SYNTHETIC COMMUNICATIONS[®] Vol. 34, No. 6, pp. 1057–1063, 2004

Directing Effect of Axial and Equatorial Anomeric Substituent in Site Specific Glycosylation of Glucopyranosides

Hari Babu Mereyala,* S. Bhavani, and A. P. Rudradas

Organic Chemistry Division III, Indian Institute of Chemical Technology, Hyderabad, India

ABSTRACT

Regio- and stereoselective glycosylation of α - and β -octyl glucopyranoside derivatives **2c** and **2d**, respectively, with glycosyl donor **3** to obtain the corresponding 3-*O*-linked **5c** and 2-*O*-linked **4d** saccharides, respectively, is described, formation of diglycosylated products **6c** and **6d** was not observed.

Key Words: Octyl glucopyranoside; 2-Pyridyl-1-thioglucopyranoside; Iodomethane; Regioselective glycosylation.

1057

DOI: 10.1081/SCC-120028637 Copyright © 2004 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Correspondence: Hari Babu Mereyala, Organic Chemistry Division III, Indian Institute of Chemical Technology, Hyderabad 500 007, India; E-mail: mereyalahb@ rediffmail.com.

ORDER		REPRINTS
-------	--	----------

Mereyala, Bhavani, and Rudradas

Carbohydrate biopolymers are made up of monomeric units connected to one another at several sites and in two types of anomeric linkages^[1] they provide almost all variations in their structure and play essential role in many molecular processes such as fertilization, embryogenesis, and hormone activity.^[2] Oligosaccharide structures change dramatically during development of cells and specific sets of oligosaccharides are expressed at distinct stages of differentiaion. The saccharide processing involves regio- and stereoselective glycosylation of carbohydrates, extent and site of glycosylation is attributed to steric crowding in the 3D structure and rate of reactivity of the hydroxyl groups.^[3]

1058

We report our initial studies on the role of anomeric substituent in the site specific glycosylation of glucopyranosides. Methyl α -(1a) and β -D-glucopyranoside (1b) were severally reacted with α , α -dimethoxy toluene in CH₂Cl₂ to obtain the corresponding 4,6-*O*-benzylidene derivatives 2a^[4] and 2b,^[5] respectively, as crystalline solids.

Axial glycoside **2a** was coupled with 2-pyridyl 2,3,4,6-tetra-*O*-benzyl-1thio- α/β -D-glucopyranoside (**3**) by iodomethane activation procedure^[6] in CH₂Cl₂ at 40°C for 78 hr to isolate 2-*O*-glycosylated saccharide **4a** (20% yield), 3-*O*-glycosylated saccharide **5a** (48% yield), and 2,3-di-*O*-glycosylated saccharide **6a** (10% yield). Whereas coupling of equatorial glycoside **2b** with **3** under similar reaction conditions gave 2-*O*-glycosylated saccharide **4b** (23.5% yield) and 3-*O*-glycosylated saccharide **5b** (46% yield), formation of diglycosylated derivative was not observed. Stereochemistry of the newly formed *O*-glycosidic bond was established as axial.^[6] **4a**–**6a** and **4b**–**5b** were fully characterized from ¹H NMR spectra. These experiments have indicated that in case of axial methyl glycoside acceptors marginal selectivity for

sugar=(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)

Scheme 1.

