1445, 1413, 1324, 1276, 1166, 1125, 1109, 1065, 1016, 860, 774 cm⁻¹. UV/Vis (cyclohexane): λ_{max} (log ϵ) = 234 (4.21), 268 (3.68), 272 (3.65), 284 nm (3.62) nm; (acetonitrile): $\lambda_{max} = 236$ (4.12), 270 (3.71), 274 (3.65) nm. MS (70 eV): m/z (%) = 357 (25) $[M + 1^+]$, 356 (100) $[M^+]$, 342 (15), 341 (71), 327 (13), 326 (56), 313 (6), 298 (18), 270 (11). C₁₆H₁₀F₆O₂ (316.06): calcd. C 55.2, H 2.9, F 32.7; found C 55.5, H 2.7, F 32.9.

Further radial chromatography (light petroleum elution) provided 3,6-dimethoxy-1*H*-cyclopropa[*b*]naphthalene (**19**) identical to that previously prepared and with spectroscopic data in agreement with those published.^[21] Yield: 55 mg (95%).

Reactions of *p*-(Trifluoromethyl)benzaldehyde with Bases

i) With Potassium *tert*-Butoxide: Under conditions analogous to those employed above but in the absence of cycloproparene, *p*-(tri-fluoromethyl)benzaldehyde (51 mg, 0.29 mmol) was recovered quantitatively from attempted reaction with potassium *tert*-butox-ide (34 mg, 0.29 mmol).

ii) With Aqueous Sodium Hydroxide: When stirred for 30 min at ambient temperature, p-(trifluoromethyl)benzaldehyde (102 mg, 0.58 mmol) and aqueous sodium hydroxide (50% w/w, 1.0 mL) provided a 1:1 mixture of p-(trifluoromethyl)benzoic acid and p-(trifluoromethyl)benzyl alcohol in 90% overall yield.

Reactions of Ester 21 with Bases

i) With Potassium *tert***-Butoxide:** Ester **21** (50 mg, 0.14 mmol) and potassium *tert*-butoxide (19 mg, 0.14 mmol) were refluxed for 1 h in THF. Workup gave recovered ester in quantitative yield.

ii) With Aqueous Sodium Hydroxide: Ester 21 (50 mg, 0.14 mmol) and aqueous sodium hydroxide (50% w/w, 1.0 mL) were refluxed for 1 h in THF. A 1:1 mixture of *p*-(trifluoromethyl)benzoic acid and *p*-(trifluoromethyl)benzyl alcohol was isolated in 90% overall yield.

In situ Reaction of Disilane 20 with Potassium *tert*-Butoxide in the Presence of *p*-(Trifluoromethyl)benzaldehyde and *p*-Methoxybenzaldehyde: Disilane 20 (200 mg, 0.58 mmol),^[21] potassium *tert*-butoxide (68 mg, 0.58 mmol), *p*-(trifluoromethyl)benzaldehyde (51 mg, 0.29 mmol) and *p*-methoxybenzaldehyde (39 mg, 0.29 mmol) were reacted in anhydrous THF (30 mL) as described above. Workup and radial chromatography gave:

3,6-Dimethoxy-1-(*p***-methoxyphenyl)methylidene-1***H***-cyclopropa-**[*b*]naphthalene (12c): Yield: 71 mg (77%). Yellow needles (light petroleum), m.p. 148.5–151.0 °C (see below),

p-(Trifluoromethyl)benzyl *p*-(trifluoromethyl)benzoate (21): Yield: 48 mg (40%). Yellow platelets (light petroleum), m.p. 60.0-62.0 °C, and

FULL PAPER

3,6-Dimethoxy-1*H***-cyclopropa**[*b*]**naphthalene (19):** Yield: 55 mg (95%). Clear prisms, m.p. 129.0-131.0 °C. No evidence was obtained for 1-(*p*-trifluoromethylphenyl)methylidene-3,6-dimethoxy-1*H*-cyclopropa[*b*]naphthalene.