Directing Effect of Axial and Equatorial Anomeric Substituent

3-O-glycosylation was observed over 2-O- and vice versa for equatorial methyl glycoside derivatives indicating that the stereochemistry at the anomeric position played a role in directing the glycosylation site. In order to enhance the regioselectivity (site) in glycosylations we looked at the role of alkyl groups such as size and linkage (α/β) at the anomeric position. Thus glycosides possessing long chain alkyl groups at the anomeric position were considered for glycosylation. Accordingly, n-octyl α -(1c)^[7] and - β -D-glucopyranosides (1d)^[8] were converted to their corresponding benzylidene derivatives 2c and 2d, respectively, by reaction with α, α -dimethoxy toluene.^[4] 2c and 2d were characterized from ¹H NMR spectra by the appearance of benzylidene acetal protons as two singlets at $\delta 5.50$ (0.8 H), $\delta 5.40$ (0.2 H), δ 5.45 (0.5 H), and δ 5.30 (0.5 H), respectively. 2c and 2d were separately coupled with glycosyl donor **3** to isolate 3-O- α -**5c** (58% yield) and 2-O- β glycosylated 4d (77% yield) derivatives, respectively, indicating high regioselectivity. Formation of regioisomers and diglycosylated products was not observed. 5c and 4d were converted to the corresponding acetyl derivatives 7c and 8d, respectively, for characterization by 1 H NMR spectra. In the ¹H NMR spectra of **7c**, acetyl group appeared at $\delta 2.10$ (3H, s), H-2 as a double doublet at $\delta 5.40$ ($J_{1,2} = 4.2$ Hz, $J_{2,3} = 8.1$ Hz) and H-1 appeared at $\delta 4.30$ as a doublet. Irradiation of the proton at $\delta 5.40$ resulted in the collapse of H-1 to a singlet; thus 7c was characterized as the 3-O-glycosylated saccharide. In the ¹H NMR spectrum of **8d** the acetyl group appeared at $\delta 2.18$ (s, 3H) and H-3 at δ 4.95 (0.5 H, dd) and 5.30 (0.5 H, dd, $J_{3,8} = 2$ Hz, $J_{3,4} = 8.5$ Hz). Irradiation of the protons at $\delta 4.95$ and $\delta 5.30$ did not have any effect on the multiplicity of H-1 proton that appeared as a doublet at $\delta 4.60 (J_{1,2} = 8.2 \text{ Hz})$ indicating 8d to be the 2-O-glycosylated saccharide.

In conclusion, we have shown that axial octyl glycopyranosides exhibited selective 3-O- and the corresponding equatorial ones the 2-O-glycosylation. In case of methyl glycosides the selectivity in glycosylation was not significant. Site selectivity, effect of chain length, and bulk of alkyl substituent at the anomeric position in glycosylation is under study in the light of these findings.

EXPERIMENTAL SECTION

General Methods

Flame dried glass ware, commercially available solvents and reagents were used without further purification unless otherwise stated. Melting points were measured using capillary tubes and are uncorrected. ¹H NMR spectra were measured with a Varian Gemini (200 MHz) spectrometer, with TMS as an internal standard using CDCl₃, as solvent.

1059

	REPRINTS
--	----------

Mereyala, Bhavani, and Rudradas

Methyl 4,6-*O*-Benzylidene-2-*O*-(2,3,4,6-tetra-*O*-bezyl- α -D-glucopyranosyl)- α -D-glucopyranoside (4a); Methyl 4,6-*O*-benzylidene-3-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)- α -D-glucopyranoside (5a); Methyl 4,6-*O*-benzylidene-2,3-di-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)- α -D-glucopyranoside (6a)

A solution of methyl 4,6-*O*-benzylidene- α -D-glucopyranoside (3.0 g, 10.3 mmol), **3** (5.8 g, 10.3 mmol), molecular sieves (100 mg) and methyl iodide (7.5 mL of 6% v/v methyl iodide solution in dichloromethane) in dichloromethane (100 mL) was refluxed for 78 hr. The reaction mixture was diluted with dichloromethane (200 mL) and filtered to remove insoluble salts. The filtrate was concentrated to a volume of 20 mL and chromatographed on a bed of silica gel [60–120 mesh, hexane : ethylacetate, (6 : 1)] to elute first 2,3-di-*O*-glycosylated derivative **6a** (0.89 g, 12%) followed by 2-*O*-glycosylated derivative **4a** (1.71 g, 28%) and 3-*O*-glycosylated product **5a** (3.14 g, 48%) as syrups.

4a: ¹H NMR (200 MHz, CDCl₃): δ 7.15–7.42 (m, 25H, Ar-H), 5.52 (d, 1H, J = 4.5 Hz, H-1), 5.43 (s, 1H, PhCH), 3.35–4.95 (m, 21H, PhCH₂ × 4, 2-6, 1'-6'), 3.51 (s, 3H, OCH₃); Anal. calcd. for C₄₈H₅₂O₁₁ (804): C, 71.64; H, 6.47, Found: C, 71.32; H, 6.54.

5a: ¹H NMR (200 MHz, CDCl₃): δ 7.20–7.45 (m, 25H, Ar-H), 5.35 (d, 1H, J = 4.5 Hz, H-1), 5.45 (s, 1H, PhCH), 3.30–5.00 (m, 21H, PhCH₂ × 4, 2–6, 1′–6′), 3.51 (s, 3H, OCH₃); Anal. calcd. for C₄₈H₅₂O₁₁ (804): C, 71.64; H, 6.47, Found: C, 71.39; H, 6.57.

6a: ¹H NMR (200 MHz, CDCl₃): δ 7.15–7.40 (m, 45H, Ar-H), 5.50 (s, 1H, PhCH), 3.40–5.00 (m, 36H, PhCH₂ × 8, 2–6, 1′–6′, 1″–6″-H), 3.52 (s, 3H, OCH₃); Anal. calcd. for C₈₂H₈₀O₁₆ (1240): C, 74.21; H, 6.48, Found: C, 73.98; H, 6.57.

Methyl 4,6-*O*-benzylidene-3-*O*-(2,3,4,6-tetra-*O*-bezyl-α-Dglucopyranosyl)-β-D-glucopyranoside (4b); Methyl 4,6-*O*benzylidene-2-*O*-(2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranosyl)β-D-glucopyranoside (5b)

Reaction of **2b** (1.0 g, 3.5 mmol) in dichloromethane (10 mL), **3** (2.25 g, 3.5 mmol), molecular sieves (100 mg), methyl iodide (15 mL of 6% methyl iodide in dichloromethane) as described for **4a** resulted in the isolation of **3** (0.73 g, 26%) followed by 2-*O*-glycosylated derivative **5b** (410 mg, 23.5%) and 3-*O*-glycosylated derivative **4b** (0.80 g, 46%). $[\alpha]_{\rm D} = -31.0^{\circ}$ (c 0.94, CHCl₃).

1060

Directing Effect of Axial and Equatorial Anomeric Substituent

4b: m.p. $155^{\circ}C-157^{\circ}C$; $[\alpha]_{D} = -11^{\circ}$ (c 1.3, CHCl₃); ¹H NMR (200 MHz, CDCl₃): $\delta 7.20-7.40$ (m, 25H, Ar-H), 5.35 (d, 1H, J = 6.4 Hz, H-1'), 5.45 (s, 1H, PhCH), 3.40-5.00 (m, 21H, PhCH₂ × 4, 2-6, 1'-6'), 3.58 (s, 3H, OCH₃); Anal. calcd. for C₄₈H₅₂O₁₁ (804): C, 71.64; H, 6.47, Found: C, 71.39; H, 6.53.

1061

5b: syrup; $[\alpha]_D = -31^\circ$ (c 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 7.20–7.40 (m, 25H, Ar-H), 5.40 (d, 1H, J = 6.4 Hz, H-1), 5.45 (s, 1H, PhCH), 3.40–5.00 (m, 21H, PhCH₂ × 4, 2–6, 1'–6'), 3.58 (s, 3H, OCH₃); Anal. calcd. for C₄₈H₅₂O₁₁ (804): C, 71.64; H, 6.47, Found: C, 71.39; H, 6.57.

n-Octyl 4,6-*O*-benzylidene- α -D-glucopyranoside (2c)

To a solution of *n*-octyl α -D-glucopyranoside (1.5 g, 5.1 mmol) in dry dichloromethane (5 mL) was added α, α -dimethoxy toluene (912 mg, 6 mmol) and a catalytic amount of p-TSA (5 mg) under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 48 hr, water was added and extracted into dichloro methane. The organic phase was separated, washed with water, dried (Na₂SO₄). The residue obtained was filtered on a bed of silica gel [60–120 mesh, hexane : ethyl acetate, (1 : 1)] to obtain the title compound **2c** (1.7 g, 89%) as a crystalline solid, m.p. 74°C; ¹H NMR (200 MHz, CDCl₃): (diastereomeric mixture): δ 7.25–7.60 (m, 5H, Ar-H), 5.30–5.50 (2s, 1H, PhCH), 4.35 (d, 1H, $J_{1,2}$ = 8.3 Hz, H-1), 3.25–4.25 (m, 8H, H-2-6, OCH₂), 1.20–1.40 (m, 12H, CH₂ × 6), 0.87 (t, 3H, CH₃); Anal. calcd. for C₂₁H₃₂O₆ (380): C, 66.31; H, 8.42, Found: C, 65.24; H, 8.51.