3,6-Dimethoxy-1-(p-methoxyphenyl)methylidene-1H-cyclopropa-[b]naphthalene (23): Disilane 12 (100 mg, 0.29 mmol)^[11] and pmethoxybenzaldehyde (40 mg, 0.29 mmol) gave a yellow solid, which upon radial chromatography (light petroleum/dichloromethane, 4:1) provided from the most mobile fraction the title compound 23. Yield: 76 mg (83%). Yellow needles (light petroleum), m.p. 148.5–150.0 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.86 (s, 3) H, C12-OMe), 3.89 (s, 3 H, C3/6-OMe), 3.89 (s, 3 H, C6/ 3-OMe), 6.44 (s, 1 H, 8-H), 6.70 (s, 2 H, 4/5-H), 7.00 (d, ${}^{3}J_{AB} =$ 8.3 Hz, 2 H, 11/13-H), 7.61 (d, ${}^{3}J_{AB} = 8.3$ Hz, 2 H, 10/14-H), 7.81 (d, J_{para} = 1.7 Hz, 1 H, 7-H), 7.85 (d, J_{para} = 1.7 Hz, 1 H, 2-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 55.1$ (C12–OMe), 55.9 (C3/6-OMe), 102.0 (C7), 102.0(5) (C2), 104.2 (C5), 104.3 (C4), 105.8 (C8), 111.1 (C1), 112.5 (C11/13), 125.8 (C7a), 127.7 (C1a), 127.8 (C10/14), 130.4 (C6a), 130.5 (C2a), 131.2 (C9), 150.4 (C6), 150.5 (C3), 157.2 (C12 ppm, HRMS (positive APCI) calcd, for $C_{21}H_{18}O_3$ [M + H⁺] 319.1334; found 319.1338 [+1.2(5) mmu]. IR (KBr): $\tilde{v}_{max} = 3054, 2965, 2929, 2856, 1931, 1774$ (w), 1660, 1646, 1598, 1254, 1165, 1034, 866, 822, 787 cm⁻¹. UV/Vis (cyclohexane): λ_{max} (log ϵ) = 312 (3.77), 320 (3.82), 416 (4.01), 440 (4.10) nm; acetonitrile): $\lambda_{max} = 314$ (3.71), 320 (3.80), 414 (3.99), 436 nm (4.05). μ (21 °C) = 0.92 D. $C_{21}H_{18}O_3$ (319.13): calcd. C 79.2, H 5.7. found C 79.1, H 5.5(5).

Reaction of Disilane 20 with Potassium tert-Butoxide in the Presence of 2-Thiophenecarbaldehyde: Disilane 20 (100 mg, 0.29 mmol)^[21] and 2-thiophenecarboxaldehyde (33 mg, 0.39 mL, 0.29 mmol) produced from application of the general procedure, a bright yellow solid. Radial chromatography (light petroleum/dichloromethane, 3:1) provided from the most mobile fraction 2-thienylmethyl thiophene-2-carboxylate (22).^[19] Yield: 29 mg (45%). Yellow needles (light petroleum), m.p. 72.0-72.5 °C. ¹H NMR (300 MHz, CDCl₃): δ = 5.49 (s, 2 H, 7-H), 7.02 (dd, $J_{2,3}$ = 3.4, $J_{1,2}$ = 5.1 Hz, 1 H, 4-H), 7.10 (dd, $J_{2,3} = 3.9$, $J_{1,2} = 4.9$ Hz, 1 H, 4'-H), 7.18–7.19 (m, 1 H, 5'-H), 7.35 (dd, $J_{1,3} = 1.2$ Hz, $J_{1,2} = 5.1$ Hz, 1 H, 3'-H), 7.56 (dd, $J_{1,3} = 1.2$, $J_{1,2} = 4.9$ Hz, 1 H, 3-H), 7.83 (dd, $J_{1,3} = 1.2$, $J_{2,3} = 3.9$ Hz, 1 H, 5-H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 61.0 (C7), 126.9 (C4'), 127.0 (C3'), 127.8 (C4), 128.4 (C5'), 132.7 (C3), 133.4 (C1'), 133.8 (C5'), 137.7 (C1), 161.9 (C6) ppm. HRMS (positive APCI) calcd. for $C_{10}H_8O_2S_2$ [M + H⁺] 223.9966; found 223.9959 (-3.1 mmu). MS (70 eV): m/z (%) = 225 (2) [M + 1⁺], 224 (14) [M⁺], 179 (3), 111 (59) [M - O-thienylmethyl⁺], 97 (100), 57 (13), 53 (18), 39 (55). IR (KBr): $\tilde{v}_{max} = 2930, 1852, 1670, 1564,$ 1329, 1107, 956, 823 cm⁻¹. UV/Vis (cyclohexane): λ_{max} (log ϵ) = 230 (4.00), 268 (3.77), 346 (3.65) nm; (acetonitrile): $\lambda_{max} = 230$ (4.01), 270 (3.72), 348 (3.63) nm.