n-Octyl 4,6-*O*-benzylidene- β -D-glucopyranoside (2d)

To a solution of *n*-octyl β -D-glucopyranoside (4.5 g, 15.3 mmol) in dry dichloromethane (20 mL) was added α, α -dimethoxy toluene (1.9 g, 19 mmol) and a catalytic amount of p-TSA (15 mg) under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 48 hr, water was added and extracted into dichloro methane. The organic phase was separated, washed with water, dried (Na₂SO₄) and concentrated. The residue obtained was filtered on a bed of silica gel [60–120 mesh, hexane : ethyl acetate, (1 : 1)] to obtain the title compound **2d** (5.1 g, 89%) as a crystalline solid, m.p. 124°C; ¹H NMR (200 MHz, CDCl₃): (diastereomeric mixture): δ 7.25–7.60 (m, 5H, Ar-H), 5.30–5.50 (2s, 1H, PhCH), 4.35 (d, 1H, $J_{1,2}$ = 8.3 Hz, H-1), 3.25–4.25 (m, 8H, H-2-6, OCH₂), 1.20–1.40 (m, 12H, CH₂ × 6), 0.87 (t, 3H, CH₃); Anal. calcd. for C₂₁H₃₂O₆ (380): C, 66.31; H, 8.42, Found: C, 66.12; H, 8.53.

Marcel Dekker, Inc

270 Madison Avenue, New York, New York 10016

ORDER		REPRINTS
-------	--	----------

Mereyala, Bhavani, and Rudradas

$\label{eq:a-o-constraint} \begin{array}{l} \textit{n-Octyl 4,6-O-benzylidene-3-}O{-(2,3,4,6-tetra-O-bezyl-$\alpha-D-glucopyranosyl)-$\alpha-D-glucopyranoside (5c); $\textit{n-Octyl 4,6-O-benzylidene-2-}O{-(2,3,4,6-tetra-O-benzyl-$\alpha-D-glucopyranosyl)-$\beta-D-glucopyranoside (4d) \\ \end{array}$

Prepared from **2c** (1.0 g, 2.6 mmol) CH₂Cl₂ (12 mL), **3** (1.65 g, 2.6 mmol) methyl iodide (1 mL of 6% methyl iodide in dichloromethane) as described for compound **4b** to obtain the title compound **5c** (0.5 g, 48%) as a syrup: $[\alpha]_D = 60^\circ$ (c 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 7.05–7.40 (m, 25H, Ar-H), 5.52–5.50 (2s, 1H, PhCH), 5.35 (d, 1H, $J_{1,2} = 2.1$ Hz, H-1), 3.30–5.00 (m, 22H, H-2-6, 1'-6', OCH₂, PhCH₂O × 3, PhCH-), 1.15–1.45 (m, 12H, CH₂ × 6), 0.87 (t, 3H, CH₃); Anal. calcd. for C₅₅H₆₈O₁₁ (904): C, 72.97; H, 7.52, Found: C, 72.78; H, 7.59.

4d: $[\alpha]_D = 14.6^{\circ}$ (c 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 7.00–7.40 (m, 25H, Ar-H), 5.25–5.50 (2s, 1H, PhCH), 3.30–5.00 (m, 22H, H-2-6, 1'-6', OCH₂, PhCH₂O × 3, PhCH-), 1.15–1.45 (m, 12H, CH₂ × 6), 0.87 (t, 3H, CH₃); Anal. calcd. for C₅₅H₆₈O₁₁ (904): C, 72.97; H, 7.52, Found: C, 72.88; H, 7.49.

n-Octyl 2-*O*-acetyl-4,6-*O*-benzylidene-3-*O*-(2,3,4,6-tetra-*O*-bezyl-α-D-glucopyrano-syl)-α-D-glucopyranoside (7c)

2d (0.1 g, 0.09 mmol) was acetylated in pyridine (0.5 mL, 7.5 mmol) acetic anhydride (0.25 mL, 2.75 mmol) at 0°C to obtain the title compound **7c** (96 mg, 95%) as a syrup; $[\alpha]_D = 36^{\circ}$ (c 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 7.15–7.40 (m, 25H, Ar-H), 5.52 (d, 1H, $J_{1'2'} = 5.6$ Hz, H-1'), 5.42-5.30 (2s, 1H, PhCH), 4.85 (d, 1H, $J_{1,2} = 4.7$ Hz, H-2), 3.30–5.00 (m, 22H, H-1, 3-6, 2'-6', PhCH₂O × 4, –OCH₂–), 2.05 (s, 3H, COCH₃), 1.20–1.50 (m, 12H, CH₂ × 6), 0.90 (t, 3H, CH₃); Anal. calcd. for C₅₇H₇₀O₁₂ (946): C, 72.31; H, 7.41, Found: C, 71.21; H, 7.49.

$\label{eq:a-o-constraint} \begin{array}{l} \textit{n-Octyl-3-O-acetyl-4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-benzyl-\alpha-D-glucopyrano-syl)-\beta-D-glucopyranoside (8d) \end{array}$

To a solution of **4d** (200 mg, 0.22 mmol) in pyridine (0.5 mL, 7.5 mmol) at 0°C, was added acetic anhydride (0.25 mL, 2.3 mmol). The reaction mass was stirred at room temperature for 1 hr. The reaction mixture was worked up and filtered on a bed of silica gel [60–120 mesh, hexane: ethyl acetate (5 : 1)] to obtain the title compound **8d** (192 mg, 92%) as a syrup; $[\alpha]_D = 19^\circ$ (c 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): $\delta 6.95-7.45$ (m, 25H, Ar-H), 5.50–

1062

Directing Effect of Axial and Equatorial Anomeric Substituent

5.60 (2s, 1H, $J_{1'2'} = 3.2$ Hz), 5.28–5.45 (2s, 1H, 1H), 3.30–5.60 (d, 1H, $J_{1,2} = 4.7 \text{ Hz}, \text{ H-2}), 3.30-5.60 \text{ (m, 22H, H-1, 3-6, 2'-6', PhCH}_{2}O \times 4,$ $-OCH_2-$), 5.10 (dd, $J_{2,3} = 80$ Hz, $J_{3,4} = 8.8$ Hz, H-3 merged), 2.00 (s, 3H, COCH₃), 1.20–1.35 (m, 12H, CH₂ \times 6), 0.70 (t, 3H, CH₃); Anal. calcd. for C₅₇H₇₀O₁₂ (946): C, 72.31; H, 7.41, Found: C, 71.31; H, 7.38.

1063

REFERENCES

- 1. Varki, A. Biological roles of oligosaccharides. Glycobiology 1993, 3, 97.
- 2. (a) Hakomori, S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res. 1985, 45, 2405; (b) Kellerman, J.; Lottspeich, F.; Henchen, A.; Muller-Esterl, W. Completion of primary structure of human high molecular mass kininogen. The amino acid sequence of the entire heavy chain and evidence for its evolution by gene triplication. Eur. J. Biochem. 1986, 154, 1471.
- 3. Sharon, N. Glycoproteins. Trends Biochem. Sci. 1984, 9, 198.
- 4. Mereyala, H.B.; Reddy, G.V. Stereoselective synthesis of α -linked saccharides by use of per-o-benzylated 2-pyridyl 1-thio hexopyranosides as glycosyl doners and methyl iodide as an activator. Tetrahedron 1991, 47, 6435.
- 5. Richtmyer, N.K. Transformation of D-glucose into D-altrose: configurational inversion through the epoxide. Methods in Carbohydrate Chemistry **1962**, 1, 107.
- 6. Evans, M.V. Methyl 4,6-O-benzylidene- α -and - β -D-glucopyronosides via acetal exchange. Methods in Carbohydrate Chemistry 1969, 8, 313.
- 7. Limousin, C.; Cle'ophax, J.; Petit, A.; Loupy, A.; Lukacs, G. Free synthesis of decyl D-glucopyranosides under focused microwave irradiation. J. Carbohyd. Chem. 1997, 16, 327.
- 8. Brown, G.M.; Dubrevil, P.; Ichhaporia, F.M.; Desnoyers, J.E. Synthesis and properties of some α -D-alkyl glucosides and mannosides: apparent molal volumes and solubilization of nitro benzene in water at 25°C. Can. Jl. Chemistry 1970, 48, 2525.

Received in India September 11, 2003

Marcel Dekker, Inc

Copyright of Synthetic Communications is the property of Marcel Dekker Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Synthetic Communications is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.