Further radial chromatography (light petroleum elution) provided **3,6-dimethoxy-1***H*-cyclopropa[*b*]naphthalene (19) identical to an authentic sample.^[21] Yield: 53 mg (91%).

X-ray Structure Determination of *p*-(Trifluoromethyl)benzyl *p*-(Trifluoromethyl)benzoate (21): CCDC-213488 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystalographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

Financial support in New Zealand from Victoria University and in Germany from the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.

- ^[1] B. Halton, Chem. Rev. 2003, 103, 1327-1370.
- ^[2] B. Halton, Chem. Rev. 1989, 89, 1161–1185.
- [3] R. Anet, F. A. L. Anet, J. Am. Chem. Soc. 1964, 86, 525-526.
 [4] C. Eaborn, R. Eidenschink, S. J. Harris, D. R. M. Walton, J. Organomet. Chem. 1977, 124, C27-C29.
- [5] C. Eaborn, J. G. Stamper, J. Organomet. Chem. 1980, 192, 155-161.
- [6] B. Halton, C. S. Jones, J. Chem. Soc., Perkin Trans. 2 1998, 2505–2508; B. Halton, C. S. Jones, J. Chem. Soc., Perkin Trans. 2 1999, 387.
- ^[7] C. A. Cutler, B. Halton, Aust. J. Chem. 1997, 50, 267-270.
- ^[8] B. Halton, G. M. Dixon, Org. Lett. 2002, 4, 4563-4565.
- [9] B. Halton, M. J. Cooney, R. Boese, A. H. Maulitz, J. Org. Chem. 1998, 63, 1583–1590.
- ^[10] B. Halton, P. J. Stang, Synlett 1997, 145-158.
- ^[11] B. Halton, M. J. Cooney, T. W. Davey, G. S. Forman, Q. Lu, R. Boese, D. Bläser, A. H. Maulitz, *J. Chem. Soc., Perkin Trans.* 1995, 1, 2819–2827.
- ^[12] B. Halton, C. J. Randall, G. J. Gainsford, P. J. Stang, J. Am. Chem. Soc. **1986**, 108, 5949–5956.
- ^[13] Y. Apeloig, R. Boese, D. Bläser, B. Halton, A. H. Maulitz, J. Am. Chem. Soc. **1998**, 120, 10147–10153.
- ^[14] B. Halton, S. J. Buckland, Q. Lu, Q. Mei, P. J. Stang, J. Org. Chem. **1988**, 53, 2418–2422.
- ^[15] G. M. Dixon, PhD thesis, Victoria University of Wellington (Wellington), **2002**.
- ^[16] B. Halton, in *The Chemistry of the Cyclopropyl Group, Vol. 2*, (Ed.: Z. Rappoport), Wiley, Chichester, **1995**, pp. 707–772.
- [17] D. J. Ager, Synthesis 1984, 384; W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag: New York, 1983.
- ^[18] S. J. Buckland, B. Halton, Q. Mei, P. J. Stang, Aust. J. Chem. 1987, 40, 1375-1387.
- ^[19] S-y. Onozawa, T. Sakakura, M. Tanaka, M. Shiro, *Tetrahedron* 1996, 52, 4291–4302.
- ^[20] V. Tishchenko, J. Russ. Phys. Chem. Soc. **1906**, 38, 355; L. Claisen, Ber. Dtsch. Chem. Ges. **1887**, 20, 646; O. P. Tormakangas, A. M. P. Koskinen, Recent Research Developments in Organic Chemistry **2001**, 5(Pt. 1), 225–255.
- [21] B. Halton, A. J. Kay, Z. Zhi-mei, R. Boese, T. Haumann, J. Chem. Soc., Perkin Trans. 1 1996, 1445–1452.

Received June 25, 2003

Early View Article

Published Online October 2, 2003